
PICARD-II: DESCENT

PRAMATHANATH SASTRY

All rings are commutative with a multiplicative identity, and all ring maps (i.e.,
ring homomorphisms) are unital (i.e., 1 maps to 1). If A is a ring, then by an
A-algebra we always mean a commutative A-algebra. Some of the results below are
in the cheat sheet for faithful flatness. But repetition never hurts.

1. Faithfully flat algebras

1.1. Recall the following basic result from commutative algebra (see, for example,
[M, Thms 7.2 & 7.3]).

Proposition 1.1.1. [M, Thms. 7.2 and 7.3] Let A → B be a map of rings. The
following are equivalent:

(1) B is flat over A and SpecB → SpecA is surjective.1

(2) A sequence of A-modules

(E) M ′ →M →M ′′

is exact if and only if (E)⊗A B is exact.
(3) A homomorphism of A-modules M → M ′ is injective if and only if the

associated homomorphism M ′ ⊗A B →M ⊗A B is injective.
(4) B is flat over A, and an A-module M is zero if and only if M ⊗A B = 0.
(5) B is flat over A, and mB 6= B for all maximal ideals m of A.

Definition 1.1.2. A map of rings A→ B is said to be faithfully flat if it satisfies
any of the equivalent conditions of Proposition 1.1.1. A map of schemes X → Y is
said to be faithfully flat if it is flat and surjective (as a map of sets).

Remark 1.1.3. One can show (along the lines of Proposition 1.1.1) that a map of
schemes f : X → Y being faithfully flat is equivalent to any of the following:

(1) A sequence E of quasi-coherent OY -modules

(E) F ′ → F → F ′′

is exact if and only if f∗(E) is exact.
(2) A map θ : F → F ′ of quasi-coherent OY -modules is injective if and only if

f∗θ is injective.
(3) The map f is flat and f∗F = 0 if and only if F = 0 for F a quasi-coherent

OY -module.
If f : X → Y is faithfully flat, one can use (3) to prove: if θ : F → G is a map
of quasi-coherent sheaves and f∗θ = 0, then θ = 0. (In other words the map
HomOY

(F , G ) → HomOX
(f∗F , f∗G ) given by ϕ 7→ f∗ϕ is injective.) Indeed,

let K = ker (θ), I = im (θ) and C = coker (θ). Applying he exact functor f∗
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to the exact sequences 0 → K → F → I → 0 and 0 → I → G → C → 0,
we see that f∗I is the image of f∗θ. By our hypothesis, f∗I = 0, whence
I = 0 by (3) above. Note that this means that two maps θ1, θ2 : F ⇒ G of
quasi-coherent sheaves are equal if and only if f∗θ1 = f∗θ2. This has the far
reaching implication that a diagram (∆) of arrows of quasi-coherent sheaves on X
is commutative if (and clearly—only if) f∗(∆) is commutative. Informally one can
say: the commutativity of a diagram of quasi-cohrent sheaves on X can be detected
by checking its commutativity over X ′.

2. Descent for Modules

2.1. Notations. For any ring A the category of A-modules will be denoted ModA.
Now suppose B is an A-algebra and M is an A-module. Then the map M ⊗AB →
B ⊗AM of B-modules given by m⊗ b 7→ b⊗m will be denoted ιM . Note that we
have:

ιM : M ⊗B A −→∼ B ⊗AM.

With A and B as above, and M ∈ ModA, set

(i) B⊗r := B ⊗A · · · ⊗A B︸ ︷︷ ︸
r times

.

(ii) αM : M → B ⊗AM , m 7→ 1⊗m.

2.2. Descent data. Fix an A-algebra B as above. Every B-module N gives rise
to two B⊗2-modules, namely

(i) N ⊗A B with module structure (b1 ⊗ b2)(n⊗ b) = (b1n)⊗ (b2b);
(ii) B ⊗A N with module structure (b1 ⊗ b2)(b⊗ n) = (b1b)⊗ (b2n).

Similarly we have three B⊗3-modules, namely N ⊗A B ⊗A B, B ⊗A N ⊗A B, and
B⊗AB⊗AN , the B⊗3-module structures being obvious and along the lines of the
B⊗2-module structures described above. Suppose we have a B⊗2-map

ψ : N ⊗A B → B ⊗A N.

We have three maps induced by ψ described as follows:

ψ1 : B ⊗A N ⊗A B → B ⊗A B ⊗A N ; ψ1 = idB ⊗ ψ,
(2.2.1)

ψ2 : N ⊗A B ⊗A B → B ⊗A B ⊗A N ; ψ2 = (idB ⊗ ιN ) ◦ (ψ ⊗ idB) ◦ (idN ⊗ ιB),
ψ3 : N ⊗A B ⊗A B → B ⊗A N ⊗A B; ψ3 = ψ ⊗ idB .

Note that ψ2 is the map n⊗b1⊗b 7→
∑
αb
∗
α⊗b1⊗n∗α, where

∑
α b
∗
α⊗n∗α = ψ(n⊗b).

Definition 2.2.2. Let N ∈ ModB . A descent datum on N is an isomorphism
ψ : N ⊗A B −→∼ B ⊗A N such that with ψ1, ψ2, ψ3 as in (2.2.1), we have

ψ2 = ψ1 ◦ψ3

as maps from N ⊗A B ⊗A B to B ⊗A B ⊗A N . (This is the so-called cocycle rule.)
The category of B-modules with descent data (for A) is the category ModA→B
whose objects are pairs (N, ψ) with N ∈ModB and ψ a descent datum, and whose
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morphisms (N, ψ)
β−→ (N ′, ψ′) are B-maps β : N → N ′ such that the diagram

N ⊗A B
ψ //

β⊗idB

��

B ⊗A N

idB⊗β
��

N ′ ⊗A B
ψ′

// B ⊗A N ′

commutes.

Given an A-module M , there is a very natural descent datum on B⊗AM , namely
the map

ψM : (B ⊗AM)⊗A B → B ⊗A (B ⊗AM)

given by b⊗m⊗ b′ 7→ b⊗ b′ ⊗m.

Proposition 2.2.3. (B ⊗A M, ψM ) ∈ ModA→B. Moreover, if M → M ′ is an
A-map then the induced map β : B ⊗AM → B ⊗AM ′ defines a map in ModA→B.

This is an easy (and obvious) computation, which we leave to the reader. Thus
the assignment M 7→ (B ⊗AM, ψM ) gives us a functor

F : ModA → ModA→B .

The theorem of faithful flat descent for affine schemes, i.e. the theorem that follows,
says that this assignment is an equivalence of categories.

Theorem 2.2.4. Suppose B is faithfuly flat over A. Then the functor F : ModA →
ModA→B defined above is an equivalence of categories.

We will prove Theorem 2.2.4 in the next lecture. Loc.cit. asserts that for a B-
module N to be of the form B ⊗A M for some A-module M , it is necessary and
sufficent for N to carry a descent datum ψ : N ⊗AB −→∼ B⊗AN . In this case the
module M ∈ ModA is unique up to isomorphism. In fact, as we will see later,

M = {n ∈ N | 1⊗ n = ψ(n⊗ 1)}.

The proof of loc.cit. is not difficult, being essentially a familiar Čech cohomology
argument, suitably modified to the faithfully flat situation.

3. Descent for quasi-coherent sheaves on a scheme

3.1. For any scheme Z, let q-cohZ denote the category of quasi-cohenrent OZ-
modules. Let f : X ′ → X be a map of schemes. We have a cartesian square (with
X ′′ = X ′ ×X X ′ and p1, p2 : X ′′ ⇒ X the two projection):

X ′′

�p1

��

p2 // X ′

f

��
X ′

f
// X

Setting X ′′′ equal to X ′ ×X X ′ ×X X ′ and p12 , p13 , and p23 equal to the obvious
three projection maps X ′′′ → X ′′ given by the formulae (x1, x2, x3) 7→ (x1, x2),
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(x1, x2, x3) 7→ (x1, x3), and (x1, x2, x3) 7→ (x2, x3) respectively, we have the fol-
lowing three dimensional diagram with each of the six faces being cartesian:

X ′′

p1

��

p2 // X ′

f

��

X ′′′

p23

<<yyyyyyyy p13 //

p12

��

X ′′

p2

=={{{{{{{{

p1

��

X ′
f // X

X ′′

p2

<<yyyyyyyy
p1

// X ′
f

=={{{{{{{{

The definitions of the various pij then imply:

p1 ◦p12 = p1 ◦p13

p2 ◦p12 = p1 ◦p23

p2 ◦p13 = p2 ◦p23 .

Definition 3.1.1. Let G ∈ q-cohX′ . A descent datum (on G ) with respect to

X ′
f−→ X is an isomorphism

ϕ : p∗2G −→∼ p∗1G

such that the cocycle relation

(3.1.1.1) p∗
12

(ϕ) ◦p∗
23

(ϕ) = p∗
13

(ϕ)

holds, i.e., such that the diagram

(3.1.1.2)

p∗
13
p∗2G

p∗
13
ϕ

// p∗
13
p∗1G

p∗
23
p∗2G

p∗
23
ϕ

��

p∗
12
p∗1G

p∗
23
p∗1G p∗

12
p∗2G

p∗
12
ϕ

OO

commutes.

One can, in an obvious way, make a category out of quasi-coherent sheaves on
X ′ with descent data withe respect to f . Denote by q-cohX′→X (or q-cohf ) the
category whose objects are pairs (G , ϕ), where G ∈ q-cohX′ and ϕ is a descent
datum on G . Moreover, with above notations, if F ∈ q-cohX , then the natural
isomorphism (in fact an identity by our conventions implicit in (3.1.1.2) above)

ϕfF (= ϕF ) : p∗2f
∗F −→∼ p∗1f

∗F

is a descent datum on f∗F . Clearly the assignment F 7→ (f∗F , ϕF ) is functorial
in F ∈ q-cohX . Let

(3.1.2) F : q-cohX → q-coh(X′→X)
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denote the resulting functor. Theorem 2.2.4 can be (obviously) restated as: Let
f : X ′ → X be a faithfully flat map of affine schemes. Then the functor F in
(3.1.2) is an equivalence of categories.

3.2. To generalize the above statement to situations beyond maps of affine schemes,
we need to recall that a scheme is called quasi-compact if every open cover has
a finite subcover. Every affine scheme (noetherian or not) is quasi-compact. A
map of schemes f : X → Y is said to be quasi-compact if the inverse image of a
quasi-compact set is quasi-compact. We will show later in this lecture that the
natural transformation F : q-cohX → q-coh(X′→X) of (3.1.2) is an equivalence of
categories whenever f : X ′ → X is a faithfully flat quasi-compact map. The quasi-
compactness assumption allows us to reduce to the affine case. As a first step we
will now show that F is a fully faithful functor under these hypotheses. This means
that if f : X ′ → X is quasi-compact and faithfully flat, F and G quasi-coherent
sheaves on X, and

β : (f∗F , ϕF )→ (f∗G , ϕG )

a map in q-coh(X′→X), then there is a unique map α : F → G in q-cohX such
that f∗α = β. The question is local on X by the uniqueness assertion. Therefore,
without loss of generality, we may assume that X = SpecA. Quasi-compactness of
f then implies that X ′ can be covered by a finite number of affine open subschemes
X ′α = SpecBα of X ′. Since the collection of indices α is finite, the scheme X̄ ′

given by X̄ ′ :=
∐
αX

′
α is affine. In fact X̄ ′ = Spec (

∏
αBα). Let π : X̄ ′ → X ′ be

the natural map and f̄ : X̄ ′ → X the composite f ◦π. In other words we have a
commutative diagram

X̄ ′

f̄ !!B
BB

BB
BB

B
π // X ′

f

��
X

and every arrow in the above diagram is a faithfully flat quasi-compact map. To
lighten notation we write Z and Z̄ for X ′×XX ′ and X̄ ′×X X̄ ′ respectively (rather
than the more familiar X ′′ and X̄ ′′) and let p1, p2 : Z ⇒ X ′, and p̄1, p̄2 : Z̄ ⇒ X̄ ′

be the projections. We then have maps q : Z → X and q̄ : Z̄ → X given by the
compsites q = f ◦p1 = f ◦p2 and q̄ = f̄ ◦ p̄1 = f̄ ◦ p̄2. For F ,G ∈ q-cohX we have
the following commutative diagram.

0 // HomOX
(F , G )

f∗ // HomOX′ (f
∗F , f∗G )

π∗

��

p∗1−p
∗
2 // HomOZ

(q∗F , q∗G )

(π×π)∗

��
0 // HomOX

(F , G )
f̄∗

// HomOX̄′ (f̄
∗F , f̄∗G )

p̄∗1−p̄
∗
2

// HomOZ̄
(q̄∗F , q̄∗G )

The bottom row is exact since f̄ : X̄ ′ → X is a map of affine schemes, whence
Theorem 2.2.4 applies. To show that the functor F of (3.1.2) is fully faithful, we
have to show that the top row is also exact. Since π and π×π are faithfully flat, the
downward arrows are injective (see Remark 1.1.3, esp. towards the end), whence
the top row is exact.

Assuming Theorem 2.2.4, we are now in a position to prove:
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Theorem 3.2.1. Let f : X ′ → X be a faithfully flat quasi-compact map of schemes.
Then the functor F : q-cohX → q-coh(X′→X) of (3.1.2) is an equivalence of cate-
gories.

Proof. The question is local on X as can be checked (exercise). Therefore, without
loss of generality, we may assume X = SpecA. Since f is quasi-compact and affine
schemes are quasi-compact, as before X ′ is quasi-compact, and we can cover X ′ by
a finite number of affine open subschemes X ′α = SpecBα of X ′. As before, let X̄ ′

be the affine scheme X̄ ′ :=
∐
αX

′
α. Let π, f̄ , pi, p̄i, i = 1, 2, q, and q̄ be as in the

proof of the full faithfulness of F above.
We have canonical maps

X̄ ′ ×X′ X̄ ′
δ−→ X̄ ′ ×X X̄ ′

π×π−−−→ X ′ ×X X ′.

If (G , ϕ) ∈ q-coh(X′→X), then one checks that (π∗G , (π×π)∗ϕ) is a descent datum
for the map f̄ : X̄ ′ → X. Moreover, using the fact that ϕ restricted to the diagonal
X ′ ↪→ X ′ ×X X ′ is the identity map on G , one checks that

(3.2.1.1) δ∗(π × π)∗ϕ = ϕπG .

Since f̄ is a map of affine schemes, by Theorem 2.2.42, the quasi-coherent sheaf π∗G
descends to F ∈ q-cohX , and we can identify (f̄∗F , ϕf̄F ) with the descent datum
(π∗G , (π × π)∗ϕ). Applying δ∗ to this identification, we get an identification of
descent data with respect to the map π : X̄ ′ → X ′. In greater detail, the descent
datum δ∗ϕf̄F on f̄∗F (= π∗f∗F ) identifies with δ∗(π×π)∗ϕ on π∗G . Now, δ∗ϕf̄F =
ϕπf∗F . Using this and (3.2.1.1) we obtain an isomorphism f∗F −→∼ G by the full
faithfulness of the functor K 7→ (π∗K , ϕπK ) on q-cohX′ as proven in the discussion
at the beginning of Subsection 3.2.3 It remains to identify ϕfF with ϕ under the just
deduced isomorphism f∗F −→∼ G . According Remark 1.1.3 this can be checked
after applying (π × π)∗ since π × π is faithfully flat. Doing this yields the original
identification (f̄∗F , ϕf̄F ) −→∼ (π∗G , (π × π)∗ϕ), whence (f∗F , ϕfF ) −→∼ (G , ϕ).
It is clear that the process (G , ϕ) 7→ F is functorial in (G , ϕ) ∈ q-coh(X′→X) and
by its “construction” gives a pseudo-inverse to the functor F . �

Thus it only remains for us to prove the affine case of Theorem 3.2.1 (i.e. The-
orem 2.2.4) for us to complete its proof. This, as we stated earlier, will be done in
the next lecture.
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