PICARD-V: SCHEMES ARE SHEAVES

PRAMATHANATH SASTRY

1. The Yoneda Embedding

1.1. Schemes over S as functors. For any category \mathscr{C}, let $\widehat{\mathscr{C}}$ be the category of contravariant (Sets)-valued functors on \mathscr{C}. Recall that this means that an object F of $\widehat{\mathscr{C}}$ is a functor

$$
F: \mathscr{C}^{\circ} \rightarrow(\text { Sets })
$$

and given two such functors F and G, a morphism from F to G is a natural transformation (or, what is the same thing, a functorial map)

$$
F \rightarrow G
$$

For the rest of these notes, fix a scheme S, and set $\mathscr{C}:=\mathbb{S c h}_{/ S}$. Let X be scheme over S. Define the "functor of points" on X to be the functor on $\mathbb{S c h}_{/ S}$

$$
h_{X}:\left(\operatorname{Sch}_{/ S}\right)^{\circ} \rightarrow(\text { Sets })
$$

given by

$$
T \mapsto \operatorname{Hom}_{\mathbb{S c h} / S}(T, X) \quad\left(T \in \mathbb{S c h}_{/ S}\right)
$$

with an obvious effect on morphisms $\varphi: T^{\prime} \rightarrow T$ in $\mathbb{S c h}_{/ S}$, namely,

$$
q \mapsto q \circ \varphi
$$

for $\left.q \in h_{X}(T)=\operatorname{Hom}_{\mathbb{S c h}}^{/ S}(T, X)\right)$. Note that $h_{X} \in \widehat{\mathscr{C}}$ for every $X \in \mathbb{S c h} / S$.
Next, if $f: X \rightarrow Y$ is a map in $\mathbb{S c h}_{/ S}$ then

$$
f \circ(\cdot): \operatorname{Hom}_{\mathbb{S c h}_{/ S}}(T, X) \rightarrow \operatorname{Hom}_{\mathbb{S c h}_{/ S}}(T, Y)
$$

defined by composing (on the left) with f, is functorial in T. Hence we get a map in $\widehat{\mathscr{C}}$

$$
h_{f}: h_{X} \rightarrow h_{Y} .
$$

It is trivial to check that for a pair of maps in $\mathbb{S c h}_{/ S}$

$$
X \xrightarrow{f} Y \xrightarrow{g} Z,
$$

the diagram

commutes. In other words the association

$$
\begin{equation*}
h_{(\cdot)}: \operatorname{Sch}_{/ S} \rightarrow \widehat{\mathscr{C}} \tag{1.1.1}
\end{equation*}
$$

defines a functor.
Date: Oct 17, 2008.

The process $f \mapsto h_{f}$ (for $f: X \rightarrow Y$ a map of S-schemes) can be "reversed". More precisely, given a map $\psi: h_{X} \rightarrow h_{Y}$ in $\widehat{\mathscr{C}}\left(X\right.$ and Y in $\left.\mathbb{S c h}_{/ S}\right)$, we can find a unique map $f=f_{\psi}: X \rightarrow Y$ such that $\psi=h_{f}$. Indeed, we have a map of sets $\psi(X): h_{X}(X) \rightarrow h(Y)$, and hence we have an element $f_{\psi} \in h_{X}(Y)=$ $\operatorname{Hom}_{\mathbb{S c h}_{/ S}}(X, Y)$ defined by the image of $\mathbf{1}_{X} \in h_{X}(X)=\operatorname{Hom}_{\mathbb{S c h}_{/ S}}(X, X)$ under $\psi(X)$. It is easy to see that $h_{f_{\psi}}=\psi$. It is equally easy to see - from the definitionsthat if $f: X \rightarrow Y$ is a map in $\mathbb{S c h}_{/ S}$ and $\psi: h_{X} \rightarrow h_{Y}$ is defined by $\psi=h_{f}$, then $f_{\psi}=f$ (i.e., $f_{h_{f}}=f$). Thus $f \mapsto h_{f}$ and $\psi \mapsto f_{\psi}$ are inverse processes. This can be restated in the following compact form:

$$
\begin{equation*}
h_{X}(T)=\operatorname{Hom}_{\mathbb{S c h}}^{/ S}(T, X) \xrightarrow{\sim} \operatorname{Hom}_{\hat{\mathscr{G}}}\left(h_{T}, h_{X}\right) . \tag{1.1.2}
\end{equation*}
$$

Another way of saying this is that $\mathbb{S c h}_{/ S}$ can be regarded as a full subcategory of $\widehat{\mathscr{C}}$ via the functor $h_{(\cdot)}$ (see Theorem 1.1.4 below).

The isomorphism in (1.1.2) can be extended-as we will see below-to give an isomorphism of sets:

$$
\begin{equation*}
F(T) \xrightarrow{\sim} \operatorname{Hom}_{\overparen{\mathscr{C}}}\left(h_{T}, F\right) \tag{1.1.3}
\end{equation*}
$$

Indeed, given $\xi \in F(T)$, and $W \in \mathbb{S c h}_{/ S}$, we can define $\theta_{\xi}(W): h_{T}(W) \rightarrow F(W)$ as follows: Let $f: W \rightarrow T$ be an element of $h_{T}(W)$. Writing $f^{*}=F(f)$, we have $f^{*}: F(T) \rightarrow F(W)$. The map $\theta_{\xi}(W)$ is defined by $f \mapsto f^{*}(\xi)$. It is easy to see that $\theta_{\xi}(W)$ is functorial in $W \in \mathbb{S c h}_{/ S}$, whence we have a natural transformation $\theta_{\xi}: h_{T} \rightarrow F$. The association $\xi \mapsto \theta_{\xi}$ gives us a map $F(T) \rightarrow \operatorname{Hom}_{\widehat{\mathscr{C}}}\left(h_{T}, F\right)$. Conversely, given a map $\theta: h_{T} \rightarrow F$ in $\widehat{\mathscr{C}}$, we get an element $\xi_{\theta} \in F(T)$ defined as the image of $\mathbf{1}_{T} \in h_{T}(T)=\operatorname{Hom}_{\mathbb{S c h}}^{/ S}$ (T, $\left.T\right)$ in $F(T)$ under $\theta(T): h_{T}(T) \rightarrow$ $F(T)$. One checks, in the usual way, that $\theta_{\xi_{\theta}}=\theta$ and $\xi_{\theta_{\xi}}=\xi$, whence we get the isomorphism (1.1.3).

The isomorphisms (1.1.2) and (1.1.3) are often referred to as the Yoneda lemmas. They are best summarized as a statement, namely:

Theorem 1.1.4. (Yoneda)
(a) The functor $h_{(\cdot)}: \mathbb{S} c h_{/ S} \rightarrow \widehat{\mathscr{C}}$ of (1.1.1) is a fully faithful embedding of $\mathbb{S c h}_{/ S}$ into $\widehat{\mathscr{C}}$.
(b) Given $T \in \mathbb{S} c h_{/ S}$ and $F:\left(\mathbb{S}_{/ S}\right)^{\circ} \rightarrow$ (Sets) a functor, and identifying T with $h_{T} \in \widehat{\mathscr{C}}$ via part (a), we have a one-to-one correspondence between $F(T)$ and maps $T \rightarrow F$ in $\widehat{\mathscr{C}}$.

From now on we will identify $T \in \mathbb{S c h}_{/ S}$ with h_{T}, and we will treat the isomorphism (1.1.3) as an identity. Thus, with these identifications, we have

$$
\begin{equation*}
\operatorname{Hom}_{\widehat{\mathscr{C}}}(T, F)=F(T) \quad\left(T \in \mathbb{S c h}_{/ S}, F \in \widehat{\mathscr{C}}\right) \tag{1.1.5}
\end{equation*}
$$

This should be compared with the special case $\operatorname{Hom}_{\mathbb{S c h}_{/ S}}(T, X)=X(T)$.
Remark 1.1.6. The alert reader would have recognized that in the proof of Theorem 1.1.4, the category $\mathbb{S c h}_{/ S}$ played no essential role, and could have been replaced by an arbitray category \mathscr{C}.
1.2. The structural morphism for objects in $\widehat{\mathscr{C}}$. Recall that we are working with schemes over a fixed ambient scheme S. When we write $X \in \mathbb{S c h}_{/ S}$ we are really using a shorthand for $(X \rightarrow S) \in \mathbb{S c h}_{/ S}$. The map $X \rightarrow S$ is often called the structural map or sometimes just the structure map. If $S=\operatorname{Spec} A$ is affine, we call
$X \in \mathbb{S c h}_{/ S}$ an A-scheme rather than an S-scheme and often write $\mathbb{S c h}_{/ A}$ instead of $\operatorname{Sch}_{/ S}$.

Given an S-scheme X, note that $h_{S}(X)$ is a singleton set whose only element is the structural map $X \rightarrow S$. For $F \in \widehat{\mathscr{C}}$, we have a natural map $F \rightarrow h_{S}$ namely the map such that for $X \in \mathbb{S c h}_{/ S}$, the induced map $F(X) \rightarrow h_{S}(X)$ is the map sending all elements of $F(X)$ to the only element of $h_{S}(X)$. It is clear that this (as X varies in $\mathbb{S c h}_{/ S}$) is functorial in X. Identifying (as we have agreed to) h_{S} with S, we thus have a map

$$
\begin{equation*}
F \rightarrow S \tag{1.2.1}
\end{equation*}
$$

which we call the structural map for F. In the event the object F of $\widehat{\mathscr{C}}$ lies in the smaller category $\mathbb{S c h}_{/ S}$, clearly the above notion of the structural map coincides with the notion defined for schemes over S.

2. Descent for closed subschemes

2.1. Decent for fpqc maps. As usual, for any map $T^{\prime} \rightarrow T$ in $\mathbb{S c h}_{/ S}, T^{\prime \prime}$ and $T^{\prime \prime \prime}$ will be given by $T^{\prime \prime}:=T^{\prime} \times_{T} T^{\prime}$ and $T^{\prime \prime \prime}:=T^{\prime} \times_{T} T^{\prime} \times_{T} T^{\prime}$. The maps $p_{1}, p_{2}: T^{\prime \prime} \rightrightarrows T^{\prime}$ denote the two projections and $p_{12}, p_{13} p_{23}$ the three projections from $T^{\prime \prime \prime}$ to $T^{\prime \prime}$.

Suppose $p: T^{\prime} \rightarrow T$ is fpqc. We have a commutative diagram (with all six faces cartesian):

Since descent (obviously) works for Zariski covers, and we have proved that it works for faithfully flat and quasi-compact maps, therefore it works for fpqc maps (see the October 17 notes for the definition of fpqc maps). We're using the fact that the fpqc topology on $\mathbb{S c h}_{/ S}$ is generated by the Zariski topology and the topology given by faithfully flat and quasi-compact maps. In other words if \mathscr{F}^{\prime} is a quasicoherent sheaf on T^{\prime} and we have an isomorphism $\varphi: p_{2}^{*} \mathscr{F}^{\prime} \xrightarrow{\sim} p_{1}^{*} \mathscr{F}^{\prime}$ such that $p_{12}^{*}(\varphi) \circ p_{23}{ }^{*}(\varphi)=p_{13}^{*}(\varphi)$, then up to isomorphism, there is a unique quasi-coherent sheaf \mathscr{F} on T satisfying $p^{*} \mathscr{F}=\mathscr{F}^{\prime}$.
Exercise: Using the various characterizations of fpqc maps given in the October 17 notes, show directly that descent for fpqc maps follows from descent for faithfully flat and quasi-compact maps. [Hint: First reduce to $T=\operatorname{Spec} A$. Next, pick a quasi-compact open subscheme V^{\prime} of T^{\prime} such that $p\left(V^{\prime}\right)=T$. Then $V^{\prime} \rightarrow T$ is a quasi-compact faithfully flat map. Descent works for this, and we have obtain a quasi-coherent sheaf \mathscr{F} on T. To show that the end-product (i.e. \mathscr{F}) is independent of the process, consider $V=V^{\prime} \cup V^{\prime \prime}$ where $V^{\prime \prime}$ is another quasi-compact open subscheme of T^{\prime} which maps surjectively onto T, and use the fact that V is also
quasi-compact, so that descent works for $V \rightarrow T$. The uniqueness of the descended sheaf should give you the required result.]

Lemma 2.1.1. Let $p: T^{\prime} \rightarrow T$ be a map in $\mathbb{S}_{\text {sh }}^{/ S}$. With notations as above, suppose we have a map $f^{\prime}: T^{\prime} \rightarrow X$ in $\mathbb{S} c h / S$ such that $f^{\prime} \circ p_{1}=f^{\prime} \circ p_{2}$. Then f^{\prime} is constant on the fibers of p, i.e., if $z_{1}, z_{2} \in p^{-1}(t)$ for some $t \in T$, then $f^{\prime}\left(z_{1}\right)=f^{\prime}\left(z_{2}\right)$.

Proof. As usual, write $k\left(z_{1}\right), k\left(z_{2}\right)$ and $k(t)$ for the residue fields at z_{1}, z_{2} and t respectively. Let $R=k\left(z_{1}\right) \otimes_{k(x)} k\left(z_{2}\right)$. We have two maps $g_{1}, g_{2}: \operatorname{Spec} R \rightrightarrows T^{\prime}$ given by the composites $\operatorname{Spec} R \rightarrow \operatorname{Spec} k\left(z_{i}\right) \rightarrow T^{\prime}, i=1,2$. By definition of a fiber product we have a unique $\operatorname{map}\left(g_{1}, g_{2}\right): \operatorname{Spec} R \rightarrow T^{\prime \prime}$ such that $p_{i} \circ\left(g_{1}, g_{2}\right)=g_{i}$ for $i=1,2$. Since $f^{\prime} \circ p_{1}=f^{\prime} \circ p_{2}$, it follows that $f^{\prime} \circ g_{1}=f^{\prime} \circ g_{2}$. Now, g_{i} factors through $\left\{z_{i}\right\}=\operatorname{Spec} k\left(z_{i}\right)$, for $i=1,2$, whence $f^{\prime}\left(z_{1}\right)=f^{\prime}\left(z_{2}\right)$.
2.2. Descent for quotient sheaves. The following two results are found in [SGA 1]. For $Z \in \mathbb{S c h}_{/ S}$ for \mathscr{F} a quasi-coherent \mathscr{O}_{Z}-module, let $\operatorname{Quot}(\mathscr{F})$ denote the set of equivalence classes of quasi-coherent quotients of \mathscr{F} in the category of quasicoherent \mathscr{O}_{Z}-modules. Here, two quotients $\theta_{1}: \mathscr{F} \rightarrow \mathscr{Q}_{1}$ and $\theta_{2}: \mathscr{F} \rightarrow \mathscr{Q}_{2}$ are considered equivalent if there is an isomorphism $\varphi: \mathscr{Q}_{2} \xrightarrow{\sim} \mathscr{Q}_{1}$ such that $\varphi \circ \theta_{2}=\theta_{1}$.

Proposition 2.2.1. [SGA 1, Exposé VIII, Corollaire 1.8] Let $p: T^{\prime} \rightarrow T$ be an fpqc-map and \mathscr{G} a quasi-coherent \mathscr{O}_{T}-module. Then, the sequence of set-theoretic maps

$$
\operatorname{Quot}(\mathscr{G}) \rightarrow \operatorname{Quot}\left(\mathscr{G}^{\prime}\right) \rightrightarrows \operatorname{Quot}\left(\mathscr{G}^{\prime \prime}\right)
$$

is exact, where, with the standard notations, $\mathscr{G}^{\prime}=p^{*} \mathscr{G}, \mathscr{G}^{\prime \prime}=q^{*} \mathscr{G}$, and $q=p \circ p_{1}=$ $p \circ p_{2}: T^{\prime \prime} \rightarrow T$.

We should point out that in [SGA 1] the above result is proved for faithfully flat and quasi-compact maps, but the only ingredient used is descent for faithfully flat and quasi-compact maps, and therefore one can give a proof in the above situation also, as we now proceed to do. I am giving a slightly more elaborate proof than I meant to, making a distinction (for part of the proof) between $g^{*} f^{*}$ and $(f g)^{*}$ for a pair of composable maps f and g. I believe making this distinction gives greater clarity to the proof.

Proof. There is a natural descent datum on \mathscr{G}^{\prime} since $\mathscr{G}^{\prime}=p^{*} \mathscr{G}$. Let $\psi: p_{2}^{*} \mathscr{G}^{\prime} \xrightarrow{\sim} p_{1}^{*} \mathscr{G}^{\prime}$ be this descent data. In other words, if $\alpha_{1}: p_{1}^{*} p^{*} \mathscr{G} \xrightarrow{\sim} q^{*} \mathscr{G}$ and $\alpha_{2}: p_{2}^{*} p^{*} \mathscr{G} \xrightarrow{\sim} q^{*} \mathscr{G}$ are the natural isomorphisms then $\psi=\alpha_{1}^{-1} \circ \alpha_{2}$. Next suppose $\theta^{\prime}: \mathscr{G}^{\prime} \rightarrow \mathscr{F}^{\prime}$ is a quotient such that $p_{1}^{*} \theta^{\prime}$ is equivalent to $p_{2}^{*} \theta^{\prime}$. More precisely, suppose the two composites

$$
\begin{equation*}
\mathscr{G}^{\prime \prime}=q^{*} \mathscr{G} \xrightarrow{\sim} p_{1}^{*} \mathscr{G}^{\prime} \xrightarrow{p_{1}^{*} \theta^{\prime}} p_{1}^{*} \mathscr{F}^{\prime} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathscr{G}^{\prime \prime}=q^{*} \mathscr{G} \xrightarrow{\sim} p_{2}^{*} \mathscr{G}^{\prime} \xrightarrow{p_{2}^{*} \theta^{\prime}} p_{2}^{*} \mathscr{F}^{\prime} \tag{2}
\end{equation*}
$$

are equivalent. We have to show that there is - up to isomorphism - a unique quasicoherent \mathscr{O}_{T}-module \mathscr{F} together with a quotient $\theta: \mathscr{G} \rightarrow \mathscr{F}$ such that the quotient $p^{*} \theta$ is equivalent to θ^{\prime}. Let $\varphi: p_{2}^{*} \mathscr{F}^{\prime} \xrightarrow{\sim} p_{1}^{*} \mathscr{F}^{\prime}$ be the isomorphism resulting from
the equivalence of the quotients (1) and (2) above. Note that we then have a commutative diagram:

This means that if φ is a descent datum on \mathscr{F}^{\prime} then θ^{\prime} gives a map of descent data $\left(\mathscr{G}^{\prime}, \psi\right) \rightarrow\left(\mathscr{F}^{\prime}, \varphi\right)$. We will now show that $\left(\mathscr{F}^{\prime}, \varphi\right)$ is a descent datum. We will from now on identify $(f \circ g)^{*}$ with $g^{*} f^{*}$ in the usual way for composites of the form $p_{1} \circ p_{12}$ etc. Consider the diagram:

By Diagram (2.2.2) all the vertical rectangles commute. The top rectangle commutes, since $\left(\mathscr{G}^{\prime}, \psi\right)$ is a descent datum. Since the vertical arrows are surjective (being quotient maps), the bottom rectangle also commutes. The commutativity of the bottom rectangle is the same saying $\left(\mathscr{F}^{\prime}, \varphi\right)$ is a descent datum. Now, $p: T^{\prime} \rightarrow T$ is fpqc, whence-by faithful flat decsent-the map $\theta^{\prime}: \mathscr{G}^{\prime} \rightarrow \mathscr{F}^{\prime}$ descends to a unique (up to isomorphism) map of quasi-coherent \mathscr{O}_{T}-modules $\theta: \mathscr{G} \rightarrow \mathscr{F}$ and the map θ is necessarily surjective by faithful flatness of p.

We have as an immediate corollary:
Corollary 2.2.3. [SGA 1, Exposé VIII, Corollaire 1.9] For any scheme X, let $H(X)$ denote the set of closed subschemes of X. With this notation, and the conditions of Proposition 2.2.1, the sequence of sets

$$
H(T) \rightarrow H\left(T^{\prime}\right) \rightrightarrows H\left(T^{\prime \prime}\right)
$$

is exact.
Proof. Set $\mathscr{G}=\mathscr{O}_{T}$ in Proposition 2.2.1. Note that if $\left(\mathscr{G}^{\prime}, \psi\right)$ a descent datum such that \mathscr{G}^{\prime} is a sheaf of rings (resp. algebras) and ψ is a map of sheaves of rings (resp. algebras), then \mathscr{G}^{\prime} descends to a sheaf of rings (resp.algebras) \mathscr{G}. Moreover, if a map of descent datum $\theta^{\prime}:\left(\mathscr{G}^{\prime}, \psi\right) \rightarrow\left(\mathscr{F}^{\prime}, \varphi\right)$ is such that $\mathscr{G}^{\prime}, \mathscr{F}^{\prime}$ are sheaves of rings (resp. algebras) and $\psi, \varphi, \theta^{\prime}$ are maps of sheaves of rings (resp. algebras), then the descended map $\theta: \mathscr{G} \rightarrow \mathscr{F}$ is a map of sheaves of rings (resp. algebras). This follows easily from the proof of faithful flat descent.

Remark 2.2.4. Corollary 2.2 .3 is a compact way of saying the following: Let $T^{\prime} \xrightarrow{p} T$ be fpqc and let $Z^{\prime} \hookrightarrow T^{\prime}$ be a closed subscheme of T^{\prime} such that $p_{1}^{-1}\left(Z^{\prime}\right)=$ $p_{2}^{-1}\left(Z^{\prime}\right)$. Then there is a unique closed subscheme $Z \hookrightarrow T$ such that $p^{-1}(Z)=Z^{\prime}$. Here, as is standard, the scheme structures on the closed subspaces $p_{1}^{-1}\left(Z^{\prime}\right) \hookrightarrow T^{\prime \prime}$, $p_{2}^{-1}\left(Z^{\prime}\right) \hookrightarrow T^{\prime \prime}$, and $p^{-1}(Z) \hookrightarrow T^{\prime}$ are given respectively by $p_{1}^{-1}\left(Z^{\prime}\right)=Z^{\prime} \times_{T^{\prime}} T^{\prime \prime}$, $p_{2}^{-1}\left(Z^{\prime}\right)=T^{\prime \prime} \times_{T^{\prime}} Z^{\prime}$, and $p^{-1}(Z)=Z \times_{T} T^{\prime}$.

3. SCHEMES ARE FPQC-SHEAVES

Fix a scheme S. In this section we will prove that a scheme X over S is necessarily an fpqc-sheaf on $\mathbb{S c h}_{/ S}$. More precisely, we will prove that h_{X} is an fpqc-sheaf over $\mathbb{S c h}_{/ S}$. Note that since the fpqc topology is finer than the Zariski, étale, and fppf topologies on $\mathbb{S c h}_{/ S}$, it follows that X is a Zariski, étale, and an fppf-sheaf.
3.1. The problem restated. Fix $X \in \mathbb{S c h}_{/ S}$. Suppose

is a cartesian diagram with p (and hence p_{1} and p_{2}) fpqc. In order to show that h_{X} is an fpqc-sheaf we have to show that the sequence of sets

$$
h_{X}(T) \rightarrow h_{X}\left(T^{\prime}\right) \rightrightarrows h_{X}\left(T^{\prime \prime}\right)
$$

is exact, where the first arrow is p^{*} and the double arrow arises from p_{1}^{*} and p_{2}^{*}.
The problem can be rephrased as follows. Suppose $f^{\prime}: T^{\prime} \rightarrow X$ is a map in $\mathbb{S c h}_{/ S}$ such that $f^{\prime} \circ p_{1}=f^{\prime} \circ p_{2}$. Then there is a unique map $f: T \rightarrow X$ in $\mathbb{S c h}_{/ S}$ such that $f^{\prime}=f \circ p$. In other words, if the diagram of solid arrows below commutes, then the dotted arrow can be filled in a unique way to make the whole diagram commute.

We will first argue that the problem is local on X. Indeed, if U is an open subscheme of X, then by Lemma 2.1.1 $f^{\prime-1}(U)=p^{-1}(V)$ for a unique subset V of T, for f^{\prime} is constant on the fibers of p. In Proposition 2.1.1 of the cheat-sheet for faithful flatness ${ }^{1}$, we stated that if a map is faithfully flat and quasi-compact then a subset of the target is open if and only if its inverse image (in the source) is open (see [EGA IV ${ }_{2}$, Corollaire 2.3.12] for a proof). It is not hard to show that this property carries over to fpqc maps (see [FGA-ICTP, p. 28, Proposition 2.35(vi)]

[^0]for a proof which assumes the earlier result from $\left[E G A I V_{2}\right]$). It follows that V is open in T. Replacing T^{\prime} by $V^{\prime}=p^{-1}(V)$ etc, we see that solving the problem for each member of an open cover of X will solve the problem for X (by the required uniqueness of the map f). Therefore, without loss of generality, we may assume that $X=\operatorname{Spec} A$. The advantage of this is that X is then separated over S, whence the graph of f^{\prime} is closed in $T^{\prime} \times{ }_{S} X$ by [EGA I, p. 135, Corollaire (5.4.3)] or by [EGA, p. 278, Corollaire (5.2.4)]. The reader needs to take note of the fact that in [EGA I], a scheme is by definition separated, and what we today call a scheme is called a prescheme. The terminlogy was changed in [EGA] to reflect the current usage.

Now suppose $Z^{\prime} \hookrightarrow T^{\prime} \times_{S} X$ is the graph of the S-map $f^{\prime}: T^{\prime} \rightarrow X$. Let $q: T^{\prime} \times{ }_{S}$ $X \rightarrow T \times X$, and $q_{i}: T^{\prime \prime} \times_{S} X \rightarrow T^{\prime} \times_{S} X, i=1,2$ be the maps induces by p and $p_{i}(i=1,2)$ respectively. Since $f^{\prime} \circ p_{1}=f^{\prime} \circ p_{2}$, one checks, $q_{1}^{-1}\left(Z^{\prime \prime}\right)=q_{2}-1\left(Z^{\prime}\right)$, both sides being graphs of the common map $f^{\prime} \circ p_{1}=f^{\prime} \circ p_{2}$. By Corollary 2.2.3 (see also Remark 2.2.4), there is a unique closed subscheme $Z \hookrightarrow T \times_{S} X$ such that $q^{-1}(Z)=Z^{\prime}$. We have a cartesian square

and since Z^{\prime} is the graph of f^{\prime}, the downward arrow on the left is an isomorphism. Now, p is faithfully flat, whence the downward arrow on the right is also an isomorphism, as we shall show shortly. Such a $Z \hookrightarrow T \times{ }_{S} X$ must necessarily be the graph of an S-map $f: T \rightarrow X$. In fact f is the composite

$$
T \xrightarrow{\sim} Z \hookrightarrow T \times_{S} X \xrightarrow{\text { projection }} X
$$

It remains to show that the downward arrow on the right is an isomorphism. First suppose $A \rightarrow A^{\prime}$ is a flat map of rings, and B is an A-algebra, and $B^{\prime}=B \otimes_{A} A^{\prime}$. Now, by the flatness of $A \rightarrow A^{\prime}$, we have $\operatorname{ker}\left(A^{\prime} \rightarrow B^{\prime}\right)=\operatorname{ker}(A \rightarrow B) \otimes_{A} A^{\prime}$ and $\operatorname{coker}\left(A^{\prime} \rightarrow B^{\prime}\right)=\operatorname{coker}(A \rightarrow B) \otimes_{A} A^{\prime}$. If $A \rightarrow A^{\prime}$ is faithfully flat and $A^{\prime} \rightarrow B^{\prime}$ is an isomorphism, then from the above it follows that $\operatorname{ker}(A \rightarrow B)=$ $0=\operatorname{coker}(A \rightarrow B)$. Thus $A \rightarrow B$ is an isomorphism. The general problem can be reduced to this. First note that the map $Z \rightarrow T$ is affine, since the base change of its higher direct images is zero ($Z^{\prime} \rightarrow T^{\prime}$ being an isomorphism) and the base change map $p: T^{\prime} \rightarrow T$ is faithfully flat. Therefore, since the question is local on T, we may assume T (and hence Z) is affine. Next, since p is fpqc, we can find a quasi-compact open subset of T^{\prime} which maps surjectively on to T. Replacing T^{\prime} by this open subscheme, we are reduced to the case where T^{\prime} is quasi-compact. Finally, in the usual way (by taking a finite disjoint union of affine open subschemes) we may replace T^{\prime} by an affine scheme, and now we are in the affine situation which we handled earlier.

We summarize the above in the form of the following theorem:
Theorem 3.1.2. Let X be an S-scheme. Then X is a sheaf on the fpqc site (whence on the Zariski, étale, and fppf sites) on $\mathbb{S} c h_{/ S}$.

We point out that the hierarchy of topologies on $\mathbb{S c h}_{/ S}$, with the arrows pointing toward finer topologies, is:

$$
\text { Zariski } \rightarrow \text { étale } \rightarrow \text { fppf } \rightarrow \text { fpqc. }
$$

References

[FGA] A. Grothendieck, Fondements de la Géométrie Algébrique, Sém, Bourbaki, exp. no ${ }^{\circ} 149$ (1956/57), 182 (1958/59), 190 (1959/60), 195(1959/60), 212 (1960/61), 221 (1960/61), 232 (1961/62), 236 (1961/62), Benjamin, New York, (1966).
[EGA] and J. Dieudonné, Élements de géométrie algébrique I, Grundlehren Vol 166, Springer, New York (1971).
[EGA I] , Élements de géométrie algébrique I. Le langage des schémas, Publ. Math. IHES 4 (1960).
[EGA II] , Élements de géométrie algébrique II. Etude globale élémentaire de quelques classes de morphismes. Publ. Math. IHES 8 (1961).
[EGA III ${ }_{1}$ _ Élements de géométrie algébrique III. Etude cohomologique des faisceaux cohérents I, Publ. Math. IHES 11 (1961).
[EGA $\left.\mathrm{III}_{2}\right]$ _, Élements de géométrie algébrique III. Etude cohomologique des faisceaux cohérents II, Publ. Math. IHES 17 (1963).
$\left[\mathrm{EGA} \mathrm{IV}_{1}\right]$ _, Élements de géométrie algébrique IV. Études locale des schémas et des morphismesn de schémas I, Publ. Math. IHES 20 (1964).
$\left[\mathrm{EGA} \mathrm{IV}_{2}\right] \ldots$ _ Élements de géométrie algébrique IV. Études locale des schémas et des morphismesn de schémas II, Publ. Math. IHES 24(1965).
$\left[\mathrm{EGAIV}_{3}\right]$, Élements de géométrie algébrique IV. Études locale des schémas et des morphismesn de schémas III, Publ. Math. IHES 28(1966).
[EGAIV4]_, Élements de géométrie algébrique IV. Études locale des schémas et des morphismesn de schémas IV, Publ. Math. IHES 32(1967).
[SGA 1] A. Grothendieck, et al., Séminaire de Géometrie Algébrique. Revetments Étales et Groupe Fondamental, Lect. Notes. Math. 224, Springer, Berlin-Heidelberg-New York (1971).
[FGA-ICTP] B. Fantechi, L. Göttsche, L. Illusie, S.L. Kleiman, N. Nitsure, A. Vistoli, Fundamental Algebraic Geometry, Grothendieck's FGA explained, Math. Surveys and Monographs, Vol 123, AMS (2005).
[BLR] S. Bosch, W. Lütkebohmert, M. Raynaud, Néron Models, Ergebnisse Vol 21, SpringerVerlag, New York, 1980.
[M] H. Matsumura, Commutative Ring Theory, Cambridge Studies 89.

[^0]: ${ }^{1}$ This reference number may unfortunately change since I plan to constantly upgrade the cheatsheet; flesh it out, supply more proofs ...

