
PICARD-VI: RELATIVE REPRESENTABILITY

PRAMATHANATH SASTRY

1. Equivalence relations

Let S be a scheme. We saw that every S-scheme X is an fpqc-sheaf on Sch/S .
Recall that this means the following: Suppose p : T ′ → T is an fpqc-map and as
usual we set T ′′ := T ′ ×S T ′, and let p1, p2 : T ′′ ⇒ T ′ denote the two projections.
Suppose we have a map f ′ : T ′ → X in Sch/S such that f ′ ◦p1 = f ′ ◦p2. Then
there is a unique map f : T → X such that f ′ = f ◦p. In other words if we
have a commutative diagram below of solid arrows in Sch/S (with the square being
cartesian) then the dotted arrow can be filled in a unique way to make the whole
diagram commutative.

(1.1) T ′′
p
2 //

p
1

��

T ′

p

�� f ′

��

T ′
p //

f ′
--

T f

&&
X

Here our attention is on X and the cartesian diagram of T ’s is allowed to vary.
If we transfer our attention to the commutative square (fixing it) and allow X to
vary in Sch/S then we get the scheme-theoretic notion of quotients by equivalence
relations, or more generally of co-equalizers, notions that we now discuss.

1.2. Equivalence relations and co-equalizers. The notion of an equivalence
relation on a set has the following natural generalization in the category Sch/S .

Definition 1.2.1. Let X ∈ Sch/S . A schematic equivalence relation on X over S
is an object R ∈ Sch/S together with a morphism f : R → X ×S X such that for
every T ∈ Sch/S the map of sets

f(T ) : R(T )→ X(T )×X(T )

is injective and its image is (the graph of) an equivalence relation on the set X(T ).
Here, for any Z ∈ Sch/S , in keeping with our identification of Z with the functor
hZ , the set Z(T ) denotes the set hZ(T ) := HomSch/S

(T, Z) for any T ∈ Sch/S .

For example, the scheme T ′′ in (1.1) is a schematic equivalence relation on T ′

over S, or more precisely, the natural map T ′′ → T ×S T , is a schematic equivalence
relation on T ′ over S. We will see—from the definition we give below of quotients
by equivalence relations—that p : T ′ → T is the scheme theoretic quotient of T ′

with respect to this equivalence relation.

Date: November 7 and November 14, 2008.
1
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Definition 1.2.2. Let f : R : X be an equivalence relation on X ∈ Sch/S and
f1, f2 : R⇒ X the natural maps arising from f and the projections X ×S X ⇒ X.
A morphism q : X → Q in Sch/S s a quotient for R → X (or simply of X by R) if
q ◦f1 = q ◦f2 and given any map g : X → Z in Sch/S satisfying g ◦f1 = g ◦f2 there
is a unique map h : Q → Z such that g = h ◦ q, in other words, as in (1.1), if—in
the diagram below—the solid arrows form a commutative diagram, then the dotted
arrow can be filled in a unique way to make the whole diagram commute:

(1.2.2.1) R
f
2 //

f1
��

X

q

�� g

��

X
q //

g
--

Q
h

&&
Z

If the quotient q : X → Q of X by R exists, then we say it is an effective quotient
if the natural map (f1, f2) : R → X ×Q R is an isomorphism, i.e., if the square
in Diagram (1.2.2.1) is cartesian. We often denote the quotient Q, if it exists, by
X/R.

Remark 1.2.3. Clearly, from the universal property of quotients by (schematic)
equivalence relations, if such a quotient q : X → Q exists, it is unique up to unique
isomorphism. In category theory terms, the universal property of q : X → Q makes
it a co-equalizer for the maps f1 and f2. Co-equalizers are clearly unique up to
unique isomorphisms.

Consider the situation in Diagram (1.1). The fpqc-map p : T ′ → T is an effective
quotient of T ′ with respect to the equivalence relation T ′′. One can say more,
namely:

Proposition 1.2.4. Let top ∈ {Zar, ét, fppf, fpqc}1. Let p : T ′ → T be a map in
Mtop, T ′′ = T ′ ×T T ′ and

T ′′

p
1

��

p
2 // T ′

p

��
T ′

p
// T

the resulting cartesian diagram. Then the map p : T ′ → T is a co-equalizer for p1
and p2 in the category of top-sheaves (where, by a top-sheaf we mean an Mtop-
sheaf) on Sch/S. In greater detail, if

F : (Sch/S) ◦ → (Sets)

is an top-sheaf on Sch/S and we have a map f ′ : T ′ → F of top-sheaves on Sch/S
such that f ′ ◦ p1 = f ′ ◦ p2, then there is a unique map f : T → F of top-sheaves on
Sch/S such that f ◦ p = f ′. In particular T ′ → T is a co-equalizer for p1 and p2 in
Sch/S, whence it is the quotient of T ′ by the equivalence relation T ′′.

1Where these topologies are over Sch/S . One should perhaps write Zar/S , ét/S , etc. Perhaps

one day, in a revised form of these notes . . . .
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Proof. Recall from previous notes that a map T ′ → F is the same as a section of
F over T . Thus f ′ ∈ F (T ′) and p∗1(f ′) = p∗2(f ′) ∈ F (T ′′). Since F is an top-sheaf
and p : T ′ → T is a map in Mtop, we have a unique element f ∈ F (T ) such that
f ′ = p∗(f). Now re-interpret f ∈ F (T ) as a map f : T → F and we are done. �

In order to represent P = (Pic
X/S

)(fppf) it becomes important to realize P—
or at least, some “open and closed” subfunctors of P which “cover” P—as a
co-equalizer of an fppf-map from a scheme to P. The next subsection gives a
necessary and sufficient condition under which a map of sheaves can be regarded
as a co-equalizer of two maps.

1.3. Fiber product of functors. Recall that if A → C and B → C are maps of
sets, then the fiber-product A×CB exists in the category (Sets). In fact an explicit
description of this fiber-product is

A×C B = {(a, b) ∈ A×B | the image of a in C equals the image of b in C}.

More precisely, A ×C B is the above set together with the natural projections to
A and B. This data has the required universal property for a fiber product, as is
readily verified.

One can use the existence of fiber-products in (Sets) to deduce their existence

in Ĉ , where, as in Lecture 5, C = Sch/S , and Ĉ is the category of contravariant
(Sets)-valued functors on Sch/S . To that end, suppose F,G⇒ H are a pair of maps

in Ĉ . Set

(F ×H G)(T ) = F (T )×H(T ) G(T ) (T ∈ Sch/S)

(an assignment which is clearly functorial in T ). It is easy to see that F ×H G is

indeed a fiber products in Ĉ .

Definition 1.3.1. Fix a topology top ∈ {Zar, ét, fppf, fpqc} on Sch/S . A map
F → G of top-sheaves is said to be surjective or an epimorphism if, given T ∈ Sch/S
and an element θ ∈ G(T ), there exists T ′ → T in Mtop and an element η ∈ F (T ′)
such that the image of η in G(T ′) under F (T ′) → G(T ′) equals the image of θ in
G(T ′) under G(T )→ G(T ′). (In other words the diagram

(1.3.1.1) T ′

��

η // F

��
T

θ
// G

commutes.)

Proposition 1.3.2. Let top ∈ {Zar, ét, fppf, fpqc} be a topology on Sch/S. A
map of top-sheaves F → G is surjective if and only if it is the co-equalizer of
F ×G F ⇒ F in the category of top-sheaves.

First suppose F → G is surjective. Let ϕ : F → H be a map of top-sheaves such
that the two maps from F ×G F to H are equal. We have to show that there is a

unique map ϕ : G→ H such ϕ′ is the composite F → G
ϕ−→ H. Suppose θ ∈ F (T ),

for some T ∈ Sch/S . Since F → G is surjective, there is a map T ′ → T in top and
element η ∈ F (T ′) such that the diagram in (1.3.1.1) commutes. Let T ′′ = T ×T T ′.
Then η gives rise to a natural element η∗ ∈ (F ×G F )(T ′′) via the two images of
η in F (T ′′). Let ξ′ ∈ H(T ′) be the image of η ∈ F (T ′) under ϕ′. The two images
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of ξ′ in H(T ′′) (under the maps H(T ′) ⇒ H(T ′′)) coincide, since both agree with
the image of η∗ ∈ (F ×G F )(T ′′) under either composite inherent in the double
composite:

(F×G)(T ′′) ⇒ F (T ′′)
ϕ′(T ′′)−−−−→ H(T ′′).

Since H is a top-sheaf, ξ′ gives rise to a unique element ξ ∈ H(T ).
Let us check that ξ ∈ H(T ) is independent of the data (T ′ → T, η) making

Diagram (1.3.1.1) commute. Suppose we have (T ′1, η1) and (T ′2, η2) such that T ′i →
T is in Mtop and the image of θ in G(T ′i ) is the image of ηi in G(T ′i ) for i = 1, 2.
Let ξ1 ∈ H(T ) and ξ2 ∈ H(T ) be the elements obtained by the process in the
previous paragraph. Let T ∗ = T ′1 ×T T ′2. Let ζ∗ = (η1, η2) : T ∗ → F ×G F , and
let ξ∗ ∈ H(T ∗) be the image of ζ∗ ∈ (F ×G F )(T ∗) in H(T ∗). For i = 1, 2, let
ξ′i = ϕ′(T ′i )(ηi) ∈ H(T ′i ). Then ξ∗ ∈ H(T ∗) is the pull back of both ξ′1 ∈ H(T ′1)
as well as of ξ′2 ∈ H(T ′2) under T ′1 → T and T ′2 → T respectively. Since H is a
top-sheaf and T ′i → T , and T ∗ → T ′i are maps in Mtop, the arrows H(T )→ H(T ′i )
and H(T ′i )→ H(T ∗) are injective for i = 1, 2. We have just argued that ξ1 and ξ2
have the same image—namely ξ∗—under the injective map H(T ) → H(T ∗). This
means ξ1 = ξ2.

Thus we have a well defined map of sets ϕ(T ) : G(T ) → H(T ) given by θ 7→ ξ.
This is clearly functorial in T ∈ Sch/S , whence we get a map of sheaves ϕ : G→ H,

and the composite F → G
ϕ−→ H is indeed ϕ′. Uniqueness of ϕ satisfying this

property follows from the uniqueness of ξ ∈ H(T ) arising from θ ∈ G(T ).
We do not need the converse for the remaining lectures, therefore we only sketch

the proof. The converse needs the notion of a sheafication of a pre-sheaf, which
we will construct in a later lecture. Assuming such a process exists, let G′ be the
sheafification of the presheaf

T 7→ im (F (T )→ G(T )) (T ∈ Sch/S).

We have a natural maps G′ → G and F → G′. The map F → G clearly factors as
F → G′ → G. One checks that F ×G′ F = F ×G F . The map F → G′ is surjective,
by construction. Hence, by what we proved above, F → G′ is a co-equalizer of
F ×G F ⇒ F . Thus, if F → G is a co-equalizer of F ×G F ⇒ F , then the natural
map G′ → G is an isomorphism, whence F → G is surjective. �

2. Monomorphisms

2.1. Closed immersions. If R is a schematic equivalence relation on X ∈ Sch/S ,
then it is not clear that the map R → X ×S X is an immersion (i.e., a closed
subscheme of an open subscheme. We will show in Theorem 2.1.4 (1) that if X is
separated over S and R is a proper equivalence relation, then in fact R→ X ×S X
is a closed immersion.

Definition 2.1.1. A map f : V → W in Sch/S is said to be a monomorphism if
for every T ∈ Sch/S , the induced map f(T ) : V (T )→W (T ) is injective.

Remarks 2.1.2. Let f : V →W be a map in Sch/S .

(1) To say f is a monomorphism is the same as saying that given two maps
α, β : T ⇒ V in Sch/S , such that f ◦α = f ◦β, we have α = β. In other
words f can be “cancelled from the left”. This agrees with usual notion of
a monomorphism in a category.
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(2) If f is a monomorphism, it is necessarily a universal monomorphism in the
following sense: Let W ′ → W be a map in Sch/S , and let f(W ′) : V ′ → W ′

be the resultingbase change of f . Then f(W ′) is also a monomorphism. To
see this observe that if A→ C is an injective map of sets, then for any map
of sets B → C, the map A×C B → B is injective.

Proposition 2.1.3. Let f : V →W be a proper map in Sch/S which is a monomor-
phism. Then f is a closed immersion.

Proof. Since f is proper, f(V ) is a closed subset of W . Let W ′ be the closed
subscheme structure on f(V ) given by the ideal I := ker (OW → f∗OV ), and let
i : W ′ →W be the resulting closed immersion of schemes. Then f factors as

V
g−→W ′

i−→W.

Notice that V = V ×WW ′, and g equals f(W ′), the base change of f by i : W ′ →W .
Replacing W by W ′ and f by g, if necessary, we see it is enough to prove the
seemingly less general result:

P: Let f : V → W be a proper map such that W is the scheme theoretic image of
f (i.e., ker (OW → f∗OV ) = 0) and such that it is a monomorphism. Then f is an
isomorphism.

We proceed to prove P. We first show that if f is a monomorphism, then it is
(set theoretically) injective. To that end suppose v1 and v2 are two points in V
with the same image w ∈W under f . Let A = k(v1)⊗k(w) k(v2), and T = SpecA.
We have maps T → Spec k(vi), i = 1, 2, inducing maps ϕi : T → V , via the natural
maps Spec k(vi) → V . Clearly f ◦ϕ1 = f ◦ϕ2. Canceling f from the left, we get
ϕ1 = ϕ2, whence v1 = v2.

Now assume f satisfies the hypothesis of P. Since f is proper and its fibers are
finite (singletons!), it is a finite map. The standard proof of this (see Hartshorne’s
Algebraic Geometry for instance) requires Stein factorization, which needs W to
be locally noetherian. Deligne, however, has extended the result—that quasi-finite
and proper maps are finite maps—to W an arbitrary scheme [EGA IV4, p. 182,
Corollaire (18.12.4)]. We are thus reduced to the case where V and W in P are
affine, say V = SpecB and W = SpecA. Note that B is a finite A-algebra (i.e.,
as an A-module B is finitely generated). By Nakayama, it is enough to prove that
for any maximal ideal m of A, the natural map A/m→ B/mB is an isomorphism.
Indeed, Nakayama would show thatA→ B is surjective, and since by the hypothesis
of P, ker (A→ B) = 0 we would be done. In other words, by making the base
change W ′ = SpecA/m → SpecA = W , and using the hypothesis that f is a
monomorphism (whence a universal monomorphism by Remark 2.1.2(2)), we are
reduced to the case where W = Spec k in P (and V = SpecB). Since the map
f is set-theoretically one-to-one, B must be an Artin local ring. Let mB denote
the maximal ideal of B. By making the faithfully flat base change to the algebraic
closure of k if necessary, we may assume that k is algebraically closed. It follows
that the finite field extension extension k → B/m (given by k → B � B/mB) is an
isomorphism. Consider the k-algebra endomorphism of B given by the composite;

B � B/mB −→∼ k → B

where the last arrow is the k-algebra structure map on B. By the functorial injec-
tivity of f , the above map must be the identity map on B. This forces mB = 0
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and hence k → B is an isomorphism, thus proving P. (Cf. [EGA IV4, p. 182, Corol-
laire (18.12.6)].) �

Theorem 2.1.4. Let X ∈ Sch/S be separated over S and R→ X×SX a schematic
equivalence relation on X.

(1) If R→ X ×S X is a schematic equivalence relation such that R is a proper
scheme over X (via either and hence both projections), then the natural
map R→ X ×S X is a closed immersion.

(2) Let top ∈ {Zar, ét, fppf, fpqc} be topology on Sch/S. Let X
π−→ P be a

map of top-sheaves. If T → P is a map of top-sheaves, with T ∈ Sch/S
and XT := X ×P T is (representable by) a proper scheme over T , then the
natural map XT → X ×S T is a closed immersion.

Proof. For part (1), note that R→ X ×S X is proper since both projection X ×S
X → X are separated (recall X is separated over S) and R→ X is proper. We are
using [EGA II, p. 101, Corollaire (5.4.3)] which states that if we have a composite
of maps u ◦v which is proper, and u is separated, then v is proper. By definition
of an equivalence relation R → X ×S X is a monomorphism. The result follows
from Proposition 2.1.3. The proof of (2) is similar to that of (1). Since X → S is
separated, so is X×ST → T . Now XT → T is proper, and X×ST → T is separated,
we conclude (again) by [EGA II, p. 101, Corollaire (5.4.3)] that XT → X ×S T is
proper. By definition of a fiber product of functors, the map XT → X ×S T is a
monomorphism. Proposition 2.1.3 again gives the result. �

3. Representing functors

Our major goal is to represent the functor (Pic
X/S

)(fppf) for a suitable S scheme

X, where (Pic
X/S

)(fppf) is the sheafification of Pic
X/S

in the fppf-topology. We
will therefore focus on a general technique which allows one to represent functors.

3.1. Relative representability. As in Sch/S , we often regard fiber products of
functors (contravariant, (Sets)-valued, . . . ) as base changes. This is especially so if
one of the factors in the fiber product is a scheme over S. This leads to the notion
of relative representability.

Definition 3.1.1. A map f : F → G in Ĉ is said to be relatively representable

if F ×G T : (Sch/T ) ◦ → (Sets) is representable for every map T → G in Ĉ with
T ∈ Sch/S . If P is a property of maps of schemes (e.g., P = flat, smooth, finite
type , . . . ) then we say that f : F → G has property P (or f is P) if f is relatively
representable and for each T ∈ Sch/S the map of schemes F×GT → T has property
P.

We often write FT for F ×G T (T ∈ Sch/S) emphasizing the nature of F ×G T
as the base change of F via T → G. Thus we have a “cartesian” diagram in Ĉ :

FT

f
T

��

// F

f

��
T // G

Theorem 3.1.2. Let top ∈ {Zar, ét, fppf, fpqc}. Suppose X
π−→P is a relatively

representable map of top-sheaves on Sch/S, with X a scheme, π a map in top
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(i.e., every base change of π by a scheme is in top). Let R := X ×P X (note
that R is a scheme by the relative representability of π), and let p1, p2 : R ⇒ X
be the two projections (necessarily in top), so that we have a cartesian diagram of
top-sheaves on Sch/S:

(3.1.3) R

p
1

��

p
2 // X

π

��
X

π
//P

Then X
π−→ P is a co-equalizer for p1, p2 : R ⇒ X in the category of top-sheaves

over S.

Proof. Suppose T ∈ Sch/S and θ ∈ P(T ). Then θ : T → P is a map and XT :=
X ×P T is a scheme over T and over X. Let RT := R×X XT . We have a cartesian
diagram:

(3.1.4) RT

p′
1

��

p′
2 // XT

π
T

��
XT π

T

// T

induced by (3.1.3) and θ : T → P. Now, by our hypothesis on π, πT is a map in
top. Suppose ϕ : X → G is a map top-sheaves on Sch/S such that ϕ ◦p1 = ϕ ◦p2.

Let ϕ
T

: XT → G be the composite XT → X
ϕ−→ G where the first map is induced

by θ : T → P. Clearly ϕ
T
◦p′1 = ϕ

T
◦p′2 : RT → G . Since G is a top-sheaf, the

sequence of sets

G (T )→ G (XT ) ⇒ G (RT )

is exact. Therefore the element ϕ
T
∈ G (T ) arises from a unique element θ∗ ∈ G (T ).

The association θ 7→ θ∗ gives a map of sets P(T )→ G (T ) which is clearly functorial
in T ∈ Sch/S , i.e., we have a map of sheaves ψ : P → G . Using the above exact
sequence of sets, it is clear that ψ ◦π = ϕ. �

Remark 3.1.5. (Added on July 6, 2019) Rahul Hirwani pointed out to me that
the proof of Theorem 3.1.2 is trivial once one observes that π is clearly a surjective
map of sheaves by definition of relative representability.

3.2. Representing functors. Let top ∈ {Zar, ét, fppf, fpqc} be a topology on

Sch/S . Suppose X
π−→ P is a map of top-sheaves, with X ∈ Sch/S . Let R =

X ×P X, and suppose R is representable. We have a cartesian diagram:

(3.2.1) R

p
1

��

p
2 // X

π

��
X

π
//P

Clearly R is an equivalence relation on X. Let us make the following two assump-
tions:
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(1) The maps p1 and p2 are in top. (A little thought shows that if one of p1
or p2 is in top, so is the other, since each of them can be regarded as the
“base change of π by π”.)

(2) The quotient X/R exists and is an effective quotient and the quotient map
q : X → Q := X/R is in top.

By Proposition 1.2.4, q : X → Q is a co-equalizer of p1 and p2 in the category of
top-sheaves. Therefore, we have a unique map of top-sheaves

(3.2.2) X/R→P

such that (3.2.2) ◦ q = π. Since co-equalizers are unique up to unique isomorphism,
for (3.2.2) to be an isomorphism it is necessary and sufficient that π : X → P
be a co-equalizer for p1 and p2 in the category of top-sheaves. Proposition 1.3.2
and Theorem 3.1.2 give us different sufficient conditions for π : X → P to be a
co-equalizer for p1 and p2. If either condition is verified, P, is representable by
Q = X/R. (Of course, a-fortiori, it follows that π is relatively representable.) We
summarize our discussion in the form of the following theorem.

Theorem 3.2.3. Let X
π−→ P, be a map of top-sheaves, with X ∈ Sch/S. Let

R = X ×P X, and suppose R is representable and the projections pi, i = 1, 2 as in
the cartesian diagram (3.2.1) are in top. Assume that the quotient X/R exists, is
an effective quotient, and X → X/R is in top. If π : X →P is surjective then P
is representable, in fact by X/R. In particualr if π is relatively representable, then
P is representable by X/R.

3.3. Strategy for constructing the Picard scheme. There are two main in-
gredients, both of which require Hilbert schemes. The first is a general statement
regarding the existence of quotient schemes X/R under certain, often occurring,
situations, and the second is special to the Picard functor.

1) If R→ X ×S X is an equivalence relation such that both projections R→ X
are flat proper finitely presented and the structural map X → S is strongly quasi-
projective, then X/R exists, is an effective quotient, and X → X/R is faithfully flat
and finitely presented. The proof—which needs the existence of Hilbert schemes—
was given by Grothendieck in slightly less general form (projective rather than
strongly quasi-projective). The form in which we have stated the result is due to
Altmann and Kleiman, and we will give their proof later.

2) Let Z be strongly projective over S. Let P ′ := (Pic
Z/S

)(fppf). One can

show that for each T ∈ Sch/S , P ′(T ) is a disjoint union, P ′(T ) =
∐

Φ(P ′)Φ(T )

where (P ′)Φ(T ) is the component of (Pic
Z/S

)(fppf) parameterizing line bundles

with Hilbert polynomial Φ. Note that (P ′)Φ −→∼ (P ′)Φn , where Φn(t) = Φ(t+n).
Fix Φ—large enough so that the higher cohomolgies of the participating line bundles
vanish and they are generated by their global sections—and let P := (P ′)Φ. Now
P is an open and closed subfunctor of P ′. Since Z is strongly quasi-projective over
S, there exists an fppf-map π : X → P, with X a strongly projective S-scheme,
namely, the Hilbert scheme of effective relative divisors of Z → S, such that the
corresponding line bundles have Hilbert polynomial Φ. In other words, X will be
the scheme which parameterizes effective Cartier divisors D ↪→ Z such that D → S
is flat., and OZ(D) has Hilbert polynomial Φ over S. The strategy for representing
P is to show:
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(a) The equivalence relation R = X ×P X is proper flat and finitely presented
over X (by either projection).

(b) The map π : X →P is a surjective map of fppf-sheaves.

The condition (b) can be replaced by the condition

(b’) The π : X →P is relatively representable.

If either (a)+(b) or (a)+(b’) hold, then by Theorem 3.2.3, P (whence (Pic
Z/S

)(fppf))

is representable (by X/R in fact). My original strategy was to prove (a) and (b’)
since I was not aware of Proposition 1.3.2. It is much more efficient to prove (b)
rather than (b’) in this particular case, and that is the strategy I follow these com-
ing lectures. The appendix below is for those interested in seeing a proof of (b’)
(without assuming representabiity of P) for the curious reader. It may well be of
independent interest.

Appendix A

A.1. Let Z be strongly projective over S and let P := (Pic
Z/S

)Φ
(fppf) , and π : X →

P be as in Subsection 3.3. (Recall that Φ is “large” and X is the Hilbert scheme
of effective relative divisors on Z → S such that OZ(D) has Hilbert polynomial

Φ over S. If θ : T → P is a map in Ĉ with T ∈ Sch/S , then it is not a priori
clear if the base change XT = X ×P T of π is a scheme (i.e., is representable).
However this is so, if the element θ ∈P(T ) is given by a line bundle on Z ×S T as
we will see later in these lectures. Since this situation can be arranged by a base
change T ′ → T of T by an fppf-map, it is eventually possible to show that XT is
representable. This was our original strategy for representing P. However, there is
a more elegant way outlined in Subsection 3.3. We have kept this subsection, since
the result may be of later interest.

The problem is best addressed in the abstract, without the added clutter of
special properties of (Pic

Z/S
)(fppf) intervening. To that end we prove the following

Lemma, and for simplicity, we agree to call a sheaf on a topology top over Sch/S
as simply a top-sheaf.

Proposition A.1.1. Let top ∈ {Zar, ét, fppf, fpqc} where these topologies are on
Sch/S. Let X → P and T → P be maps of top-sheaves with X and T schemes
over S, and X separated over S. Suppose T ′ → T is a map in top such that
X×P T ′ is representable (as a contravariant functor on (Sch/T )) by (say) XT ′ and
XT ′ is proper over T ′. Then X ×P T is representable by a scheme XT which is
proper over T . Moreover, if XT ′ is faithfully flat over T ′, then XT is faithfully flat
over T .

Proof. Let T ′′ and p1, p2 : T ′′ ⇒ T ′ have their usual meanings. Let π1, π2 : X ×S
T ′′ ⇒ X ×S T ′ and p′1, p

′
2 : X ×P T ′′ ⇒ X ×P T ′(= XT ′) be the maps induced by
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p1 and p2. We have a commutative cube with cartesian faces:

X ×S T ′′

π1

��

π
2 // X ×S T ′

��

X ×P T ′′

p′
1

��

p′
2 //

88qqqqqqqqqq
X ×P T ′

��

88qqqqqqqqqq

X ×S T ′ // X ×S T

X ×P T ′ //

88qqqqqqqqqq
X ×P T

88qqqqqqqqqq

Examining the (cartesian) top square, we see that XT ′′ := X×P T ′′ is representable
since the square shows that XT ′′ is the base change of X ×S T ′′ by XT ′ → X ×S T ′
and XT ′ is a scheme. Consider the map XT ′ = X×P T ′ → X×S T ′ (see either the
edge shared by the top face and the right face, or the edge shared by the bottom
face and the left face). The map is proper, by [EGA II, p. 101, Corollaire (5.4.3)], for
X ×S T ′ → T ′ is separated (since X is separated over S) and XT ′ → T ′ is proper.
Using the definition of fiber product of functors, one sees that XT ′ → X ×S T ′
is a monomorphism (see Definition 2.1.1). Therefore Proposition 2.1.3 applies,
whence the map XT ′ → X ×S T ′ is a closed immersion. The diagram shows that
π−11 (XT ′) = π−12 (XT ′) (both equal XT ′′), whence by Corollary 2.2.3 in Lecture 5
(see also Remark 2.2.4 of ibid) we get a closed subsecheme XT of X ×S T and the
diagram

XT ′ //

��

XT

��
T ′ // T

is cartesian. We leave it to the reader to show that XT represents the functor of
T -schemes X ×P T . Using standard facts about faithful flatness (see [EGA IV2,
p. 29, Proposition (2.7.1)]) and the above cartesian diagram, we see that XT → T
is proper, and if XT ′ is faithfully flat over T ′, then XT is faithfully flat over T . �
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cohérents II, Publ. Math. IHES 17 (1963).
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