
PICARD-I: OVERVIEW

PRAMATHANATH SASTRY

1. Basic Definitions

1.1. For any scheme Z, Pic(Z) is defined to be the group of isomorphism classes
of line bundles on Z (the group operation being tensor product).

We will fix a base scheme S (not necessarily noetherian!) and Sch/S will denote
the category of S-schemes. Recall that this means that the objects of Sch/S are
maps X → S and a morphism between two objects, say X → S and Y → S, in
Sch/S is a commutative diagram in the category of schemes:

X //

  @
@@

@@
@@

@ Y

��
S

In practice, if X → S is an object of Sch/S , we often write X ∈ Sch/S , rather than
(X → S) ∈ Sch/S , especially if the underlying map from X to S is understood from
the context (for example when X is a k-variety, where k is a field, and S = Spec(k)).
With this understanding, if X ∈ Sch/S , the underlying map X → S is called the
structural map. If S is affine, say S = Spec(A) then we often write Sch/A instead
of Sch/S and refer to X as an A-scheme rather than as an S-scheme. For two
S-schemes X and T , XT is the T -scheme given by the formula

(1.1.1) XT := X ×S T.

(More precisely: XT is the T -scheme X ×S T
projection−−−−−−→ T .)

The category of abelian groups will be denoted by the symbol Ab.

Definition 1.1.2. (The absolute Picard functor) Let X ∈ Sch/S . The absolute Pi-
card functor PicX : Sch/S → Ab is the (contravariant) functor given by the formula

PicX(T ) := Pic(X ×S T ) = Pic(XT ).

Definition 1.1.3. (The relative Picard functor) Let X ∈ Sch/S . The relative
Picard functor Pic

X/S
: Sch/S → Ab is the (contravariant) functor given by the

formula

Pic
X/S

(T ) :=
Pic(X ×S T )

Pic(T )
=

PicX(T )
Pic(T )

(
=

Pic(XT )
Pic(T )

)
.

The absolute Picard PicX(T ) gives us a family of line bundles on X parameter-
ized by T . However if ξ is such a family (i.e., if ξ ∈ PicX(T )) then ξ⊗p∗

T
L ∈ PicX(T )

gives the “same” family, where p
T

: XT → T is the structural map of the T -scheme
XT , and L ∈ Pic(T ). Indeed, p∗

T
L|Xt

is trivial on each fiber Xt := XT ×T Speck(t)
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of p
T

, with t ∈ T . This is why it is more natural to consider the relative Picard
functor.

As expected, if S = Spec(A), then we often write Pic
X/A

for Pic
X/S

.
Our goal is to represent the functor Pic

X/S
under certain special conditions

on the structural map X → S.1 This means the following: there is an S-scheme
Pic

X/S
as well as a line bundle Lu on X ×S Pic

X/S
such that if ξ ∈Pic

X/S
(T ) for

some T ∈ Sch/S , then there exists a unique map—the so called classifying map—
g : T → Pic

X/S
such that the isomorphism class ξgu of the line bundle (1× g)∗Lu is

equivalent to ξ, i.e., the image of ξgu ∈ Pic(XT ) in Pic
X/S

(T ) = Pic(XT )/Pic(T ) is
ξ. In other words, we want an isomorphism of functors:

HomSch/S
(−, Pic

X/S
) −→∼ Pic

X/S

such that 1 ∈ HomSch/S
(Pic

X/S
, Pic

X/S
) maps to ξu ∈ Pic

X/S
(Pic

X/S
) where ξu

is the image of [Lu] ∈ PicX(Pic
X/S

) in Pic
X/S

(Pic
X/S

). Here [Lu] denotes the
isomorphism class of the line bundle Lu.

2. Overview

In what follows, (Sets) will denote the category of sets.

2.1. Recall that a (contravariant) functor F : C → (Sets) on a category C is called
representable if there exists an object X ∈ C such that there is a functorial isomor-
phism

hX := HomC (−, X) −→∼ F.

Suppose this is true and set θ ∈ F (X) equal to the image of 1X ∈ HomC (X, X) =
hX(X) under the above isomorphism. Then the pair (X, θ) is said to represent F .

In fact, given any pair (X, θ) with X ∈ C and θ ∈ F (X) one has an induced
map of functors

θ̂ : hX → F

uniquely characterized by the following property: for Y ∈ C , and f ∈ hX(Y ) (i.e.,

Y
f−→ X),

θ̂(Y )(f) = F (f)(θ)

where F (f) : F (X)→ F (Y ) is the map induced by f : Y → X and the contravari-
ance of F . In other words, (X, θ) represents F if and only if θ̂ is an isomorphism.
We often do not distinguish between:

- X and hX ;

- θ ∈ F (X) and hX
θ̂−→ F .

Thus, to say θ is an element of F (X) is to say that we have a “map”

θ : X → F.

1In general this is not possible—even when X is a projective k-variety, where k is a field—

without modifying the relative Picard functor, for, as we shall see later in these lectures, in order
for a functor to be representable, it must be a “sheaf” on a Grothendieck topology, namely the

fpqc-topology. The trick is to “sheafify” the “presheaf” Pic
X/S

.
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2.2. In the event F : C → Grp is a contravariant functor, with Grp the category of
groups, then, with Grp π−→ (Sets) the forgetful functor, one says F is representable
if π ◦F is representable. If this happens, one can show that the representing object
G ∈ C is a group-object, under very mild hypothesis (C should have products
and F should respect products). In particular, if Pic

X/S
is representable, then

the representing object is necessarily a group scheme, in fact a commutative group
scheme. The above statement applies to any sheafification of Pic

X/S
which is also

Ab-valued.

2.3. IfX ∈ Sch/S then one can show (as we will in later lectures) thatX (i.e., hX) is
a “sheaf” of sets on the Zariski, étale, fppf, and fpqc topologies on S—which topolo-
gies will be defined later. Therefore for any contravariant (Sets)-valued functor to
be representable it too needs to be a sheaf in all these topologies. Unfortunately
Pic

X/S
as defined need not be a sheaf even in the Zariski topology, not even if

S = Spec(k), k a field and X a smooth projective curve. It is a sheaf in the Zariski
topology however if X has a k-rational point. In this case, it is actually a sheaf in
all the topologies mentioned above.

2.4. I will say more on these topologies later. For now, we simply give a quick
overview of what is required. The functor Pic

X/S
is a presheaf for any Grothendieck

topology on Sch/S—by definition—since it is a contravariant functor. One can
sheafify to get various Picard functors:

(℘) (Pic
X/S

)(Zar), (Pic
X/S

)(ét), (Pic
X/S

)(fppf), (Pic
X/S

)(fpqc).

Now the topologies Zar, ét, fpqc, fppf are succesively finer than their predecessors
and moreover, each of the above functors is the sheafification of any of its prede-
cessors in the appropriate topology2. If any one of them is representable, then it
is a sheaf in all the topologies, whence equal to its sheafification in any succeeding
topology in the hierarchy (ranked from coarser to finer): Zar, ét, fppf, fpqc. It
follows of that if any functor in (℘) is representable then (a) it is equal to all the
succeeding functor and therefore (b) all the succeeding functors are representable.
In this case the common representing group-scheme is called the Picard scheme
and is denoted Pic

X/S
. The main point being made is this: while there are four

functors (five, counting the absolute Picard functor PicX), there is at most one
Picard scheme Pic

X/S
. We state this formally as a definition.

Definition 2.4.1. We will say that the Picard scheme Pic
X/S

exists if some functor
in (℘) is representable (and hence, so are all succeeding functors in (℘)). In this
case Pic

X/S
will denote the common scheme representing this functor and all its

successors in (℘).

2.5. In order to understand the topologies mentioned above—we are mainly inter-
ested in the fppf topology—and sheaves on them, we will have to spend time on
faithful flat descent.

2.6. Hilbert schemes enter into the construction in two essential ways:
(i) To find a space of effective relative Cartier divisors for X → S.

(ii) To construct the quotient of a quasi-projective S-schemeX by a flat, proper,
equivalence relation.

2In fact each of them is the sheafification of the absolute Picard functor PicX in the appropriate
topology
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3. Main Theorems

The Main theorems concerning the existence of Pic
X/S

are given below. Terms
such as finitely presented and locally finitely presented will be defined in later
lectures. The usual practice is to represent Pic(fppf)

X/S
, and this is how it is done in

[BLR].

Theorem 1. [Grothendieck, FGA] Let X
f−→ S be flat, projective, finitely presented

map of schemes with reduced and irreducible geometric fibers. Then Pic
X/S

exists
as a separated quasi-projective S-scheme which is locally of finite presentation.

Theorem 2. [Mumford, unpublished] Let X
f−→ S be flat, projective, finitely pre-

sented map of schemes with reduced geometric fibers such that the irreducible com-
ponents of the ordinary fibers are geometrically irreducible. Then Pic

X/S
exists as

a possibly non-separated S-scheme which is locally of finite presentation.

Before stating the next theorem (and this is the version we will prove) due
to Altmann and Kleiman, we need some notations and conventions nailed down.
Suppose X

f−→ S is flat and strongly projectibe. Given ξ ∈ Pic
X/S

, T connected,
we have a line bundle Lξ on XT . Since XT is flat over T , the Hilbert polynomial
of Lξ|Xt is independent of t ∈ T (since T connected). Denote this polynomial Φξ.
For any polynomial Φ ∈ Q[t], let

PicΦ
X/S

(T ) = {ξ ∈Pic
X/S

(T ) |Φξ = Φ}.

PicΦ
X/S

is clearly a contravariant (Sets)-valued functor on Sch/S , in fact it is a
subfunctor of Pic

X/S
. One checks, easily, that

Pic
X/S

(T ) =
∐
Φ

PicΦ
X/S

(T ).

As in (℘) we have various sheafifications of the functor PicΦ
X/S

. If any one of them

is representable, the representing object is denoted PicΦ
X/S

.

Theorem 3. [Altmann-Kleiman] Suppose S is quasi-compact and f : X → S is
flat, strongly projective, with reduced and irreducible geometric fibers. Then for any
Φ ∈ Q[t], PicΦ

X/S
exists as a strongly quasi-projective S-scheme. Moreover, the

relative Picard scheme for X/S also exists and

Pic
X/S

=
∐
Φ

PicΦ
X/S

.
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