
PICARD-III: DESCENT CONTINUED

PRAMATHANATH SASTRY

We will use the following convention for referring to results in other lectures of
this series. A reference to A.x.y.z is a reference to x.y.z of Picard-A. Thus Theorem
II.2.2.4 is a reference to Theorem 2.2.4 of Picard-II. We will sometimes use references
of the form II.(2.2.1), if (2.2.1) is a displayed formula (or map, or diagram, or . . . )
in Picard-II.

In Theorem II.3.2.1, we proved faithful flat descent for quasi-coherent sheaves
with respect to faithfully flat quasi-compact maps of schemes, given the truth of
the statement for faithfully flat maps of affine schemes (i.e. given Theorem II.2.2.4).
We now prove the affine case of faithful flat descent.

Throughout this lecture we fix a ring1 A, an A-module M , and a faithfully flat
A-algebra B. We keep the notations of § 2 of Picard-II. Recall that B⊗r is the
r-fold tensor product of B with itself over A and αM : M → B ⊗A M is the map
m 7→ 1⊗m (cf. §§ II.2.1).

1. The Čech complex for faithfully flat algebras

1.1. Define a sequence of A-maps

0→M
αM−−→ B ⊗AM

d0−→ B⊗2 ⊗AM
d1−→ . . .(1.1.1)

. . .
dr−2

−−−→ B⊗r ⊗AM
dr−1

−−−→ B⊗r+1 ⊗AM
dr

−→ . . .

where dr =
∑
i(−1)iei and

ei(b0 ⊗ · · · ⊗ br ⊗m) = bo ⊗ · · · ⊗ bi−1 ⊗ 1⊗ bi ⊗ . . . br ⊗m.
For consistency write d−1 = αM and B⊗0 = A. The usual arguments give

dr ◦dr−1 = 0, r ≥ 0

whence (1.1.1) defines a complex of A-modules which we denote C•B/A(M).

Proposition 1.1.2. C•B/A(M) is exact.

Proof. Suppose we have a “retract” of the algebra structure map αA : A→ B, i.e.
a map of rings g : B → A such that the composite g ◦αA is the identity. (In other
words, suppose SpecB → SpecA has a section.) For r ≥ 1 define

kr : B⊗r+2 ⊗AM → B⊗r+1 ⊗AM
by

b0 ⊗ · · · ⊗ br+1 ⊗m 7→ g(b0)b1 ⊗ · · · ⊗ br+1 ⊗m.
Set k−2 = 0. One checks that

krd
r + dr−1kr−1 = 1
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for r ≥ −1. Thus {kr} is a contracting homotopy on C•B/A(M), whence, in this
case, the assertion follows.

For an A-algebra A′, let B′ := B ⊗A A′. Then, as is easily checked, for r ≥ 1
B′ ⊗A′ B′ ⊗A′ · · · ⊗A′ B′ = B⊗r ⊗A A′, where the number of tensor factors on the
left is r. In other words B′⊗r = B⊗r ⊗A A′, and this is true for r ≥ −1 (and not
just r ≥ 1). It is then obvious that

(∗) C•B/A(M)⊗A A′ = C•B′/A′(M ⊗A A
′)

Now suppose A′ is faithfully flat over A, and C•B′/A′(M ⊗A A
′) is exact. Then by

(∗) and faithful flatness, it follows that C•B/A(M) is also exact. Set A′ = B so that
B′ = B⊗2, and the structure map αA′ : A′ → B′ is b 7→ b ⊗ 1. Clearly the map
g′ : B′ → A′ given by b1 ⊗ b2 7→ b1b2 is a retract of αA′ . Thus, as we saw earlier in
this proof, C•B′/A′(M ⊗AA

′) is exact. But A′ is faithfully flat over A, since A′ = B.
Hence we are done. �

Remark 1.1.3. Note that d0 : B⊗AM → B⊗2⊗AM is given by b⊗m 7→ 1⊗ b⊗
m − b ⊗ 1 ⊗m. Indeed, by definition, d0 = e0 − e1 where e0(b ⊗m) = 1 ⊗ b ⊗m
and e1(b⊗m) = b⊗ 1⊗m. It follows that

(1.1.3.1) M = ker (e0 − e1)

2. Proof of faithful flat descent for affine schemes

2.1. Now suppose (N, ψ) is a descent datum on B/A. Let α and β be the maps

α : N → B ⊗A N, n 7→ 1⊗ n;

β : N → B ⊗A N, n 7→ ψ(n⊗ 1).

Define (with (1.1.3.1) in mind)

(2.1.1) M := ker (α− β).

We claim that there is an isomorphism

θ(= θN,ψ) : (B ⊗AM, ψM ) −→∼ (N, ψ)

in ModA→B , where ψM : (B ⊗AM)⊗A B → B ⊗A (B ⊗AM) is the map given by
b ⊗m ⊗ b′ 7→ b ⊗ b′ ⊗m (cf. Proposition II.2.2.3). Note that the claim implies, in
particular, that N ∼= B ⊗AM .

Let θ : B ⊗AM → N be b⊗m 7→ bf(m), where

f : M ↪→ N

is the natural inclusion map of A-modules. It is clear that θ is functorial in (N, ψ)
(since α and β are). We leave it to the reader to check that θ is a map of descent
data, i.e., to check that the diagram

B ⊗AM ⊗A B

ψ
M

��

θ⊗1 // N ⊗A B

ψ

��
B ⊗A B ⊗AM

1⊗θ
// B ⊗A N

commutes using the fact that by definition of M , 1⊗ f(m) = ψ(f(m)⊗ 1).
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Next, as in Picard II, let ιM : M ⊗A B → B ⊗AM be the natural map given by
m⊗ b 7→ b⊗m. Consider the diagram with exact rows

(D)

0 // M ⊗A B

θ ◦ ι
M

��

// N ⊗A B

ψ

��

(α−β)⊗1 // (B ⊗A N)⊗A B

ψ1

��
0 // N

d−1=α
N

// B ⊗A N
d0=e0−e1

// B ⊗A B ⊗A N

where ψ1(b ⊗ n ⊗ b′) = b ⊗ ψ(n ⊗ b′) (cf. II.(2.2.1)). The rows of (D) are exact

for the following reasons. First, by definition of M , 0 → M → N
α−β−−−→ B ⊗A N

is exact, and tensoring this with the flat A-algebra B gives us the top row of (D).
The exactness of the bottom row of (D) follows from the exactness of C•B/A(N).

We claim that (D) commutes. As, before, it is convenient to denote the M in N
by ι : M ↪→ N . We leave the commutatvity of the rectangle on the left to the reader.
The following two facts are helpful for this. First, the image of m⊗ b ∈M ⊗AB in
B⊗AN under the “south followed by east” route is 1⊗ b(f(m)) ∈ B⊗AN . To see
this is also the image under the “east followed by south” route, use the fact that ψ
is a B⊗2-module map, whence ψ((1⊗ b)x) = (1⊗ b)ψ(x).

The commutativity of the rectangle on the right uses the co-cycle rule namely

(2.1.2) ψ1 ◦ψ3 = ψ2

which is the requirement for ψ to be a descent datum on N . Recall from II.(2.2.1)
that ψ3(n⊗ b1 ⊗ b2) = ψ(n⊗ b1)⊗ b2 and ψ2(n⊗ b′ ⊗ b) =

∑
α b
∗
α ⊗ b′ ⊗ n∗α where∑

α b
∗
α ⊗ n∗α = ψ(n⊗ b). In particular (with b′ = 1 in the above formula for ψ2) we

have

ψ2(n⊗ 1⊗ b) =
∑
α

b∗α ⊗ 1⊗ n∗α

= e1(
∑
α

b∗α ⊗ n∗α)(2.1.3)

= (e1 ◦ψ)(n⊗ b).

We will show that

(i) ψ1 ◦ (α⊗ 1) = e0 ◦ψ

and

(ii) ψ1 ◦ (β ⊗ 1) = e1 ◦ψ.

The relation (i) is easy since α(n) = 1⊗ n and e0(b⊗ n) = 1⊗ b⊗ n. We leave the
details to the reader. The relation (ii) is trickier. Here are the details for (ii).

ψ1 ◦ (β ⊗ 1)(n⊗ b) = ψ1(β(n)⊗ b)
= ψ1(ψ(n⊗ 1)⊗ b)
= ψ1(ψ3(n⊗ 1⊗ b))
= ψ1 ◦ψ3(n⊗ 1⊗ b)
= ψ2(n⊗ 1⊗ b) (by (2.1.2))

= e1 ◦ψ(n⊗ b) (by (2.1.3))
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In view of (i) and (ii) we get ψ1 ◦ ((α− β)⊗ 1) = (e0 − e1) ◦ψ. Thus the rectangle
on the right in diagram (D) commutes. Since the rows of (D) are exact and ψ and
ψ1are isomorphisms, θ ◦ ιM , whence θ, is also an isomorphism.

Clearly the assignment (N, ψ) 7→ M is functorial in (N, ψ) ∈ ModA→B . More-
over, it is evident from the above discussion, as well as (1.1.3.1) and (2.1.1), that
it provides a pseudo-inverse to the functor M 7→ (B ⊗A M, ψ

M
) on ModA. This

completes the proof of Theorem II.3.2.1. �
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