
PICARD-V: SCHEMES ARE SHEAVES

PRAMATHANATH SASTRY

1. The Yoneda Embedding

1.1. Schemes over S as functors. For any category C , let Ĉ be the category of
contravariant (Sets)-valued functors on C . Recall that this means that an object
F of Ĉ is a functor

F : C ◦ → (Sets)
and given two such functors F and G, a morphism from F to G is a natural
transformation (or, what is the same thing, a functorial map)

F → G.

For the rest of these notes, fix a scheme S, and set C := Sch/S . Let X be scheme
over S. Define the “functor of points” on X to be the functor on Sch/S

hX : (Sch/S) ◦ → (Sets)
given by

T 7→ HomSch/S (T, X) (T ∈ Sch/S),
with an obvious effect on morphisms ϕ : T ′ → T in Sch/S , namely,

q 7→ q ◦ϕ

for q ∈ hX(T ) = HomSch/S (T, X)). Note that hX ∈ Ĉ for every X ∈ Sch/S .
Next, if f : X → Y is a map in Sch/S then

f ◦ (·) : HomSch/S (T, X)→ HomSch/S (T, Y )

defined by composing (on the left) with f , is functorial in T . Hence we get a map
in Ĉ

hf : hX → hY .

It is trivial to check that for a pair of maps in Sch/S

X
f−→ Y

g−→ Z,

the diagram

hX
hf //

h(g ◦ f) !!B
BB

BB
BB

B hY

hg~~||
||

||
||

hZ

commutes. In other words the association

(1.1.1) h(·) : Sch/S → Ĉ

defines a functor.
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The process f 7→ hf (for f : X → Y a map of S-schemes) can be “reversed”.
More precisely, given a map ψ : hX → hY in Ĉ (X and Y in Sch/S), we can
find a unique map f = fψ : X → Y such that ψ = hf . Indeed, we have a map
of sets ψ(X) : hX(X) → h(Y ), and hence we have an element fψ ∈ hX(Y ) =
HomSch/S (X, Y ) defined by the image of 1X ∈ hX(X) = HomSch/S (X, X) under
ψ(X). It is easy to see that hfψ = ψ. It is equally easy to see—from the definitions—
that if f : X → Y is a map in Sch/S and ψ : hX → hY is defined by ψ = hf , then
fψ = f (i.e., fhf = f). Thus f 7→ hf and ψ 7→ fψ are inverse processes. This can
be restated in the following compact form:

(1.1.2) hX(T ) = HomSch/S (T, X) −→∼ HombC (hT , hX).

Another way of saying this is that Sch/S can be regarded as a full subcategory of
Ĉ via the functor h(·) (see Theorem 1.1.4 below).

The isomorphism in (1.1.2) can be extended—as we will see below—to give an
isomorphism of sets:

(1.1.3) F (T ) −→∼ HombC (hT , F ).

Indeed, given ξ ∈ F (T ), and W ∈ Sch/S , we can define θξ(W ) : hT (W ) → F (W )
as follows: Let f : W → T be an element of hT (W ). Writing f∗ = F (f), we have
f∗ : F (T ) → F (W ). The map θξ(W ) is defined by f 7→ f∗(ξ). It is easy to see
that θξ(W ) is functorial in W ∈ Sch/S , whence we have a natural transformation
θξ : hT → F . The association ξ 7→ θξ gives us a map F (T ) → HombC (hT , F ).
Conversely, given a map θ : hT → F in Ĉ , we get an element ξθ ∈ F (T ) defined
as the image of 1T ∈ hT (T ) = HomSch/S (T, T ) in F (T ) under θ(T ) : hT (T ) →
F (T ). One checks, in the usual way, that θξθ = θ and ξθξ = ξ, whence we get the
isomorphism (1.1.3).

The isomorphisms (1.1.2) and (1.1.3) are often referred to as the Yoneda lemmas.
They are best summarized as a statement, namely:

Theorem 1.1.4. (Yoneda)

(a) The functor h(·) : Sch/S → Ĉ of (1.1.1) is a fully faithful embedding of
Sch/S into Ĉ .

(b) Given T ∈ Sch/S and F : (Sch/S) ◦ → (Sets) a functor, and identifying
T with hT ∈ Ĉ via part (a), we have a one-to-one correspondence between
F (T ) and maps T → F in Ĉ .

From now on we will identify T ∈ Sch/S with hT , and we will treat the isomor-
phism (1.1.3) as an identity. Thus, with these identifications, we have

(1.1.5) HombC (T, F ) = F (T ) (T ∈ Sch/S , F ∈ Ĉ ).

This should be compared with the special case HomSch/S (T, X) = X(T ).

Remark 1.1.6. The alert reader would have recognized that in the proof of Theo-
rem 1.1.4, the category Sch/S played no essential role, and could have been replaced
by an arbitray category C .

1.2. The structural morphism for objects in Ĉ . Recall that we are working
with schemes over a fixed ambient scheme S. When we write X ∈ Sch/S we are
really using a shorthand for (X → S) ∈ Sch/S . The map X → S is often called the
structural map or sometimes just the structure map. If S = SpecA is affine, we call
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X ∈ Sch/S an A-scheme rather than an S-scheme and often write Sch/A instead of
Sch/S .

Given an S-scheme X, note that hS(X) is a singleton set whose only element is
the structural map X → S. For F ∈ Ĉ , we have a natural map F → hS namely
the map such that for X ∈ Sch/S , the induced map F (X) → hS(X) is the map
sending all elements of F (X) to the only element of hS(X). It is clear that this (as
X varies in Sch/S) is functorial in X. Identifying (as we have agreed to) hS with
S, we thus have a map

(1.2.1) F → S

which we call the structural map for F . In the event the object F of Ĉ lies in the
smaller category Sch/S , clearly the above notion of the structural map coincides
with the notion defined for schemes over S.

2. Descent for closed subschemes

2.1. Decent for fpqc maps. As usual, for any map T ′ → T in Sch/S , T ′′ and T ′′′

will be given by T ′′ := T ′×TT ′ and T ′′′ := T ′×TT ′×TT ′. The maps p1, p2 : T ′′ ⇒ T ′

denote the two projections and p12 , p13 p23 the three projections from T ′′′ to T ′′.
Suppose p : T ′ → T is fpqc. We have a commutative diagram (with all six faces

cartesian):

T ′′

p1

��

p2 // T ′

p

��

T ′′′

p23

=={{{{{{{{ p13 //

p12

��

T ′′

p2

>>||||||||

p1

��

T ′
p // T

T ′′

p2

=={{{{{{{{
p1

// T ′
p

>>||||||||

Since descent (obviously) works for Zariski covers, and we have proved that it
works for faithfully flat and quasi-compact maps, therefore it works for fpqc maps
(see the October 17 notes for the definition of fpqc maps). We’re using the fact that
the fpqc topology on Sch/S is generated by the Zariski topology and the topology
given by faithfully flat and quasi-compact maps. In other words if F ′ is a quasi-
coherent sheaf on T ′ and we have an isomorphism ϕ : p∗2F

′ −→∼ p∗1F
′ such that

p∗
12

(ϕ) ◦p23
∗(ϕ) = p∗

13
(ϕ), then up to isomorphism, there is a unique quasi-coherent

sheaf F on T satisfying p∗F = F ′.

Exercise: Using the various characterizations of fpqc maps given in the October 17
notes, show directly that descent for fpqc maps follows from descent for faithfully
flat and quasi-compact maps. [Hint: First reduce to T = SpecA. Next, pick a
quasi-compact open subscheme V ′ of T ′ such that p(V ′) = T . Then V ′ → T is a
quasi-compact faithfully flat map. Descent works for this, and we have obtain a
quasi-coherent sheaf F on T . To show that the end-product (i.e. F ) is independent
of the process, consider V = V ′ ∪ V ′′ where V ′′ is another quasi-compact open
subscheme of T ′ which maps surjectively onto T , and use the fact that V is also
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quasi-compact, so that descent works for V → T . The uniqueness of the descended
sheaf should give you the required result.]

Lemma 2.1.1. Let p : T ′ → T be a map in Sch/S. With notations as above, suppose
we have a map f ′ : T ′ → X in Sch/S such that f ′ ◦ p1 = f ′ ◦ p2. Then f ′ is constant
on the fibers of p, i.e., if z1, z2 ∈ p−1(t) for some t ∈ T , then f ′(z1) = f ′(z2).

Proof. As usual, write k(z1), k(z2) and k(t) for the residue fields at z1, z2 and t
respectively. Let R = k(z1) ⊗k(x) k(z2). We have two maps g1, g2 : SpecR ⇒ T ′

given by the composites SpecR→ Spec k(zi)→ T ′, i = 1, 2. By definition of a fiber
product we have a unique map (g1, g2) : SpecR → T ′′ such that pi ◦ (g1, g2) = gi
for i = 1, 2. Since f ′ ◦p1 = f ′ ◦p2, it follows that f ′ ◦ g1 = f ′ ◦ g2. Now, gi factors
through {zi} = Spec k(zi), for i = 1, 2, whence f ′(z1) = f ′(z2). �

2.2. Descent for quotient sheaves. The following two results are found in [SGA 1].
For Z ∈ Sch/S for F a quasi-coherent OZ-module, let Quot(F ) denote the set
of equivalence classes of quasi-coherent quotients of F in the category of quasi-
coherent OZ-modules. Here, two quotients θ1 : F � Q1 and θ2 : F � Q2 are con-
sidered equivalent if there is an isomorphism ϕ : Q2 −→∼ Q1 such that ϕ ◦ θ2 = θ1.

Proposition 2.2.1. [SGA 1, Exposé VIII, Corollaire 1.8] Let p : T ′ → T be an
fpqc-map and G a quasi-coherent OT -module. Then, the sequence of set-theoretic
maps

Quot(G )→ Quot(G ′) ⇒ Quot(G ′′)

is exact, where, with the standard notations, G ′ = p∗G , G ′′ = q∗G , and q = p ◦ p1 =
p ◦ p2 : T ′′ → T .

We should point out that in [SGA 1] the above result is proved for faithfully flat
and quasi-compact maps, but the only ingredient used is descent for faithfully flat
and quasi-compact maps, and therefore one can give a proof in the above situation
also, as we now proceed to do. I am giving a slightly more elaborate proof than I
meant to, making a distinction (for part of the proof) between g∗f∗ and (fg)∗ for
a pair of composable maps f and g. I believe making this distinction gives greater
clarity to the proof.

Proof. There is a natural descent datum on G ′ since G ′ = p∗G . Let ψ : p∗2G
′ −→∼ p∗1G

′

be this descent data. In other words, if α1 : p∗1p
∗G −→∼ q∗G and α2 : p∗2p

∗G −→∼ q∗G
are the natural isomorphisms then ψ = α−1

1 ◦α2. Next suppose θ′ : G ′ � F ′ is a
quotient such that p∗1θ

′ is equivalent to p∗2θ
′. More precisely, suppose the two com-

posites

(1) G ′′ = q∗G −→∼ p∗1G
′ p
∗
1θ
′

−−−→ p∗1F
′

and

(2) G ′′ = q∗G −→∼ p∗2G
′ p
∗
2θ
′

−−−→ p∗2F
′

are equivalent. We have to show that there is—up to isomorphism—a unique quasi-
coherent OT -module F together with a quotient θ : G � F such that the quotient
p∗θ is equivalent to θ′. Let ϕ : p∗2F

′ −→∼ p∗1F
′ be the isomorphism resulting from
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the equivalence of the quotients (1) and (2) above. Note that we then have a
commutative diagram:

(2.2.2) p∗2G
′

ψ̃
//

p∗
2
θ′

��

p∗1G
′

p∗
1
θ′

��
p∗2F

′
ϕ̃

// p∗1F
′

This means that if ϕ is a descent datum on F ′ then θ′ gives a map of descent data
(G ′, ψ) → (F ′, ϕ). We will now show that (F ′, ϕ) is a descent datum. We will
from now on identify (f ◦ g)∗ with g∗f∗ in the usual way for composites of the form
p1 ◦p12 etc. Consider the diagram:

p∗
13
p∗2G

′
p∗
13
ψ

//

via θ′

��

p∗
13
p∗1G

′

via θ′

��

p∗
12
p∗1G

′

via θ′

��

p∗
23
p∗2G

′

ssssssssss

ssssssssss p∗
23
ψ

//

via θ′

��

p∗
23
p∗1G

′

via θ′

��

p∗
12
p∗2G

′
p∗
12
ψ

99ssssssssss

via θ′

��

p∗
13
p∗2F

′
p∗
13
ϕ

// p∗
13
p∗1F

′ p∗
12
p∗1F

′

p∗
23
p∗2F

′

ssssssssss

ssssssssss

p∗
23
ϕ

// p∗
23
p∗1F

′ p∗
12
p∗2F

′
p∗
12
ϕ

99ssssssssss

By Diagram (2.2.2) all the vertical rectangles commute. The top rectangle com-
mutes, since (G ′, ψ) is a descent datum. Since the vertical arrows are surjective
(being quotient maps), the bottom rectangle also commutes. The commutativ-
ity of the bottom rectangle is the same saying (F ′, ϕ) is a descent datum. Now,
p : T ′ → T is fpqc, whence—by faithful flat decsent—the map θ′ : G ′ → F ′ descends
to a unique (up to isomorphism) map of quasi-coherent OT -modules θ : G → F and
the map θ is necessarily surjective by faithful flatness of p. �

We have as an immediate corollary:

Corollary 2.2.3. [SGA 1, Exposé VIII, Corollaire 1.9] For any scheme X, let
H(X) denote the set of closed subschemes of X. With this notation, and the con-
ditions of Proposition 2.2.1, the sequence of sets

H(T )→ H(T ′) ⇒ H(T ′′)

is exact.

Proof. Set G = OT in Proposition 2.2.1. Note that if (G ′, ψ) a descent datum such
that G ′ is a sheaf of rings (resp. algebras) and ψ is a map of sheaves of rings (resp.
algebras), then G ′ descends to a sheaf of rings (resp.algebras) G . Moreover, if a
map of descent datum θ′ : (G ′, ψ) → (F ′, ϕ) is such that G ′, F ′ are sheaves of
rings (resp. algebras) and ψ, ϕ, θ′ are maps of sheaves of rings (resp. algebras),
then the descended map θ : G → F is a map of sheaves of rings (resp. algebras).
This follows easily from the proof of faithful flat descent. �
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Remark 2.2.4. Corollary 2.2.3 is a compact way of saying the following: Let
T ′

p−→ T be fpqc and let Z ′ ↪→ T ′ be a closed subscheme of T ′ such that p−1
1 (Z ′) =

p−1
2 (Z ′). Then there is a unique closed subscheme Z ↪→ T such that p−1(Z) = Z ′.

Here, as is standard, the scheme structures on the closed subspaces p−1
1 (Z ′) ↪→ T ′′,

p−1
2 (Z ′) ↪→ T ′′, and p−1(Z) ↪→ T ′ are given respectively by p−1

1 (Z ′) = Z ′ ×T ′ T ′′,
p−1
2 (Z ′) = T ′′ ×T ′ Z ′, and p−1(Z) = Z ×T T ′.

3. Schemes are fpqc-sheaves

Fix a scheme S. In this section we will prove that a schemeX over S is necessarily
an fpqc-sheaf on Sch/S . More precisely, we will prove that hX is an fpqc-sheaf over
Sch/S . Note that since the fpqc topology is finer than the Zariski, étale, and fppf
topologies on Sch/S , it follows that X is a Zariski, étale, and an fppf-sheaf.

3.1. The problem restated. Fix X ∈ Sch/S . Suppose

T ′′
p2 //

p1

��

T ′

p

��
T ′ p

// T

is a cartesian diagram with p (and hence p1 and p2) fpqc. In order to show that
hX is an fpqc-sheaf we have to show that the sequence of sets

hX(T )→ hX(T ′) ⇒ hX(T ′′)

is exact, where the first arrow is p∗ and the double arrow arises from p∗1 and p∗2.
The problem can be rephrased as follows. Suppose f ′ : T ′ → X is a map in Sch/S

such that f ′ ◦p1 = f ′ ◦p2. Then there is a unique map f : T → X in Sch/S such
that f ′ = f ◦p. In other words, if the diagram of solid arrows below commutes,
then the dotted arrow can be filled in a unique way to make the whole diagram
commute.

(3.1.1) T ′′
p2 //

p1

��

T ′

p

�� f ′

��

T ′
p //

f ′ --

T f

&&
X

We will first argue that the problem is local on X. Indeed, if U is an open
subscheme of X, then by Lemma 2.1.1 f ′

−1(U) = p−1(V ) for a unique subset V
of T , for f ′ is constant on the fibers of p. In Proposition 2.1.1 of the cheat-sheet
for faithful flatness1, we stated that if a map is faithfully flat and quasi-compact
then a subset of the target is open if and only if its inverse image (in the source)
is open (see [EGA IV2, Corollaire 2.3.12] for a proof). It is not hard to show that
this property carries over to fpqc maps (see [FGA-ICTP, p. 28, Proposition 2.35(vi)]

1This reference number may unfortunately change since I plan to constantly upgrade the cheat-
sheet; flesh it out, supply more proofs . . .
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for a proof which assumes the earlier result from [EGA IV2]). It follows that V is
open in T . Replacing T ′ by V ′ = p−1(V ) etc, we see that solving the problem for
each member of an open cover of X will solve the problem for X (by the required
uniqueness of the map f). Therefore, without loss of generality, we may assume
that X = SpecA. The advantage of this is that X is then separated over S, whence
the graph of f ′ is closed in T ′×SX by [EGA I, p. 135, Corollaire (5.4.3)] or by [EGA,
p. 278, Corollaire (5.2.4)]. The reader needs to take note of the fact that in [EGA I],
a scheme is by definition separated, and what we today call a scheme is called a
prescheme. The terminlogy was changed in [EGA] to reflect the current usage.

Now suppose Z ′ ↪→ T ′×SX is the graph of the S-map f ′ : T ′ → X. Let q : T ′×S
X → T ×X, and qi : T ′′ ×S X → T ′ ×S X, i = 1, 2 be the maps induces by p and
pi (i = 1, 2) respectively. Since f ′ ◦p1 = f ′ ◦p2, one checks, q−1

1 (Z”) = q2−1(Z ′),
both sides being graphs of the common map f ′ ◦p1 = f ′ ◦p2. By Corollary 2.2.3
(see also Remark 2.2.4), there is a unique closed subscheme Z ↪→ T ×SX such that
q−1(Z) = Z ′. We have a cartesian square

Z ′

��

// Z

��
T ′ p

// T

and since Z ′ is the graph of f ′, the downward arrow on the left is an isomorphism.
Now, p is faithfully flat, whence the downward arrow on the right is also an iso-
morphism, as we shall show shortly. Such a Z ↪→ T ×S X must necessarily be the
graph of an S-map f : T → X. In fact f is the composite

T −→∼ Z ↪→ T ×S X
projection−−−−−−→ X.

It remains to show that the downward arrow on the right is an isomorphism. First
suppose A→ A′ is a flat map of rings, and B is an A-algebra, and B′ = B ⊗A A′.
Now, by the flatness of A → A′, we have ker (A′ → B′) = ker (A→ B) ⊗A A′

and coker (A′ → B′) = coker (A→ B) ⊗A A′. If A → A′ is faithfully flat and
A′ → B′ is an isomorphism, then from the above it follows that ker (A→ B) =
0 = coker (A→ B). Thus A→ B is an isomorphism. The general problem can be
reduced to this. First note that the map Z → T is affine, since the base change
of its higher direct images is zero (Z ′ → T ′ being an isomorphism) and the base
change map p : T ′ → T is faithfully flat. Therefore, since the question is local on
T , we may assume T (and hence Z) is affine. Next, since p is fpqc, we can find a
quasi-compact open subset of T ′ which maps surjectively on to T . Replacing T ′ by
this open subscheme, we are reduced to the case where T ′ is quasi-compact. Finally,
in the usual way (by taking a finite disjoint union of affine open subschemes) we
may replace T ′ by an affine scheme, and now we are in the affine situation which
we handled earlier.

We summarize the above in the form of the following theorem:

Theorem 3.1.2. Let X be an S-scheme. Then X is a sheaf on the fpqc site
(whence on the Zariski, étale, and fppf sites) on Sch/S.

We point out that the hierarchy of topologies on Sch/S , with the arrows pointing
toward finer topologies, is:

Zariski→ étale→ fppf→ fpqc.
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[EGA III2] , Élements de géométrie algébrique III. Etude cohomologique des faisceaux
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Groupe Fondamental, Lect. Notes. Math. 224, Springer, Berlin-Heidelberg-New York

(1971).
[FGA-ICTP] B. Fantechi, L. Göttsche, L. Illusie, S.L. Kleiman, N. Nitsure, A. Vistoli, Fundamen-

tal Algebraic Geometry, Grothendieck’s FGA explained, Math. Surveys and Monographs,
Vol 123, AMS (2005).

[BLR] S. Bosch, W. Lütkebohmert, M. Raynaud, Néron Models, Ergebnisse Vol 21, Springer-
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