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Abstract. The foundations of Grothendieck Duality that we pick is the one

initiated by Deligne in [D1]. The principal aim of this monograph is to use
these foundations to give concrete versions of residues and traces of differential

forms. Formal schemes enter into the picture (via residues) even if one is only

interested in ordinary schemes. In Part 1, we shore up the abstract theory in
the foundations and in Part 2, we use these results to give our concrete answers.

In a little greater detail, for a proper map f : X → Y of noetherian ordinary

schemes, one has a well-known natural transformation, Lf∗(−)
L
⊗ f !OY → f !,

obtained via the projection formula, which extends, using Nagata’s compact-
ification, to the case where f is separated and of finite type. In the first part

of the monograph we extend this transformation to the situation where f is
a pseudo-finite-type map of noetherian formal schemes which is a composite

of compactifiable maps, and show it is compatible with the pseudofunctorial

structures involved. This natural transformation has implications for the ab-
stract theory of residues and traces, giving Fubini type results for iterated

maps. In the second part of the monograph these abstractions are rendered

concrete. Briefly, for a smooth map between noetherian schemes, Verdier re-
lates the top relative differentials of the map with the twisted inverse image

functor “upper shriek” [V]. We show that the associated traces for smooth

proper maps can be rendered concrete by showing that the resulting theory of
residues satisfy the residue formulas (R1)–(R10) in Hartshorne’s Residues and

Duality [RD]. We show that the resulting abstract transitivity map relating

the twisted image functors for the composite of two smooth maps satisfies an
explicit formula involving differential forms. We also give explicit formulas

for traces of differential forms for finite flat maps (arising from Verdier’s iso-

morphism) between schemes which are smooth over a common base, and use
this to relate Verdier’s isomorphism to Kunz and Waldi’s regular differentials.

These results also give concrete realisations of traces and residues for Lipman’s
fundamental class map via the results of Lipman and Neeman [LN2] relating

the fundamental class to Verdier’s isomorphism.



Contents

Introduction ix
Abstract matters x
Differential forms and Grothendieck Duality xi

Part 1. The abstract theory 1

Chapter 1. Overview for Part 1 3
1.1. Transitivity 4
1.2. Two twisted inverse images 7
1.3. Notations and basics on formal schemes 7

Chapter 2. The duality pseudofunctors over formal schemes 11
2.1. Grothendieck Duality on formal schemes 11
2.2. Flat base change 13
2.3. Traces with proper support 13

Chapter 3. Traces and Residues for Cohen-Macaulay maps 15
3.1. Cohen-Macaulay maps 15
3.2. Abstract Trace for Cohen-Macaulay maps 16
3.3. Abstract Residue for Cohen-Macaulay maps 17
3.4. Traces for finite Cohen-Macaulay maps. 19
3.5. A residue formula for Cohen-Macaulay maps 21

Chapter 4. Base change for residues 23
4.1. Hypotheses 23
4.2. Base change for direct image with supports 23
4.3. Base-change theorems 26

Chapter 5. Iterated traces 29
5.1. Traces in affine terms 30
5.2. Abstract Transitivity 31

Chapter 6. Iterated residues 49
6.1. Comment on Translations 49
6.2. Iterated generalized fractions 49
6.3. Cohen-Macaulay maps and iterated residues 51

Part 2. The concrete theory via Verdier’s isomorphism 55

Chapter 7. Overview for Part 2 57
7.1. The twisted image pseudofunctor −! 59

v



vi CONTENTS

7.2. Traces and residues 59
7.3. Transitivity 61
7.4. Trace for finite flat maps 63
7.5. Regular Differential Forms 63

Chapter 8. Verdier’s isomorphism 65
8.1. The Definition 65
8.2. Local description of Verdier’s isomorphism 67
8.3. Compatibility of Verdier’s isomorphism with completions 69
8.4. Base change and Verdier’s isomorphism 73

Chapter 9. Residues 75
9.1. Verdier residue 75
9.2. Some residue formulas 76

Chapter 10. Residues along sections 79
10.1. The local cohomology class of a section 79
10.2. Relative projective space 80
10.3. The Verdier residue for sections of smooth maps 81
10.4. A characterisation of the Verdier isomorphism 82

Chapter 11. Regular Differential Forms 87
11.1. Overview of Kleiman’s functor 87
11.2. Regular Differentials 88
11.3. Summary of the main result of [HS] 89
11.4. Regular Differentials and Verdier 90

Chapter 12. Transitivity for smooth maps 91
12.1. The map ζg,f between differential forms 91
12.2. The map ϕg,f between differential forms 92

Chapter 13. Applications of Transitivity 97
13.1. Iterated residues 97
13.2. The Restriction Formula 97

Chapter 14. Traces of differential forms for finite maps 105
14.1. Tate traces 105
14.2. Traces of differential forms 110
14.3. Regular Differentials again 120

Chapter 15. The Residue Symbol 123
15.1. The definition of the symbol 123
15.2. Proofs 125

Appendix A. Base change and completions 131
A.1. Basic properties of flat-base-change isomorphism for −# 131
A.2. Compatibility with completions 135
A.3. Completions and compactifications 137

Appendix B. Closed immersions and completions 141
B.1. The variance theory −[ 141
B.2. Completion and −[ 142



CONTENTS vii

Appendix C. Koszul complexes 145
C.1. Our version of Koszul complexes 145
C.2. The Fundamental Local Isomorphism 146
C.3. Compatibility with completions 149
C.4. Flat base change of −N and of −# 150
C.5. Stable Koszul complexes and generalized fractions 151
C.6. Duality for composite for closed immersions 154
C.7. Another look at the composition of closed immersions 157

Bibliography 159

Index 163





Introduction

The foundations for Grothendieck Duality (abbreviated to GD for the rest
of this book) as developed and used in Hartshorne’s classic book [RD], and in
Conrad’s book [C1], are based on residual complexes. In this approach, the functor
f !, for a suitable finite-type map f , as well as its attendant trace Trf : Rf∗f

! → 1
(when f is proper) have a certain concreteness built into their construction. One
then has to work out a large array of compatibilites between the various concrete
representations of f ! and Trf and there often are different concrete representations
of these for the same map, e.g., a finite map which also factors as a closed immersion
followed by a smooth map.

In a different direction, in his appendix to [RD], Deligne initiated an approach
to GD which is conceptually attractive. From this point of view, f ! for a proper
map f is the right adjoint to Rf∗, and exists for very general category-theoretic
reasons. These foundations have been worked on, extended, and new techniques
have been introduced over the years by Lipman, Neeman, and their collaborators.
Residual complexes and dualizing complexes are not needed to build GD in this
approach. We mention [D1], [D2], [D2’], [V] for literature on this approach before
the 1980s, and recent work found in [Ne1], [Ne2], which do much to extend (via
a conceptually different approach to finding right adjoints) the work initiated by
Deligne and Verdier to more general situations, often bypassing the old annoying
hypotheses on boundedness for the existence of f ! or for its base change. The stable
version of these can be found in Lipman’s elegant and carefully written book [L4].
We also mention Neeman’s recent manuscript [Ne4] which gives a coherent account
of the difficulties and the recent simplifications of many matters.

The aim of this book is to use the foundations of GD initiated by Deligne to
get concrete results concerning traces, residues, and transitivity. Since we rely on
formal schemes as a way to our results on maps between ordinary schemes, we have
been influenced enormously by the work of Alonso Tarŕıo, Jeremı́as López, and
Lipman in [AJL1], [AJL2], and [AJL3].

Part 1 of the book concentrates on shoring up the abstract machinery of GD
for this purpose, and Part 2 on obtaining concrete formulas involving differential
forms. Examples of the latter are the residue formulas (R1)–(R10) stated without
proof in [RD, III, §9]. These ten formulas were proved by Conrad in [C1], but using
the foundations in [RD] rather than the ones mentioned in the opening paragraph
above.

The results in Part 2 are easier if we allow ourselves to work with completions
of finite type relative schemes f : X → Y along subschemes of X which are finite
(and often flat) over Y , provided the abstract results in Part 1 are proved for such
completions. It is, in the main, no more difficult to work with general (noetherian)
formal schemes, than with formal schemes which arise as completions. This is

ix



x INTRODUCTION

precisely what we do in Part 1 and in a substantial part of Part 2. The schemes in
this book are noetherian formal schemes.

Abstract matters

The two main themes of Part 1 are:

(a) traces associated with psuedo-proper maps f : X → Y (i.e., maps which
are proper modulo ideals of definition of X and Y ); and

(b) transitivity.

Traces, at least for smooth maps, are analogues of integrals (or of integration
along fibres), although the definitions, in the abstract theory, can obscure this. If
for simplicity we stick to ordinary schemes, the trace associated to a proper map
f is the co-unit associated to the adjoint pair (Rf∗, f

!). Closely related to traces
are residues, which we define in the abstract setting of Part 1 for Cohen-Macaulay
maps between ordinary schemes. Traces and residues for such maps are studied
in Chapter 3. Roughly, if f : X → Y = SpecA is a proper Cohen-Macaulay map
whose non-empty fibres are all of dimension d, and Z is a closed subcheme of X
which is finite and flat over Y , then our abstract residue map is the composite
Hd
Z(X, ωX/Y ) → Hd(X, ωX/Y ) → A. Here ωX/Y is the relative dualizing sheaf

H−d(f !OY ), the first arrow is the natural one, and the second arrow is induced by
the abstract trace (or a version of it). Formal schemes have the advantage that
residues can be regarded as traces for the pseudo-proper (in fact pseudo-finite)

map f̂ : X → Y which is the completion of f along the closed subscheme Z. The
mantra is (as in complex variables): residues determine integrals. Local duality
gives substance to that mantra.

Transitivity is a loose term for the study of relationships between the various
duality functors associated to the composite of two or more maps. For example, if
f : X → Y and g : Y → Z are a pair of proper maps between ordinary schemes, one

aspect of transitivity is the study of a map χ : Lf∗g!OZ
L
⊗ f !OY −→ (gf)!OZ that

arises from universal properties of the pseudofunctor (−)!, also known informally as
“upper shriek”. Briefly χ(= χ[g,f ]) is the map which makes a Fubini type theorem
for traces (the analogues of integrals) associated to f , g, and gf true. As shown in
[L4], one can relax the requirement that f and g are proper. If we allow more than
two maps, relationships between the various transitivity are proved in ibid. Ex-
tending these results to iterated maps of pseudo-finite type maps of formal schemes
requires considerable effort and these matters are studied in Chapter 5. In Chap-
ter 6 we look at transitivity for Cohen-Macaulay maps, culminating in formulas of
the form

res#
W2

res#
W1

[
ν
v

]
µ

u

 = res#
W1∩f−1(W2)

[
χ(µ⊗ ν)

v,u

]
(see (6.3.2) and (6.3.3)). Here X, Y , Z are affine, u = (u1, . . . , um) is an m-tuple
of sections of OY cutting out a closed subscheme W2 of Y , v = (v1, . . . , vn) an
n-tuple of sections of OX cutting out a closed subscheme W1 of X, where m is
the relative dimension of g and m that of f . The symbols µ and ν are sections of
the relative dualizing sheaves of g and f respectively. The residues res#

W
[ ab ] above

are the abstract residues. Concrete forms of these, with µ and ν being suitable
differential forms, are studied in Part 2, about which we say a few words below.
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Differential forms and Grothendieck Duality

Given the highly abstract methods of construction, and definitions based on
universal properties, the question arises:

To what extent can we render concrete realisations of the various
constructions occurring in this version of GD?

The issue of concrete representations of f ! (for our preferred version of GD)
was addressed partially, soon after [D1] appeared, by Verdier when f is smooth
[V]. The answer is f ! ∼= f∗(−) ⊗OX ΩnX/Y [n] where n is the relative dimension

of f : X → Y . This isomorphism in turn depends on the concrete representation
i! ∼= Li∗(−) ⊗ ∧dOUN [−d] (via the fundamental local isomorphism) for a regular
immersion i : U ↪→ V of codimension d, with N the normal bundle of U in V .
Verdier’s answer for smooth maps is only a partial answer because the associated
trace map (when f is proper)

trf : Rnf∗(Ω
n
X/Y ) −→ OY ,

denoted
∫
f

in [V],1 is seemingly intractable via this approach. In fact trf has

not been worked out in the literature even when Y is the spectrum of a field k.
However, from the abstract properties of f ! and the fact that f !OY is concentrated
in degree −n (for example by Verdier’s isomorphism), the pair (ΩnX/Y , trf ) is easily

seen to represent the functor HomY (Rnf∗(−),OY ) on quasi-coherent sheaves on X
when f is proper (the only situation where trf is defined), and in fact trf and the

composite Rf∗Ω
n
X/Y [n] −→∼ Rf∗f

!OY
Trf (OY )−−−−−→ OY determine each other.

When Z is a closed subscheme of X, finite over Y , defined locally by an
OX -sequence, and E xt if (OZ ,−) the ith right-derived functor of f∗H omX(OZ ,−),
Verdier asserts (see top of p. 400 of [V]) that the composite

(1) E xtnf (OZ ,Ω
n
X/Y ) −→ Rnf∗(Ω

n
X/Y )

trf−−→ OY

is governed by the residue symbol of [RD, Chap. III, § 9].2 It is certainly true that
if this is so, following (essentially) the argument given in [V, bottom of p. 399],
the trace map trf can be realised in an explicit way. However, the proof that
(1) (denoted ResZ in [V]) is governed by the residue symbol is not there in the
literature. In the over 50 years that have passed since Verdier’s assertion, it has
been recognised by experts that this is in fact a non-trivial problem (see our quote
of Conrad below). One difficulty is the assertion (R4) in [V, p. 400], namely that
(1) commutes with arbitrary base change. This needs, at the very least, for one to
show that the isomorphism f !OY ∼= ΩnX/Y [n] of Verdier commutes with arbitrary

base change, in a sense we will make more precise in a moment. This compatibility
with base change was only established in 2004 by the second author [S2]. In slightly
greater detail, here is what the compatibility entails. Suppose u : Y ′ → Y is a map
and g : X ×Y Y ′ → Y ′ and v : X ×Y Y ′ → X are the two projections. To show

1The map trf is H0(−) applied to the composite Rf∗Ωn
X/Y

[n] −→∼ Rf∗f !OY

Trf (OY )
−−−−−−→ OY ,

where the first arrow is Verdier’s isomorphism.
2In [RD], proofs of the assertions about the residue symbol are not given. They are provided

later by Conrad [C1], the construction and definition of various traces being those developed in
[RD]. They do not apply to our situation since we use a different foundation for GD.
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the compatibility of Verdier’s isomorphism f !OY ∼= ΩnX/Y [n] with arbitrary base

change, first one needs to show that there is an isomorphism

θfu : v∗f !OY −→∼ g!OY ′

for our smooth f (even when it is not proper). This is a delicate point, especially
if one demands that in the proper case Trf (OY ) should be compatible with this
base change isomorphism (remember, Trf in Deligne’s approach, is defined as a
co-adjoint unit and is not explicit), and that the isomorphism is also compatible
with open immersions into X. After this is established, one has to check that this
base change isomorphism θfu when grafted on to Verdier’s isomorphisms for f and
for g give the canonical isomorphism of differential forms. It is easier to carry out
the first part in the slightly more general situation of f being Cohen-Macaulay,
and this is one of the main results of [S2]. In [C1], the base change isomorphism
θfu is proven using the foundations of GD in [RD]. However, the isomorphism
between f !OY and ΩnX/Y [n] in [RD] and [C1] is by fiat, and it is not clear that

it is the same as Verdier’s isomorphism. In other words, it is not clear that the
trace Rnf∗(Ω

n
X/Y ) → OY built using the foundations of GD in [RD] is the same

as the one that arises when using the foundations initiated in [D1]. In fact, we are
back to the frustrating detail that we do not know the trf explicitly when we work
with the foundations initiated in [D1]. Even with the compatibility of Verdier’s
isomorphism with arbitrary base change in hand, showing that (1) is governed by
the residue symbol of [RD, Chap. III, § 9] is not trivial. In fact it takes all of
Part 2. We can do no better than quote Conrad from his introduction to his book
[C1] (using however our labelling of the citations given there):

“. . . The methods in [V] take place in derived categories with
“bounded below” conditions. This leads to technical problems for
a base change such as p : Spec(A/m) ↪→ Spec(A) with (A, m) a
non-regular local ring, in which case the right exact p∗ does not
have finite homological dimension (so Lp∗ does not make sense
as a functor between “bounded below” derived categories). More-
over, Deligne’s construction of the trace map in [RD, Appendix],
upon which [V] is based, is so abstract that it is a non-trivial task
to relate Deligne’s construction to the sheaf Rnf∗(Ω

n
X/Y ). How-

ever, a direct relation between the duality theorem and differential
forms is essential for many important calculations (e.g., [Maz, §6,
§14(p.121)]).”

The prime object of study in Part 2 of this book is Verdier’s isomorphism [V,
p. 397, Thm. 3]

ΩnX/Y [n] −→∼ f !OY

for a smooth separated morphism f : X → Y of ordinary schemes of relative di-
mension n. Strictly speaking, the isomorphism in loc.cit. is from f !OY to ΩnX/Y [n],

and thus, we are talking about the inverse of the map in loc.cit. In view of recent
results of Lipman and Neeman, this is the fundamental class map cf associated
with f [LN2, p. 152, (4.4.1)], In [L3], Lipman outlines a programme for a global
residue theorem via the fundamental class map (see [ibid., § 5.5 and § 5.6]). Part 2
is intimately related to that programme via the just mentioned results of Lipman
and Neeman. However, we do not use the results on the fundamental class map of
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ibid. Since the isomorphism we use (between ΩnX/Y [n] and f !OY ) is that described

by Verdier, we call it the Verdier isomorphism rather than the fundamental class.
We also recommend Beauville’s expository paper [Be] for an overview (without

proofs) of residues, especially for the concrete expressions for them. Our attention
was drawn to it recently by Joe Lipman.

We elaborate on these points in the overview to Part 2 in Chapter 7.





Part 1

The abstract theory





CHAPTER 1

Overview for Part 1

All schemes are assumed to be noetherian. They could be formal or ordinary.
For any formal scheme X , A(X ) is the category of OX -modules and D(X ) its
derived category. The torsion functor Γ ′X on OX -modules is defined by the formula

Γ ′X := lim−−→n
H omOX

(OX /I n,−)

where I is any ideal of definition of the formal scheme X . A torsion module F
is an object in A(X ) such that Γ ′X F = F . The category Ac(X ) (resp. A~c(X ),
resp.Aqc(X ), resp.Aqct(X )) is the category of coherent (resp. direct limit of coher-
ent, resp. quasi-coherent, resp. quasi-coherent and torsion) OX -modules. Dc(X )
(resp. D~c(X ), resp. Dqc(X ), resp. Dqct(X )) is the subcategory of D(X ) of com-
plexes having homology in Ac(X ) (resp. A~c(X ), resp. Aqc(X ), resp. Aqct(X )),
while D∗c (X ), (resp. D∗~c (X ), resp. D∗qc(X ), resp. D∗qct(X )) for ∗ in {b,+,−} de-
notes the corresponding full subcategory whose homology is additionally, bounded,
or bounded below, or bounded above, accordingly.

We will be using the notions of pseudo-proper, pseudo-finite-type, pseudo-finite
maps used in [AJL2]. For example if f : X → Y is a map of formal schemes, it is
pseudo-proper if the map of ordinary schemes f

0
: X → Y obtained by quotienting

the structure sheaves OX and OY by ideals of definition for X and Y , is proper.
If this is true for one pair of defining ideals (I , J ) with J ⊂ OY and J OX ⊂
I ⊂ OX , then it is true for all such pairs. The definitions of pseudo-finite-type,
pseudo-finite are analogous.

We assume familiarity with the viewpoint of duality that was initiated by
Deligne in [D1], especially as laid out by Lipman in [L4, Chapter 4]. In particular,
we assume familiarity with the main properties of the twisted inverse-image pseud-
ofunctor −!. This is a D+

qc-valued contravariant pseudofunctor on the category of
schemes and separated essentially finite-type maps.

We begin by recalling the notion of a (contravariant) pseudofunctor. A pseud-
ofunctor (−)4 (or simply −4) on a category C is an assignment of categories
X4, one for each X ∈ C , such that for each map f : X → Y in C , we have a

functor f4 : Y 4 → X4, for each X ∈ C , an isomorphism η4X : 14X −→∼ 1X4 , for

each pair of composable maps X
f−→ Y

g−→ Z in C , an isomorphism of functors

C4f,g : (gf)4 −→∼ f4g4, such that for a third map h : Z → S in C , “associativity”
holds, i.e., the following diagram commutes,

f4g4h4˜

C4g,h
��

C̃4f,g

// (gf)4h4˜

C4gf,h
��

f4(hg)4 ˜
C4f,hg

// (hgf)4.

3
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and for the compositions 1Y f = f = f1X , the isomorphisms η4− and C4−,− are
compatible in the obvious way. However, as we shall see, we may need to relax

the condition that η4X : 14X → 1X4 be an isomorphism for objects X ∈ C . In
such a case, if other conditions are satisfied, −4 is called a pre-pseudofunctor .
For simplicity, we may often call these naturally occurring pre-pseudofunctors as
pseudofunctors.

1.1. Transitivity

The principal aim of Part 1 of this book is to extend results in [L4, § 4.9] to
the situation of formal schemes. An example of the kind of result in loc.cit. that
would interest us is the existence of a map

(1.1.1) Lf∗g!OZ
L
⊗OX f

!OY −→ (gf)!OZ

for a pair of finite-type separated maps X
f−→ Y

g−→ Z. This is closely related to the
results in [LS]. Let us discuss (1.1.1) in some detail to orient the reader to the kind
of questions we are interested in as well as the difficulties involved in answering
them for formal schemes.

Recall that if h : V → W is a proper map of schemes, then the twisted inverse
image functor h! : D+

qc(W )→ D+
qc(V ) is a right adjoint to Rh∗ : D+

qc(V )→ D+
qc(W ).

We therefore have the co-adjoint unit

(1.1.2) Trh : Rh∗h
! → 1D+

qc(W ),

the so-called trace map for h, such that the map

HomD+
qc(V )(F , h!G )→ HomD+

qc(W )(Rh∗F ,G )

given by ϕ 7→ Trh(G )◦Rh∗(ϕ) is an isomorphism [L4, p.204, Theorem 4.8.1 (i)].
Next, if h is étale, by part (ii) of loc.cit., we have h! = h∗. Note that if F ∈ Dqc(X)
and G ∈ Dqc(Y ), we have the bifunctorial projection isomorphism of [L4, p.139,
Proposition 3.9.4]

(1.1.3) G
L
⊗OY Rh∗F −→∼ Rh∗(Lh

∗G ⊗OX F ).

Finally, recall that if h is separated and of finite type, by a famous theorem of
Nagata [N] one can find a compactification of h, i.e., a factorization h = h̄◦i with
i an open immersion and h̄ a proper map. Thus, after choosing such a compacti-
fication, one could define h! for such maps, by the formula h! = i∗h̄!. That this is
independent of the compactification chosen is proven in [D1]. The technical diffi-
culties encountered carrying out this program are formidable, and form the content
of [D1], [D2], [D2’], and [L4, Chapter 4].

The map (1.1.1) is described as follows. First suppose f and g are proper. One
has a natural map

(1.1.4) R(gf)∗(Lf
∗g!OZ

L
⊗OX f

!OY ) −→ OZ
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given by the composite

R(gf)∗(Lf
∗g!OZ

L
⊗OX f

!OY ) ˜−−−−−−−−→ Rg∗Rf∗(Lf
∗g!OZ

L
⊗OX f

!OY )

(1.1.3)−1

−−−−−−−−→ Rg∗(g
!OZ

L
⊗OY Rf∗f

!OY )

Rg∗(1⊗Trf )−−−−−−−−−→ Rg∗g
!OZ

Trg−−−−−−−−→ OZ .

Since (gf)! is right adjoint to R(gf)∗, the map (1.1.4) gives rise to (1.1.1) as the
unique map such that Trgf (OZ)◦R(gf)∗(1.1.1) = (1.1.4).

If f or g is not proper, one can find a compactification of gf , say gf = F ◦ j,
such that F = ḡ ◦ f̄ , with f̄ , ḡ proper maps, and where these maps embed into a
commutative diagram

(1.1.5)

X

f

��

// X //

����������
// X

f̄����������

Y

g

��

// Y

ḡ��~~~~~~~~

Z

with all horizontal arrows open immersions and all south-west pointing arrows
proper, with the composite of the two horizontal arrows on the top row being j.
The map (1.1.1) for the pair (f, g) can be defined by “restricting” the corresponding
map for (f̄ , ḡ) to X. The map (1.1.1) is independent of the choice of such diagrams
— this is the essential content of [L4, pp. 231–232, Lemma 4.9.2]. We provide a
proof for formal schemes in Proposition 5.2.4 below.

The map (1.1.1) is to be regarded as an abstract form of certain transitivity
results for differential forms which are important for duality, e.g., property (R4) of
residues stated in [RD, p.198]. Briefly, if h : V → W is a smooth map of relative
dimension n, then one can show that there is an isomorphism

(1.1.6) ωh[n] −→∼ h!OW ,

where ωh = ΩnV/W is the nth exterior power of the OV -module of relative differential

forms Ω1
V/W for the map h. There are many descriptions of such isomorphisms

(see [V, p. 397, Theorem 3], [HK2, p. 84, Duality theorem], [HS, p. 750, Duality
Theorem]; the general hypothesis in the last two cited papers is that the base scheme
has no embedded points). Thus if f and g are smooth of relative dimensions, say,
m and n respectively, then, upon taking homology in degree m+n, (1.1.1) induces
a map of coherent OX -modules,

(1.1.7) f∗ωg ⊗OX ωf → ωgf .

The above map is an isomorphism since (1.1.1) is in this special case, f being a
perfect map. How this compares with the usual isomorphism between f∗ωg⊗OX ωf
and ωgf depends on the choice of (1.1.6) which in turn depends on the choice of
concrete trace maps of the form Rh∗ωh[n] → OW . For the one implicit in [HS],
the problem is studied in [LS] (see also the correction). In Part 2 we will show
that when (1.1.6) is chosen to be the isomorphism given by Verdier in [V, p. 397,
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Thm. 3], the map (1.1.7) is the map given locally by f∗(µ)⊗ ν 7→ ν ∧ f∗(µ) where
the notation is self-explanatory.

The problem of finding the concrete expression for (1.1.7) given (1.1.6) is best
attacked by expanding the scope of our study from ordinary schemes to formal
schemes. One reason for this is that maps such as (1.1.1) are compatible (in a
precise sense) with completions along closed subschemes in X, Y , and Z. This
allows for far greater flexibility than the method of compactifying and restricting.
From this larger point of view, property (R4) of residues in [RD, p. 198] is a concrete
manifestation of (1.1.1) for maps between formal schemes.

We lay the foundations for all of this in this part of the book. The generalization
of parts of §4.9 of [L4] (in particular of the map (1.1.1) above) is carried out in
section Chapter 5, especially in Proposition 5.2.4. As for property (R4) for residues,
an abstract form of it for Cohen-Macaulay maps is proved by us in Proposition 6.3.1
below. We draw the reader’s attention especially to formulas (6.3.2) and (6.3.3)
which follow from loc.cit.

If we move to formal schemes which are not necessarily ordinary, [AJL2, The-
orem 6.1] assures us of the existence of a right adjoint to Rf∗ : Dqct(X )→ Dqct(Y )
for a pseudo-proper map (and more) f : X → Y and this right adjoint is denoted
f !. However, given a general separated pseudo-finite-type map f , we are no longer
assured that f has a compactification, i.e., we are no longer assured that we have
a factorization f = f̄ ◦i with i an open immersion, and f̄ pseudo-proper.1 We
are therefore forced to work in the category G whose objects are formal schemes
and whose morphisms are composites of “compactifiable” maps. In [Nay] the first
author shows that we have a pre-pseudofunctor −! on G, which generalizes what
we have for the category of finite-type separated maps on ordinary schemes (see
Chapter 2).

If k is a field and A = k[|X1, . . . , Xd|] the ring of power series over k in d ana-
lytically independent variables, m the maximal ideal of A, X the formal spectrum
of A with its m-adic topology, and Y the spectrum of k, then the natural map
f : X → Y is pseudo-proper and f !OY is the torsion sheaf obtained by sheafifying
the A-module Hd

m(ωA) where ωA is “the” canonical module of A. From here to
recovering local duality for the complete local ring A requires a more careful exam-
ination of the relationship between f !OY and the canonical module ωA. As it turns
out, ωA, a finitely generated A-module, can be recovered from the torsion module
associated to f !OY . More generally, for a pseudo-proper map f : X → Y between
formal schemes and an object G ∈ D+

c (Y ), there is a deep relationship between
f !G ∈ Dqct(X ) and an associated object in D+

c (X ), of which the above mentioned
relationship between Hd

m(ωA) and ωA is an example. This necessitates the devel-
opment of a second twisted inverse image functor f# related to f !. The twisted
inverse image f# was introduced by Alonso, Jéremı́as, and Lipman in [AJL2] and
the relationship between f ! and f# is one of the many important portions of that
work.

Part 1 is mainly concerned with a pre-pseudofunctor −# on the category G such
that for f pseudo-proper, f# is the functor mentioned in the last paragraph. The
pseudofunctor −# is one of two ways that the twisted inverse image pseudofunctor
−! on the category of ordinary schemes and separated finite-type maps generalizes

1On the other hand, we do not have an example of a separated pseudo-finite-type map which
does not have a compactification.
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to G, the other being the pre-pseudofunctor −! on G discussed above. The map
(1.1.1) can be defined for formal schemes with f ! and g! replaced by f# and g#.
The principal technical issue which creates complications is the lack of diagrams

like (1.1.5) into which a pair of maps X
f−→ Y

g−→ Z embed. In the next sub-section
we give brief introduction to −! and −# on G.

1.2. Two twisted inverse images

The duality pseudofunctors −# and −! on G are explained in Chapter 2 of
this book, but for the purposes of this overview we say a few quick words. For
a pseudo-proper map f : X → Y , the functor f ! : D+

qct(Y ) → D+
qct(X ) is right

adjoint to Rf∗ : D+
qct(X ) → D+

qct(Y ). In fact f ! extends to a larger category

D̃+
qc(Y ) which contains D+

qct(Y ), namely the full subcategory of D(Y ) of objects

G such that RΓ ′Y (G ) ∈ D+
qc(Y ), the extended functor being f !◦RΓ ′Y . Note that

this extended f ! continues to take values in D+
qct(X ). There is another duality

functor associated with the pseudo-proper map f , namely f# : D̃+
qc(Y )→ D̃+

qc(X ),

which is right adjoint to Rf∗RΓ
′

X : D̃+
qc(X )→ D̃+

qc(Y ).

The functors f# and f ! are related via the formulas f ! ∼= RΓ ′X f# and f# ∼=
ΛX f !, where ΛX (−) = RH om(RΓ ′X OX ,−).

As an example, if k is a field, X the formal spectrum of the power series ring A = k[|X1, . . . , Xd|]

(given the m-adic topology, where m is the maximal ideal of A), Y = Spec k, and f : X → Y the map

of formal schemes corresponding to the obvious k-algebra map k → k[|X1, . . . , Xd|], then f is pseudo-

proper. Identifying A-modules with their associated sheaves on X , and writing Ω̂dA/k for the universally

finite module of d-forms for the algebra A/k, we have f !(k) = Hdm(Ω̂dA/k)[0] and f#(k) = Ω̂dA/k[d].

This is for pseudo-proper maps, the original setting for defining f ! in [AJL2].

However, in [Nay], the first author was able to show that f ! : D̃+
qc(Y ) → D̃+

qc(X )
can be defined when f : X → Y is in G, even when it is not pseudo-proper, in
such a way that (a) when f is an open immersion, f ! ∼= f∗RΓ ′Y = RΓ ′X f∗, and

(b) such that the resulting variance theory −! is a pre-pseudofunctor. In fact,
1!

X −→∼ RΓ ′X , and the latter functor is not isomorphic to the identity functor.

For a map f : X → Y in G, we set f# = ΛX (f !). The source of f# is D̃+
qc(Y )

and its target is D̃+
qc(X ), so that f# : D̃+

qc(Y ) → D̃+
qc(X ). If f is pseudo-proper

this definition of f# agrees with the earlier one (as the functor which is right adjoint
to Rf∗RΓ

′
X ). The variance theory −# is a pre-pseudofunctor with 1#

X −→∼ ΛX .
Our f# agrees with the one in [AJL2] only when f is pseudo-proper.

Part 1 is organized as follows. The definitions of −! and −# and their first
properties are given in Chapter 2. §3.1 and Chapter 3 deal with Cohen-Macaulay
maps. The meat of Part 1 is in Chapters 5 and 6. There is an appendix which con-
tains a number of results useful in the main body of the text. We have placed these
results in the appendix so that the main narrative is not broken into disconnected
bits.

1.3. Notations and basics on formal schemes

We discuss some basic matters on formal schemes and the derived categories
of complexes on them. Most of what we say here can be found with more details
in [AJL2]. Also, for the basic conventions on derived functors we refer to [L4].
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For any formal scheme X and any coherent ideal I in OX , ΓI denotes the
functor that assigns to any OX -module F , the submodule of sections of F anni-
hilated locally by some power of I . The torsion functor Γ ′X is the one that assigns
to any F the submodule of sections of F annihilated locally by some open ideal
in OX . Thus for any defining ideal I for X , Γ ′X = ΓI . A torsion module is a
module F satisfying Γ ′X F = F .

For any formal scheme X , the abelian categories A?(X ) for ? in {c, ~c, qc, qct}
are defined as in the beginning of this book and the same applies to the definition
of derived categories D∗?(X ).

We use the notation RF (resp. LF ) to denote the right (resp. left) derived
functor associated to any (triangulated) functor F between derived categories, and

for the derived tensor product we use
L
⊗.

Let D̃qc(X ) denote the triangulated full subcategory of D(X ) whose ob-
jects consist of complexes F such that RΓ ′X F ∈ Dqc(X ) (and hence RΓ ′X F ∈
Dqct(X )). Similarly, D̃+

qc(X ) denotes the subcategory consisting of complexes

F such that RΓ ′X F ∈ D+
qc(X ). Thus there are full subcategories D+

qct(X ) ⊂
D+

qc(X ) ⊂ D̃+
qc(X ) which are all equal when X is an ordinary scheme.

The functor RΓ ′X : D(X )→ D(X ) has a right adjoint given by

ΛX (−) = RH om(RΓ ′X OX ,−).

Via canonical maps RΓ ′X → 1→ ΛX , both RΓ ′X and ΛX are idempotent functors
and in fact there are natural isomorphisms

RΓ ′X RΓ ′X −→∼ RΓ ′X −→∼ RΓ ′X ΛX , ΛX RΓ ′X −→∼ ΛX −→∼ ΛX ΛX .

In particular, ΛX (D̃+
qc(X )) ⊂ D̃+

qc(X ) and therefore, the restriction of RΓ ′X to

D̃+
qc(X ) and of ΛX to D+

qct(X ) also constitute an adjoint pair.
For F ∈ Dc(X ), the canonical map F → ΛX F is an isomorphism by

Greenlees-May duality [AJL2, Prop 6.2.1]. More generally, if D~c(X ) is the sub-
category of Dqc(X ) consisting of complexes whose homology sheaves are direct
limits of coherent ones, then the restriction of ΛX to D~c(X ) is isomorphic to the
left-derived functor of the completion functor ΛX which assigns to any sheaf F ,
the inverse limit lim←−−n

F/I nF where I is any defining ideal in OX . In contrast,

note that RΓ ′X does not preserve coherence of homology in general.
Let f : X → Y be a map of noetherian formal schemes. Then there are natural

isomorphisms (see [AJL2, Proposition 5.2.8])

RΓ ′X Lf∗RΓ ′Y −→∼ RΓ ′X Lf∗ −→∼ RΓ ′X Lf∗ΛY ,(1.3.1)

ΛX Lf∗RΓ ′Y −→∼ ΛX Lf∗ −→∼ ΛX Lf∗ΛY .

Here the first isomorphism in the first line follows easily from the fact that for
any coherent ideal I ⊂ OY , we have Lf∗RΓI

∼= RΓI OX
Lf∗, a fact which can

be checked locally using stable Koszul complexes, see (C.5.2) in Appendix below
for instance. The remaining isomorphisms in (1.3.1) result from the first one by
pre-composing with ΛX or post-composing with ΛY .

For f : X → Y as above, f∗ sends torsion OY -modules to torsion OX -modules
and hence we have Lf∗(Dqct(Y )) ⊂ Dqct(X ) (in addition to the usual inclusions
Lf∗(Dqc(Y )) ⊂ Dqc(X ),Lf∗(Dc(Y )) ⊂ Dc(X )). By (1.3.1) we also deduce that

Lf∗(D̃qc(Y )) ⊂ D̃qc(X ).
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Unlike the case of ordinary (noetherian) schemes, Rf∗ does not map D+
qc(X )

(or even D+
c (X )) inside D+

qc(Y ) in general. Under additional torsion conditions

we do get the desired behaviour. Thus we have Rf∗(D
+
qct(X )) ⊂ D+

qct(Y ) and

therefore Rf∗RΓ
′

X (D̃+
qc(X )) ⊂ D+

qct(Y ).
For any morphism f : X → Y as above and for any closed subset Z ⊂ X ,

we set RZf∗ := Rf∗RΓZ where, for any sheaf F on X , ΓZ(F ) is the subsheaf of
sections of F with support in Z. Likewise we set R′X f∗ := Rf∗RΓ

′
X . For any

integer r we use Rr
Zf∗ := HrRZf∗ and R′

r
X f∗ := HrRΓ ′X f∗.





CHAPTER 2

The duality pseudofunctors over formal schemes

We mainly work with the category G of composites of open immersions and
pseudo-proper maps between noetherian formal schemes. By Nagata’s compacti-
fication theorem, every separated finite-type map of ordinary schemes lies in G.

2.1. Grothendieck Duality on formal schemes

The results in [AJL2] and [Nay] extend the theory of −! over ordinary schemes
to that over G. Thus, there is a contravariant pseudofunctor (−)! on G with values
in D+

qct(X ) for any formal scheme X , such that if f : X → Y is pseudo-proper,

there exists a functorial map tf : Rf∗f
! → 1D+

qct(Y ) such that (f !, tf ) is a right

adjoint to Rf∗ : D+
qct(X ) → D+

qct(Y ) while if f is an open immersion or more

generally, if f is adic étale, then f ! = f∗ pseudofunctorially. For a formally étale
map f in G, (e.g., a completion map X → X where X is an ordinary scheme and X
its completion along some coherent ideal in OX), we have f ! −→∼ RΓ ′X f∗ (again
pseudofunctorially), see [Nay, Theorem 7.1.6]. Note that f ! does not preserve
coherence of homology in general.

There is an extension of (−)! that we find convenient to use. For any f : X →
Y in G the composite f !RΓ ′Y sends D̃+

qc(Y ) to D+
qct(X ) ⊂ D̃+

qc(X ) and is iso-

morphic to f ! when restricted to D+
qct(Y ). The extended functor is also denoted

as f !. However, this extension (−)! only forms a pre-pseudofunctor (see begin-

ning of Chapter 1). Thus, for X
f−→ Y

g−→ Z in G, the comparison isomorphism
C !
f,g : (gf)! −→∼ f !g! is induced by the usual one over D+

qct(−) and by the isomor-
phisms

(gf)!RΓ ′Z −→∼ f !g!RΓ ′Z −→∼ f !RΓ ′Y g
!RΓ ′Z .

The associativity condition for C !
−,− vis-á-vis composition of 3 maps easily results

from the corresponding one over D+
qct(−). For the identity map 1X on X we have

a natural map 1!
X = RΓ ′X → 1 and the comparison isomorphisms corresponding to

composing f on the left or right by identity are the canonical ones f ! −→∼ f !RΓ ′X
and f ! −→∼ RΓ ′X f !.

This extended pre-pseudofunctorial version of (−)! is what we will use from
now on. It has the following properties. For f : X → Y in G, if f is pseudo-
proper, then f ! : D̃+

qc(Y )→ D+
qct(X ) is right adjoint to Rf∗ : D+

qct(X )→ D̃+
qc(Y ),

while if f is formally étale, then f ! is isomorphic to RΓ ′X f∗RΓ ′Y −→∼ RΓ ′X f∗, (see
Theorem 7.1.6 and §7.2 of [Nay]).

For D+
c -related questions, it is useful to work with another generalization

of (−)! from ordinary schemes. For f : X → Y in G we define f# : D̃+
qc(Y ) →

11
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D̃+
qc(X ) by the formula

(2.1.1) f# := ΛX f !.

Since f ! −→∼ RΓ ′X f#, therefore (−)! and (−)# determine each other upto isomor-
phism.

Note that (−)# is also a pre-pseudofunctor. For maps X
f−→ Y

g−→ Z in G, the
comparison isomorphism C#

f,g : (gf)# −→∼ f#g# is given by the composite

(gf)# = ΛX (gf)! −→∼ ΛX f !g! −→∼ ΛX f !ΛY g
! = f#g#

where the last isomorphism is obtained from composite of the following sequence
where we use f !RΓ ′Y −→∼ f ! in the first and the last step:

f !g! ←−∼ f !RΓ ′Y g
! −→∼ f !RΓ ′Y ΛY g

! −→∼ f !ΛY g
!.

The associativity condition for C#
−,− vis-á-vis composition of 3 maps easily results

from the corresponding one for (−)!. For the identity map 1X on X , there is
a map 1 → (1X )# = ΛX and the comparison isomorphisms corresponding to
composing f on the left or right by identity are the canonical ones f# −→∼ ΛX f#

and f# −→∼ f#ΛY .
If f : X → Y is a pseudo-proper map (whence a map in G), then f# is right

adjoint to Rf∗RΓ
′

X so that we have a co-adjoint unit, the so-called trace map

(2.1.2) Trf : Rf∗RΓ
′

X f# → 1,

while if f is an open immersion (or more generally, if f is formally étale) then
there is a natural isomorphism f# −→∼ ΛX f∗. Moreover these isomorphisms are
pre-pseudofunctorial over the corresponding full subcategories of G.

A cautionary remark. In [AJL2, Prop. 6.1.4], f# is defined as ΛX f×t where
f×t is the right adjoint to the restriction of Rf∗ to Dqct(X ). The functor ΛX f×t is
shown to be be a right adjoint to Rf∗RΓ

′
X for every f . Our definition of f# agrees

with that of [AJL2] when f is pseudo-proper, but not in general.
For any f : X → Y in G, we have f#(D+

c (Y )) ⊂ D+
c (X ). This can be seen by

reducing to the special cases when f is pseudoproper or f is an open immersion; in
the latter case one uses that ΛX

∣∣
Dc(X )

is isomorphic to the identity functor, so that

f# −→∼ ΛX f∗ −→∼ f∗ on Dc(X ), while the former case is dealt with in [AJL2,
p. 89, Proposition 8.3.2]. Thus (−)# gives a D+

c -valued pseudofunctor on G. It also
follows that if f is formally étale and F ∈ D+

c (Y ), then we have an isomorphism

(2.1.3) f∗F −→∼ f#F

which is pseudofunctorial over the category of formally étale maps. If Y is a formal

scheme, I ⊂ OY an open coherent ideal, W := Ŷ the completion of Y by I
and κ : W → Y the corresponding completion map, then κ is both pseudoproper
and étale. For any F ∈ D+

c (Y ), the isomorphism of (2.1.3) is the same (see
Lemma A.1.3 in Appendix below) as the map adjoint to the natural composite

Rκ∗RΓ
′

W κ
∗ −→∼ RΓI → 1.

Nevertheless, while working with (−)#, it is also convenient to work with the

larger category D̃+
qc in addition to D+

c since, some of the functors, such as Rf∗RΓ
′

X ,

the left adjoint to f# when f : X → Y is pseudoproper, do not preserve coherence
of homology in general.
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Over ordinary schemes (−)# and (−)! are canonically identified and so we use
both interchangeably.

2.2. Flat base change

Suppose we have a cartesian square s of noetherian formal schemes

V

g

��

v //

�

X

f

��
W

u
// Y

with f in G and u flat. The flat-base-change theorem for (−)! gives an isomorphism

for F ∈ D̃+
qc(Y ):

β!
s(F ) : RΓ ′V v

∗f !F −→∼ g!u∗F

(see [AJL2, p. 77, Theorem 7.4] for the case when f is pseudoproper and [Nay,

p. 261, Theorem 7.14] for the general case and also [Nay, §7.2]). For F ∈ D̃+
qc(Y )

the corresponding flat-base-change isomorphism for (−)#

(2.2.1) β#s(F ) : ΛV v
∗f#(F ) −→∼ g#u∗(F )

is induced by the following sequence of natural isomorphisms of functors

ΛV v
∗f# = ΛV v

∗ΛX f ! ←−∼ ΛV v
∗f ! ←−∼ ΛV RΓ ′V v

∗f ! −→∼ ΛV g
!u∗ = g#u∗

where the last isomorphism is induced by β!
s (cf. [AJL2, p. 86, Theorem 8.1] for

f, g pseudoproper).
If F ∈ D+

c (Y ), or if u is open or if V is an ordinary scheme, we have an
isomorphism

(2.2.2) v∗f#F −→∼ g#u∗F ,

(see [AJL2, Theorem 8.1, Corollary 8.3.3]).
Further properties of the base-change map are explored in Appendix A.1.

2.3. Traces with proper support

Let f : X → Y be a separated map of finite-type between ordinary schemes,
and Z a closed subscheme of X which is proper over Y . The completion map

κ : X → X of X along Z, is formally étale and affine and the composition f̂ := fκ
is pseudoproper. We define the trace map for f along Z

(2.3.1) Trf,Z : RZf∗f
# → 1

to be the composite

Rf∗RΓZf
# −→∼ Rf∗κ∗RΓ

′
X κ∗f# −→∼ Rf̂∗RΓ

′
X κ#f# −→∼ Rf̂∗RΓ

′
X f̂#

Tr
f̂−−→ 1

where the first isomorphism is from the canonical isomorphism RΓZ −→∼ κ∗RΓ
′

X κ∗

while the remaining maps are the obvious natural ones.
There is an alternate description of Trf,Z involving compactifications. Let (u, f̄)

be a compactification of f , i.e., u : X → X is an open immersion, f : X → Y a proper
map such that f = f̄ ◦u. A theorem of Nagata assures us that compactifications
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always exist (see [N], [D3], [Lu], and [C2]). According to Lemma A.3.5, Trf,Z can
also be described as the composite

(2.3.2) Rf∗RΓZf
# −→∼ Rf̄∗RΓu(Z)f̄

# → Rf̄∗f̄
#

Trf̄−−→ 1.



CHAPTER 3

Traces and Residues for Cohen-Macaulay maps

3.1. Cohen-Macaulay maps

Recall that a locally finite type map f : X → Y between ordinary schemes is
said to be Cohen-Macaulay of relative dimension r if it is a flat map and all the
non-empty fibres are Cohen-Macaulay and of pure dimension r. This is equivalent
to saying that f is flat, f !OY (which is defined locally if f is not separated) has
homology concentrated in only degree−r, and the resulting OX -module ω#

f obtained

by gluing the various local H−r(f !OY ) is coherent and flat over Y . We make the
obvious generalization to formal schemes. First we need the following definition.

Definition 3.1.1. A map of formal schemes f : X → Y is said to be locally
in G if for every point x ∈ X , there exists an open neighbourhood U of x such
that the restriction fU of f to U is in G.

Note that if f : X → Y is locally in G and F ∈ D+
c (Y ), then locally on X ,

f#F is defined, but it need not be defined globally, even though by pseudofunctori-
ality of (−)# over D+

c , these local twisted inverse images are isomorphic on overlaps
and these isomorphisms form a descent datum for the Zariski topology. However,
in this case, for every integer n, and every G ∈ D+

c (Y ) the sheaves Hn(f#U (G ))
do glue to give a coherent sheaf on X which we denote as Hn(f#G ) (even though
there might well be no f#G ). We are not aware of any example where f# is defined
locally but not globally.

Definition 3.1.2. A map of formal schemes f : X → Y is called Cohen-
Macaulay (CM) of relative dimension r if it is flat, locally in G with Hi(f#OY ) = 0
for i 6= −r and ω#

f := H−r(f#OY ) is flat over Y . The coherent OX -module ω#
f is

called the relative dualizing sheaf for the CM map f . If such a map f is already
in G, we shall make the identification f#OY = ω#

f [r].

It is tempting to give alternate definitions for a map to be CM that are more
local in nature. An extension of the theory of (−)! and (−)# to a larger category
containing maps that are essentially of pseudo-finite type (see [LNS, §2.1]) would
provide a natural setting for proving equivalence between various possible alternate
definitions. Since there is no such extension in literature and since we do not need
such a result here, we do not pursue this matter further.

A map f : X → Y is said to be smooth if it is in G and is formally smooth.

In this case the universally finite module of relative differential forms Ω̂1
X /Y is a

locally free module of finite rank and if it has constant rank r we say that f has
relative dimension r, see [LNS, §2.6]. We use ωf to denote the top exterior power
of the universally finite module of differentials.

15
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3.2. Abstract Trace for Cohen-Macaulay maps

Suppose g : X → Y is Cohen-Macaulay of relative dimension r and is pseudo-
proper. Since ω#

g [r] = g#OY , therefore, as in (2.1.2), we have a trace map

Trg(OY ) : Rg∗RΓ
′

X ω#
g [r]→ OY .

Definition 3.2.1. Let g : X → Y be as above (i.e., g is pseudo-proper and
Cohen-Macaulay of relative dimension r). The abstract trace map on R′

r
X g∗ω

#
g (or

simply the trace map on R′
r
X g∗ω

#
g ) is the map

(3.2.2) tr#g : R′
r
X g∗ω

#
g → OY .

given by tr#g = H0(Trg(OY )).

Theorem 3.2.3. Let g : X → Y be pseudo-proper and Cohen-Macaulay of rela-

tive dimension r. Then for any quasi-coherent OX -module F satisfying R′
j
X g∗F =

0 for j > r, we have a functorial isomorphism

HomX (F , ω#
g ) −→∼ HomY (R′

r
X g∗F , OY ),

which is given by sending θ ∈ HomX (F , ω#
g ) to the composite

R′
r
X g∗F

R′rX g∗(θ)−−−−−−→ R′
r
X g∗ω

#
g

tr#g−−→ OY .

Proof. By adjointness we have a natural isomorphism

RHomX (F , ω#
g [r]) −→∼ RHomY (R′X g∗F , OY ),

hence there are natural isomorphisms

HomX (F , ω#
g ) = HomD(X )(F , ω#

g )

= H−rRHomX (F , ω#
g [r])

∼= H−rRHomY (R′X g∗F , OY )

= HomD(Y )(R
′
X g∗F [r], OY )

∼= HomD(Y )(R
′r
X g∗F , OY ) (see [L4, p. 37, Prop. 1.10.1])

= HomY (R′
r
X g∗F , OY ).

�

In the above proof, we don’t know if ω#
g satisfies the hypotheses required of F .

We are interested in special cases when this is true. This leads to the following.

Corollary 3.2.4. If R′
j
X g∗(F ) = 0 for every j > r and every F ∈ Ac(X )

(resp. F ∈ A~c(X ), resp. F ∈ Aqc(X )), then (ω#
g , tr#g) represents the functor

HomY (R′
r
X g∗(−), OY ) on Ac(X ) (resp. A~c(X ), resp. Aqc(X )). In particular if

Y = Y is an ordinary scheme, f : X → Y a Cohen-Macaulay map of ordinary
schemes of relative dimension r, Z a closed subscheme of X such that the re-
sulting map Z → Y is finite and flat, X = X/Z the completion of X along Z,

and g : X → Y the map induced by f , then (ω#
g , tr#g) represents the functor

HomY (R′
r
X g∗(−), OY ) on A~c(X ).
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Proof. The first assertion holds since, if g is Cohen-Macaulay, then ω#
g ∈

Ac(X ). The second assertion follows from the first since, if I is a coherent ideal
defining Z in X, F ∈ A~c(X ) and κ denotes the canonical map X → X, then
F −→∼ κ∗G for some G ∈ Aqc(X) (see [AJL2, p. 31, Prop. 3.1.1]), and hence
Rg∗RΓ

′
X F −→∼ Rf∗κ∗RΓ

′
X κ∗G −→∼ Rf∗RΓI G (see [AJL2, §5]). �

Remark 3.2.5. In a slightly different direction, Lipman observed the following
(private communication). First note that according to [AJL2, p. 39, Prop. 3.4.3],
since all our schemes are noetherian, if f : X → Y is a map of schemes (possibly
formal), the functor Rf∗ is bounded above on D~c(X ). In other words, there is
an integer e ≥ 0 such that if H ∈ D~c(X ) and Hi(H ) = 0 for i ≥ i0, then
Hi(Rf∗H ) = 0 for all i ≥ i0 + e. Next, by computing local cohomologies using
stable Koszul complexes (see (C.5.2)) on affine open subschemes of X and using
quasi-compactness of the noetherian scheme X , we see that there is an integer t
such that Hj(RΓ ′X F ) = 0 for F ∈ A~c(X ) and j > t. It is then not hard to see
that if r = e + t, and if H ∈ D~c(X ) is such that Hi(H ) = 0 for i > i0, then
Hj(Rf∗RΓ

′
X (H )) = 0 for j > i0 + r. Now suppose f is pseudo-proper . By the

argument given in [L4, p. 165, Lemma 4.1.8], we see that if G ∈ A~c(Y ) is such that
f#G ∈ D~c(X ) then Hjf#G = 0 for every any j < −r. Let ω#

f = H−r(f#OY ). Then

as we argued earlier, ω#
f ∈ Ac(X ) ⊂ D~c(X ). The proof of Theorem 3.2.3 applies

and we have a functorial isomorphism (without any Cohen-Macaulay hypotheses)

HomX (F , ω#
f ) −→∼ HomY (R′

r
X F , OY )

for every F ∈ A~c(X ). We point out that R′
j
X |A~c(X ) = 0 for j > r. In particular,

in this argument, R′
j
X ω#

f = 0 for j > r. We could not guarantee this for the r used
in the Theorem.

3.3. Abstract Residue for Cohen-Macaulay maps

Throughout this subsection

f : X → Y

is a finite-type Cohen-Macaulay map between ordinary schemes of relative dimen-
sion r. Suppose Z ↪→ X is a closed subscheme of X, proper over Y . Let X = X/Z

be the formal completion of X along Z, and κ : X → X the completion map.

Let f̂ : X → Y be the composite f ◦κ. We have f̂# −→∼ κ#f# −→∼ κ∗f#, whence

Hj(f̂#) −→∼ κ∗Hj(f#). Note that f̂ is pseudo-proper and Cohen-Macaulay of rela-
tive dimension r and therefore tr#f̂ is defined. In [S2, p. 742, (3.2)] a residue map

along Z is defined using local compactifications. Here is a reformulation of that
definition in terms of κ.

Definition 3.3.1. Let Z and f be as above. The abstract residue along Z

(3.3.2) res#
Z

: Rr
Zf∗ω

#
f → OY

is the composite

Rr
Zf∗ω

#
f ˜−−−−→

(A.3.1)
R′
r
X f̂∗ω

#

f̂

tr#
f̂−−→ OY .
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It is worth unravelling the first isomorphism in the above composite a little
more. The isomorphism κ∗RΓ

′
X κ∗ −→∼ RΓZ gives rise to isomorphisms (one for

every j)

(3.3.3) Rj
Zf∗F −→∼ Hj(Rf̂∗RΓ

′
X κ∗F ) = R′

j
X f̂∗κ

∗F

which are functorial in F varying over quasi-coherent OX -modules. In affine terms,

if X = SpecR, M an R-module, and Z is given by the ideal I, then writing R̂ for

the I-adic completion of R, and J = IR̂, the above isomorphism is the well-known
one

Hj
I(M) −→∼ Hj

J(M ⊗R R̂).

The isomorphism Rr
Zf∗ω

#
f −→∼ R′

r
X f̂∗ω

#

f̂
induced by (A.3.1) is the composite of the

map (3.3.3), i.e., Rr
Zf∗ω

#
f −→∼ R′

r
X f̂∗κ

∗ω#
f , and the isomorphism induced by (2.1.3),

i.e., R′
r
X f̂∗κ

∗ω#
f −→∼ R′

r
X f̂∗κ

#ω#
f −→∼ R′

r
X f̂∗ω

#

f̂
.

In [S2, p.742, (3.2)] a different, but equivalent, definition is given of res#
Z

. In
that situation f is separated, and therefore has a compactification by a result of
Nagata, say u : X ↪→ X̄ of X over Y . Let f̄ : X̄ → Y be the structure morphism
(by definition of a compactification, a proper map) of X̄. In loc. cit., the residue
along Z is defined as the composite

Rr
Zf∗ω

#
f = H0(Rf∗RΓZω

#
f [r]) = H0(Rf∗RΓZf

!OY ) ˜−−−−−→ H0(Rf̄∗RΓu(Z)f̄
!OY )

−−−−−→ H0(Rf̄∗f̄
!OY )

H0(Trf̄ )
−−−−−→ OY .

By Lemma A.3.5 the two definitions coincide in the situation considered in [S2] and
therefore the definition in [S2, p.742, (3.2)] is independent of the compactification
(u, f̄). This gives another proof of [S2, p.742, Proposition 3.1.1].

If f is proper, it follows that there is a commutative diagram:

(3.3.4)

Rr
Zf∗ω

#
f

res#
Z %%KKKKKKKKK
// Rrf∗ω

#
f

tr#f

��
OY

Remark 3.3.5. In [ILN, p. 746, Remark 2.3.4], Iyengar, Lipman, and Neeman
give a generalization of the residue map in [S2]. Suppose f : X → Y is a separated

essentially finite type map of ordinary schemes, W a union of closed subsets of X
to each of which the restriction of f is proper. (Note that W need not be closed
in X.) Then one has an integer d such that H−e(f !OY ) = 0 for all e > d, while
ωf := H−d(f !OY ) 6= 0. Iyengar, Lipman, and Neeman then define a natural map

(3.3.6) HdRf∗RΓW (ωf ) −→ OY

denote by them as
∫
W

, which generalizes the map denoted resW in [S2, §3.1]. In
greater detail, if Dqc(X)W denotes the essential image of RΓW in Dqc(X), then in
[ILN, p. 746, Corollary 2.3.3] it is shown that for E in Dqc(X)W and G in D+

qc(Y ),
we have a functorial isomorphism

HomD(Y )(Rf∗E, G) −→∼ HomD(X)(E, RΓW f
!G).
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In particular one has a counit

(3.3.7) Rf∗RΓW f
!OY −→ OY .

The map (3.3.6) is defined as the composite

HdRf∗RΓW (ωf ) = H0Rf∗RΓW (ωf [d])

−→ H0Rf∗RΓW (f !OY )
H0(3.3.7)−−−−−−→ H0OY = OY .

3.4. Traces for finite Cohen-Macaulay maps.

We begin with a global construction. Suppose we have a commutative diagram
of ordinary schemes

(3.4.1)

Z
� � i //

h   AAAAAAAA X

f

��
Y

with f Cohen-Macaulay of relative dimension r, h a finite surjective map, i a
closed immersion, the OX -ideal I of Z generated by t1, . . . , tr ∈ Γ(X,OX) such
that t = (t1, . . . , tr) is OX,z-regular for every z ∈ Z ⊂ X. Note that h is necessarily
flat and is Cohen-Macaulay of relative dimension 0. Define

(3.4.2) τ #
h(= τ #

h,f,i) : h∗(i
∗ω#
f ⊗OZ (∧rOZI /I 2)∗) −−−−→ OY

as the unique map which fills the dotted arrow to make the diagram below commute
where η′i is induced by (C.2.13).

h∗(i
∗ω#
f ⊗OZ (∧rOZI /I 2)∗)

η̃′i

//

τ #
h

��

h∗H
0(i!f !OY ) ˜ // h∗H0(h!OY )

OY H0(h∗h
!OY )

tr#h

oo

We would like to show that τ #
h factors through res#

Z
: Rr

Zf∗ω
#
f → OY . To that

end, we make the following definition. First, as in (C.2.10), let iN := Li∗(−)
L
⊗OZ

(N r
i [−r]). Next, for a quasi-coherent OX -module F , let

(3.4.3) ψ = ψ(F ) : h∗(i
∗F ⊗OZ (∧rOZI /I 2)∗) −−−−−→ Rr

Zf∗F

be defined by applying H0 to the composite

(3.4.4) h∗i
NF [r] −→∼ Rf∗i∗i

NF [r] ˜−−−−−→
(C.2.11)

Rf∗i∗i
[F [r] −→ Rf∗RΓZF [r].

The map (3.4.3) is a sheafied version of (C.5.4.1), as (C.5.4.2) shows. Moreover it
is functorial in F .

The formal-scheme version is as follows. Let κ : X → X be the completion
of X along Z, j : Z → X the natural closed immersion (so that κ ◦ j = i) and

f̂ = f ◦κ. As before, let jN be as in (C.2.10). For G ∈ A~c(X ) we have a map

(3.4.5) ψ̂ : h∗(j
∗G ⊗OZ N r

j ) −−−−→ R′
r
X f̂∗G
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defined by applying H0 to the composite

(3.4.6) h∗j
NG [r] −→∼ Rf̂∗j∗j

NG [r] −→∼ Rf̂∗j∗j
#G [r]

Trj−−→ Rf̂∗RΓ
′

X G [r].

Since the composite i∗i
[ → RΓZ → 1 is “evaluation at one”, i.e., it is the trace map

(if one identifies i[ with i!), it is easy to see that the diagram

(3.4.7)

h∗i
NF [r]

(3.4.4) // Rf∗RΓZF [r]

h∗j
Nκ∗F [r]

(3.4.6) // Rf̂∗RΓ ′X κ∗F [r] ˜ // Rf∗κ∗RΓ ′X κ∗F [r]

˜

OO

commutes where the upward arrow on the right is induced by the isomorphism
κ∗RΓ

′
X κ∗ −→∼ RΓZ .

Theorem 3.4.8. In the situation of (3.4.1), the following diagram commutes.

h∗(i
∗ω#
f ⊗OZ (∧rOZI /I 2)∗)

ψ(ω#
f )

��

τ #
h // OY

Rr
Zf∗ω

#
f

res#
Z // OY

Proof. The diagram in the statement of the theorem can be realized as the
transpose of the border of the following one.

h∗(i
∗ω#
f ⊗N r

i )

��

&&NNNNNNNNNNN

ψ // Rr
Zf∗ω

#
f

zzttttttttt

res#
Z

��

h∗(j
∗ω#

f̂
⊗N r

j )

xxppppppppppp

ψ̂ // R′rX f̂∗ω
#

f̂
tr#
f̂

$$JJJJJJJJJJ

h∗ω
#
h

tr#h

// OY

We have to show the above diagram commutes. Applying H0 to (3.4.7), with
F = ω#

f , and using the isomorphism κ∗ω#
f −→∼ ω#

f̂
, we see that the upper trapez-

ium commutes. The triangle on the right commutes by definition of res#
Z

(see
Definition 3.3.1), while the one on the left corresponds to the natural isomorphisms

i#f# −→∼ j#f̂# −→∼ h# (after applying H0 and h∗). Finally, the lower trapezium
corresponds to H0 of the outer border of the following diagram.

h∗j
Nf̂#OY ˜ //

(C.2.13)

˜

��

f̂∗j∗j
Nf̂#OY

(C.2.13)

˜

��
h∗j

#f̂#OY ˜ //˜

��

f̂∗j∗j
#f̂#OY

Trj

// f̂∗RΓ ′X f̂#OY

Tr
f̂

��
h∗h

#OY
Trh

// OY
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The upper rectangle commutes trivially while the lower one results from the iden-

tification of the adjoint h# with the composition of the adjoints j#f̂#. �

Remark 3.4.9. The map ψ in (3.4.3) is compatible with open immersions in
X containing Z. In greater detail, suppose i factors as

Z
u−→ U

x−→ X

with x : U → X an open immersion, and u (necessarily) a closed immersion. Then

h∗i
∗F ⊗N r

i

(3.4.3) // Rr
Zf∗F

˜

��
h∗u

∗(x∗F )⊗N r
u (3.4.3)

// Rr
Z(fx)∗x

∗F

commutes. We leave the verification to the reader, but point out that one method
is to move to formal schemes, using (3.4.7), noting that the completion of X along
Z is the same as the completion of U along Z. This means τ #

h is unaffected if X is
replaced by U .

3.5. A residue formula for Cohen-Macaulay maps

Consider again Diagram (3.4.1). Suppose now that X, Y , and Z are affine, say
X = SpecR, Y = SpecA and Z = SpecB. In other words A → R is a finite-type
map of rings which is Cohen-Macaulay of relative dimension r, we have an ideal
I in R generated by a quasi-regular sequence t = (t1, . . . , tr) in R, and B = R/I.
Assume as before that h is a finite (and hence flat) surjective map.

Let us write ω#
R/A = Γ(X, ω#

f ), ω#
B/A = Γ(Z, ω#

h), tr#B/A = Γ(Y, tr#h). The

global sections of τ #
h give us an A-linear map

(3.5.1) τ #
B/A

(= τ #
B/A,R

) : ω#
R/A ⊗R (∧rBI/I2)∗ −→ A

such that the following diagram commutes

ω#
R/A ⊗R (∧rBI/I2)∗

τ #

B/A

��

˜ // ω#
B/A

tr#B/A

��
A A

where the horizontal isomorphism on the top row is the global sections of the
composite

h∗(i
∗ω#
f ⊗OZ (∧rOZI /I 2)∗) −̃−→

η′i

h∗H
0(i!f !OY ) = H0h∗(i

!f !OY ) −̃−→ H0(h∗h
!OY ).

3.5.2. Notation. In an obvious extension of our notational philosophy, we
should use the symbol res#

I
for the global sections of the residue map res#

Z
in

(3.3.2). However, for psychological reasons we will continue to use the symbol res#
Z

to denote this map. Thus we have

res#
Z

: Hr
I(ω

#
R/A)→ A.

In what follows, elements of Hr
I(ω

#
R/A) are denoted by generalized fractions[

ν
t1, . . . , tr

]
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as in §C.5 (see especially (C.5.2) and (C.5.3) and the discussions around them).
Finally, define

(3.5.3)
1

t
∈ (∧rBI/I2)∗

as the element which sends (t1 + I2) ∧ · · · ∧ (tr + I2) ∈ ∧rBI/I2 to 1.

Proposition 3.5.4. With the above notations, for any ν ∈ ω#
R/A we have

res#
Z

[
ν

t1, . . . , tr

]
= τ #

B/A

(
ν ⊗ 1

t

)
where 1

t is as in (3.5.3).

Proof. According to Theorem 3.4.8, the following diagram commutes.

ω#
R/A ⊗R (∧rBI/I2)∗

τ #

B/A ''NNNNNNNNNNNN

(C.5.4.1) // Hr
I(ω

#
R/A)

res#
Z{{wwwwwwwww

A

The Proposition then follows from Lemma C.5.4. �

Theorem 3.5.5. Suppose J is another ideal in R such that I ⊂ J and J is
generated by a quasi-regular sequence g = (g1, . . . , gr). Let ti =

∑
j uijgj, uij ∈ R.

Let W = SpecR/J . Then, for any ν ∈ ω#
R/A

res#
Z

[
det(uij)ν
t1, . . . , tr

]
= res#

W

[
ν

g1, . . . , gr

]
Proof. This is an immediate consequence of Theorem C.7.2 and Proposi-

tion 3.5.4. �



CHAPTER 4

Base change for residues

4.1. Hypotheses

Throughout this chapter, we fix a commutative diagram of ordinary schemes

(4.1.1)

Z ′
w //

j

��
h′

''

�

Z

i

��
h

ww

X ′
v //

g

��
�

X

f

��
Y ′

u
// Y

with f separated Cohen-Macaulay of relative dimension r, the rectangles cartesian,
i : Z → X a closed immersion such that h = f ◦ i : Z → Y is finite and the quasi-
coherent ideal sheaf I of Z is generated by global sections t1, . . . , tr ∈ Γ(X, OX)
with the property that t = (t1, . . . , tr) is OX,z-regular for every z ∈ Z ⊂ X.
(Note that Z → Y is flat by [EGA, 0IV, 15.1.16].) We also use the following
additional notations: J = v∗I is the ideal sheaf of Z ′, N = (∧rOZI /I 2)∗, and

N ′ = (∧rOZ′J /J 2)∗ = w∗N .

4.2. Base change for direct image with supports

Since f is Cohen-Macaulay of relative dimension r, therefore, according to [S2,
p. 740, Theorem 2.3.5 (a)], we have a base-change isomorphism

θfu : v∗ω#
f −→∼ ω#

g .

The principal aim of this section is to show that the composite

u∗h∗(i
∗ω#
f ⊗OZ N ) −→∼ h′∗(j

∗v∗ω#
f ⊗OZ′ N ′) −̃−→

θfu

h′∗(j
∗ω#
g ⊗OZ′ N ′)

τ #

h′−−→ OY ′

is u∗τ #
h , i.e., speaking informally, τ #

h is stable under base change (here the first
isomorphism results from the fact that h is an affine map). We would also like to
show that the result in Theorem 3.4.8 is stable under base change. Indeed, that is
how we will prove that τ #

h is stable under base change. To set things up, we now
discuss, very briefly, base change for cohomology with supports, at least for the
situation we are in.

In our situation, we have base-change maps (see, for example, [S2, p. 768,
(A.5)]), one for each k

(4.2.1) b(u, f) = b(u, f, k) : u∗Rk
Zf∗ −→ Rk

Z′g∗v
∗.

23
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These are natural transformation of functors on quasi-coherent sheaves on X. In
the event u is flat , b(u, f) is an isomorphism. In fact, in this case, b(u, f, k) is
Hk(−) applied to the composite of natural isomorphisms

u∗Rf∗ ◦RΓZ −→∼ Rg∗v
∗ ◦RΓZ −→∼ Rg∗ ◦RΓZ′v

∗.

It is useful for us to recast b(u, f) in terms of the formal completions of X and
X ′. To that end, let κ : X → X (resp. κ′ : X ′ → X ′) be the completion of X along
Z (resp. of X ′ along Z ′) and let α : Z → X , β : Z ′ → X ′ be the natural closed

immersions, so that i = κ ◦α and j = κ′ ◦β. Let f̂ = f ◦κ, ĝ = g ◦κ′, and finally
let v̂ : X ′ →X be the natural map induced by v, so that the following diagram is
cartesian:

(4.2.2)

X ′ v̂ //

ĝ

��
�

X

f̂
��

Y ′
u
// Y

The maps b(u, f, k) in (4.2.1) give rise, in a natural way, maps

(4.2.3) b(u, f̂) = b(u, f̂ , k) : u∗R′
k
X f̂∗ −→ R′

k
X ′ ĝ∗ v̂

∗

induced by (A.3.1) applied to κ and to κ′. In the event u is flat, then as in the case

of ordinary schemes, b(u, f̂ , k) is an isomorphism and is, in fact, Hk(−) applied to
the natural composite

u∗Rf̂ ◦RΓ ′X −→∼ Rĝ v̂ ∗ ◦RΓ ′X −→∼ Rĝ ◦RΓ ′X ′ v̂
∗.

We will in fact show that when k = r, the map b(u, f, k) is an isomorphism
even when u is not flat.

Proposition 4.2.4. Suppose u is a flat map and F ∈ Dqc(X). Then the
following diagram commutes, where the unlabelled arrows arise from the natural
maps (“evaluation at 1”) i∗i

[ → RΓZ and j∗j
[ → RΓZ′ :

j∗j
Nv∗F ˜

(C.2.11)
// j∗j[v∗F // RΓZ′v

∗F

j∗w
∗iNF v∗i∗i

NF ˜
(C.2.11)

// v∗i∗i[F // v∗RΓZF

˜

OO

Remark: The maps (C.2.11) make sense for F ∈ Dqc(X) because X is an ordinary
scheme (see discussion in §§C.2.15). Flat base change works in this case for all
F ∈ Dqc(X) without boundedness hypotheses because i∗ takes perfect complexes
to perfect complexes (see [L4, p. 197, Thm. 4.7.4]).

Proof. Let Tr[i : i∗i
[ → 1 be as in (B.1.1), i.e., Tr[i is the composite i∗i

[ →
RΓZ → 1 (see the discussion in Subsection B.1 with Z = Z and X = X). Then

Tr[i is simply evaluation at 1, and hence equals the composite

i∗i
[ −→∼ i∗i

! Tri−−→ 1.
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The two maps, i∗i
[ → RΓZ and Tr[i , determine each other and hence we have show

that the diagram

(†)

j∗j
Nv∗ ˜

(C.2.11)
// j∗j[v∗

Tr[j // v∗

v∗i∗i
N ˜

(C.2.11)
// v∗i∗i[

v∗(Tr[i) // v∗

commutes.

The composite i∗i
N (C.2.11)−−−−−→ i∗i

[ Tr[i−−→ 1 is clearly the same as the composite

i∗i
N (C.2.13)−−−−−→ i∗i

! Tri−−→ 1. We will denote the common value by

TrNi : i∗i
N −→ 1.

We have to show that

v∗ ◦TrNi = TrNj ◦v
∗.

The question in local on X and X ′ and hence we assume that X = SpecR, Z =
SpecA, X ′ = SpecR′, Z ′ = SpecA′ where A′ = A⊗R R′. We write I for the ideal
in R generated by t, J for its extension to R′, N for the A-module (∧rAI/I2)∗,
and N ′ for N ⊗A A′ = (∧rA′J/J2)∗. Finally, let TrNA/R and TrNA′/R′ be the maps in

D(ModR) and D(ModR′) whose “sheafified” versions are TrNi and TrNj respectively.
The discussions in Remark C.2.14 and in §§C.2.15 apply. In particular, from the
commutative diagram (C.2.14.1), we only have to show:

(∗) TrNA/R(R)⊗R R′ = TrNA′/R′(R
′).

This follows from the explicit description of TrA/R(R) in (C.2.15.1), for the maps
ϕt and πt occuring in loc.cit. are compatible with base change. In greater detail,
if t′i are the images in R′ of ti and t′ = (t′1, . . . , t

′
r), then ϕt ⊗R R′ = ϕt′ and

πt ⊗R R′ = πt′ . Since TrA/R(R) = πt ◦ϕ
−1
t and TrA′/R′(R

′) = πt′ ◦ϕ
−1
t′ , the

relation asserted in (∗) is true. �

Remark 4.2.5. Formula (∗) in the above proof is true in greater generality.
Suppose Z = SpecA, X = SpecR, and we have a regular immersion i : Z ↪→
X given by an R-sequence t = (t1, . . . , tr). Then (∗) remains valid without the
assumption that X be Cohen-Macaulay over another scheme. In fact, by checking
locally one easily deduces that if i : Z ↪→ X is a regular immersion (not necessarily
of affine schemes, and not necessarily given globally by the vanishing of a sequence
of the form t) and we have a cartesian diagram

Z ′
w //

j

��
�

Z

i

��
X ′

v
// X
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with u flat and if Θ: w∗i!OX −→∼ j!OX′ is the flat base change isomorphism, then
the following diagram commutes;

w∗N r
i [−r]

η′j
��

N r
j [−r]

η′i
��

w∗i!OX
Θ̃

// j!OX′

The flatness hypothesis on v can be relaxed, since (∗) works even when R′ is not
flat over R, but for now, we leave matters as they are.

4.3. Base-change theorems

We now prove that τ #
h is stable under arbitrary base change. We embed that

result in a larger set of base-change results, namely in Theorem 4.3.1.

Theorem 4.3.1. With the hypotheses as in §4.1 we have:

(a) For a coherent OX-module F , the diagram

h′∗(j
∗v∗F ⊗OZ′ N ′)

(3.4.3)

��

u∗h∗(i
∗F ⊗OZ N )

u∗(3.4.3)

��
Rr
Z′v
∗F u∗Rr

ZF
(4.2.1)

oo

commutes.
(b) The map

b(u, f) : u∗Rr
Zf∗ −→ Rr

Z′g∗v
∗

is an isomorphism.
(c) The diagram

h′∗(j
∗(ω#

g )⊗OZ′ N ′)

τ #

h′

��

h′∗(j
∗v∗(ω#

f )⊗OZ′ w
∗N )˜

h′∗(θ
f
u⊗1)

oo

h′∗w
∗(i∗(ω#

f )⊗OZ′ w
∗N )

OY ′ u∗h∗(i
∗(ω#

f )⊗OZ N )
u∗(τ #

h
)

oo

commutes, where θfu : v∗ω#
f −→∼ ω#

g is the base-change isomorphism of

[S2, p. 740, Theorem 2.3.5 (a)].
(d) The diagram

u∗Rr
Zf∗ω

#
f

u∗(res#
Z

)

��

˜
b(u,f)

// Rr
Z′g∗v

∗ω#
f

Rr
Z′g∗(θ

f
u)

��
OY ′ Rr

Z′g∗ω
#
g

res#
Z′

oo

commutes.
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Proof. From the definitions, we may, without loss of generality, assume that
Y = SpecA and Y ′ = SpecA′. Consider the composite natural transform of
functors of quasi-coherent OX -modules:

ExtrA(OZ , −) −→ ExtrA(OZ , v∗v
∗(−)) −→ ExtrA′(OZ′ , v

∗(−))

giving a base change map

(4.3.1.1) A′ ⊗A ExtrA(OZ , −) −→ ExtrA′(OZ′ , v
∗(−))

Fron the definition of (4.2.1) it is easy to see that

(4.3.1.2)

A′ ⊗A ExtrA(OZ , −)
(4.3.1.1) //

��

ExtrA′(OZ′ , v
∗(−))

��
A′ ⊗A Hr

Z(X, −)
(4.2.1)

// Hr
Z′(X

′, v∗(−))

commutes.
Let E xt if (OZ , −) be the ith right derived functor of f∗H omX(OZ , −). Since

Z is affine and E xt if (OZ , −) is supported on Z, this is simply h∗ExtiX(OZ , −).

Similarly, one defines E xt ig(OZ′ ,−). Using this, and computing E xtrX(OZ ,−) and
E xtrX′(OZ′ ,−) via the Koszul resolutions on t of OZ and OZ′ , we get see easily that
the fundamental local isomorphisms (C.2.7) is compatible with (4.3.1.1). In other
words, the following diagram of functors of coherent OX -modules commutes:

(4.3.1.3)

h′∗(j
∗v∗(−)⊗OZ′ N ′)

(C.2.7)

��

u∗h∗(i
∗(−)⊗OZ N )

(C.2.7)

��
E xtrg(OZ′ , v

∗(−)) u∗ E xtrf (OZ , −)
(4.3.1.1)

oo

This together with (4.3.1.2) gives part (a). In particular, applied to coherent OX -
modules, (4.3.1.1) is an isomorphism.

Applying the fact that (4.3.1.1) is an isomorphism to the closed schemes Zn
of X defined by tn1 , . . . , t

n
r , and taking the direct limit as n → ∞ we get (b) from

(4.3.1.2).
According to [S2, pp. 755–756, Prop. 6.2.2 (b) and (c)], part (d) is true when

either u is flat or when Z ↪→ X is a good immersion for f , i.e., it satisfies:

• There is an affine open covering U = {Uα = SpecAα} of Y , and for
each index α an affine open scheme Vα = SpecRα of f−1(Uα) such that
Z ∩ f−1(Uα) is contained in Vα.

• The closed immersion i is given in Vα by a quasi-regular Rα-sequence.
• Z → Y is finite.

(See also [S2, p. 744, Def. 3.1.4] and [HK1, pp. 77–78, Assumptions 4.3].)

Let p be a prime ideal of A, y the point in Y corresponding to p, Ỹ the

completion of the local ring Ap, and Ỹ ′ the completion of A′p with respect to the
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ideal pA′p. We then have a commutative diagram

(4.3.1.4)

X ′

g

��

v // X

f

��

X̃ ′

ϑ

>>}}}}}}}}
ṽ //

g̃

��

X̃

t

??��������

f̃

��

Y ′
u // Y

Ỹ ′

σ

>>}}}}}}}}

ũ
// Ỹ

s

??��������

All the lateral faces are cartesian, however the top and bottom faces need not be.

We set Z̃ = t−1(Z) and Z̃ ′ = ϑ−1(Z ′).
One checks easily that

(∗) b(σ, g) ◦σ∗b(u, f) = b(u ◦σ, f) = b(ũ, f̃) ◦ ũ∗b(s, f)

and according to [S2, p. 747, Remark 3.3.2], we have

(†) θf̃ũ ◦ ṽ
∗θfs = θfuσ = θgσ ◦ϑ

∗θfu.

We remark that Cohen-Macaulay maps of relative dimension r are, in the termi-
nology of ibid, locally r-compactifiable.

From our observations about the compatibility of residues with certain base
changes, (d) is true for the left, right and front faces of (4.3.1.4). Indeed, s and σ

are flat, whereas Z̃ is a good immersion for f̃ . We therefore have:

(‡)

res#
Z̃
◦Rr

Z̃
f̃∗(θ

f
s ) ◦ b(s, f) = s∗(res#

Z
)

res#
Z̃′
◦Rr

Z̃′
g̃∗(θ

f̃
ũ) ◦ b(ũ, f̃) = ũ∗(res#

Z̃
)

res#
Z̃′
◦Rr

Z̃′
g̃∗(θ

g
σ) ◦ b(σ, g) = σ∗(res#

Z′ )

The formulas (∗), (†), and (‡) say that the diagram in part (d) of the statement of
the theorem commutes after applying σ∗. Now use part (a), which we have proven,
to see that the diagram in (c) commutes after applying σ∗. Since all the sheaves
involved in the diagram are cohenrent, this means the diagram in (c) commutes in
a Zariski open neighbourhood of u−1(y). This proves (c) since y ∈ Y is arbitrary.

Part (d) now follows by replacing Z by Zn as before, where Zn is defined by
tn1 , . . . , t

n
r , applying (c) to Zn, and taking direct limits. �



CHAPTER 5

Iterated traces

An important formula concerning residues is a Fubini like statement for iterated
residues (see [RD, p.198, (R4)]). To establish this via our approach to residues, i.e.,
via Verdier’s isomorphism, we have to understand iterated traces (for a composite
of pseudo-proper maps) in various ways. That is the main thrust of this section.
The circle of ideas is sometimes referred to as “transitivity” (cf. [LS]). In somewhat
greater detail suppose

X
f−→ Y

g−→ Z

is a pair of pseudo-proper maps. Recall that Trf : Rf∗RΓ
′

X f# → 1D(Y ) factors
through the natural map RΓ ′Y → 1D(Y ). Moreover, we abuse notation and write
Trf : Rf∗RΓ

′
X f# → RΓ ′Y for the missing factor in the just mentioned factoriza-

tion of Trf : Rf∗RΓ
′

X f# → 1D(Y ). Given F ,G ∈ D̃+
qc(Y ) the torsion version of

the projection isomorphism, which we shall denote as ptf (F ,G ), is the following
composition

F
L
⊗OX

Rf∗RΓ
′

X G −→∼ Rf∗(Lf
∗F

L
⊗OX

RΓ ′X G ) −→∼ Rf∗RΓ
′

X (Lf∗F
L
⊗OX

G )

where the first isomorphism is induced by projection. In this situation, we have the

following iterated trace on R(gf)∗RΓ
′

X (Lf∗g#OZ

L
⊗f#OY ) where the map labelled p

is the natural one induced by (ptf )−1 while the one labelled T is induced by Trf :

R(gf)∗RΓ
′

X (Lf∗g#OZ

L
⊗ f#OY ) −̃−→ Rg∗Rf∗RΓ

′
X (Lf∗g#OZ

L
⊗ f#OY )

p−−→ Rg∗(g
#OZ

L
⊗Rf∗RΓ

′
X f#OY )

T−−→ Rg∗(g
#OZ

L
⊗RΓ ′Y OY )

−̃−→ Rg∗RΓ
′

Y g
#OZ

Trg−−→ OZ .

By adjointness, this gives us a map

χ
[g,f]

: Lf∗(g#OZ )
L
⊗ f#OY → (gf)#OZ .

In fact one does not need f and g to be pseudo-proper to define χ
[g,f]

. Our def-
inition below works under the assumption that each of them is a composite of
compactifiable maps.

Part of the theme of transitivity is to work out a concrete formula for χ
[g,f]

when f and g are smooth, and when g#OZ , f#OY , and (gf)#OZ are substituted
with suitable differential forms (placed in the appropriate degree) via Verdier’s
isomorphism [V]. That is done in Part 2, based on the work done here.

29
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5.1. Traces in affine terms

If A→ B is a pseudo-finite-type map of adic rings, I ⊂ A and J ⊂ B defining
ideals for the adic rings A and B respectively, and f : Spf (B, J) → Spf (A, I) the
resulting map of formal schemes, then the complex f#OSpfB can be represented by
a bounded-below complex

ω#•
(B,J)/(A,I) = ω#•

B/A ∈ D+(ModB)

which has finitely generated cohomology modules, where the more elaborate no-
tation ω#•

(B,J)/(A,I) is used only when the role of the adic structures needs to be

emphasised. To simplify notation further, we shall use ω•B/A in place of ω#•
B/A from

now on.
It then follows that if f is Cohen-Macaulay then ω•B/A = ω#

B/A[d].

Regarding the affine version of traces there are two related situations which we
wish to discuss.

A. Suppose A→ B/J is finite. Recall that the trace map

Trf : RΓ ′Spf(B,J)f
#OSpf(A,I) → OSpf(A,I)[0]

factors through the natural map RΓ ′Spf(A,I)OSpf(A,I)[0] → OSpf(A,I)[0] and that

the map RΓ ′Spf(B,J)f
#OSpf(A,I) → RΓ ′Spf(A,I)OSpf(A,I)[0] inducing this trace map is

also called the trace map, and is also denoted Trf . Corresponding to these maps
Trf we have, at the affine level, two maps, again denoted by the same symbol
TrB/A(= Tr(B,J)/(A,I))

(5.1.1) TrB/A = Tr(B,J)/(A,I) : RΓJω
•
B/A → RΓIA[0].

and

(5.1.2) TrB/A = Tr(B,J)/(A,I) : RΓJω
•
B/A → A[0].

Note that the two uses of the symbol TrB/A occur in the following commutative
diagram:

RΓJω
•
B/A

TrB/A

$$IIIIIIII
TrB/A

��
RΓIA[0] // A[0]

B. Next suppose A and B both have discrete topology, and we have a finite-

type map A→ B. Suppose J is an ideal in B such that A→ B/J is finite. Let B̂

be the completion of B with respect to J . Note that if κ : Spf(B̂, JB̂)→ SpecB is
the completion map, then the canonical isomorphism κ∗f# −→∼ (fκ)# results in a

canonical isomorphism ω•B/A ⊗B B̂ −→
∼ ω•

B̂/A
. Define

(5.1.3) TrJ : RΓJω
•
B/A → A[0]

as the composite

RΓJω
•
B/A ˜−−−−→ RΓ

JB̂
(ω•B/A ⊗B B̂)˜−−−−→ RΓ

JB̂
ω•
B̂/A

−−−−→
TrB̂/A

A[0]
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5.1.4. There is potential for confusion over the symbol ω•B/A in a situation

we will be in and we would like to clarify the issues here. Let (A, I) and (B, J)
be adic rings. Let L = IB + J ⊂ B, and assume further that B is also L-adically
complete. Suppose there is a ring homomorphism A → B such that the induced
map A→ B/J is finite. Then A→ B/L is also finite and the formal-scheme maps

Spf(B, J)
p−→ SpecA and Spf(B, L)

f−→ Spf(A, I) are both pseudo-finite. Moreover
we have a cartesian square as follows.

Spf(B, L)

f

��

κ
L //

�

Spf(B, J)

p

��
Spf(A, I)

κ
I

// SpecA

Since κ
I

is flat, we have κ∗
L
p#OSpecA −→∼ f#κ∗

I
OSpecA = f#OSpf(A, I). This means

we can, and we will, identify ω•(B,L)/(A,I) and ω•(B,J/)(A,0). Therefore, denoting the

common complex ω•B/A in this situation causes no confusion. Thus,

ω•B/A = ω•(B,L)/(A,I) = ω•(B,J)/(A,0).

We have two maps TrL : RΓLω
•
B/A → RΓI (A[0]) and TrJ : RΓJω

•
B/A → A[0] cor-

responding to Trf (cf. (5.1.1)) and Trp (cf. (5.1.2)) respectively. In these circum-
stances, according to Proposition A.2.1 in the appendix, the following diagram
commutes:

(5.1.4.1)

RΓIRΓJ(ω•B/A)

RΓI (TrJ )

��

˜ // RΓL(ω•B/A)

TrJ

��
RΓIA[0] RΓIA[0]

5.2. Abstract Transitivity

This section is a digression on setting up a suitable bifunctor for every morphism
in G which will then be used to define an abstract transitivity relation.

For a morphism f : X → Y in G, and complexes F ,G ∈ D̃+
qc(Y ), we shall

now define a bifunctorial map

(5.2.1) χf (F ,G ) : Lf∗F
L
⊗OX

f#G −→ f#(F
L
⊗OY

G )

which, a-priori, will depend on the choice of a factorization f = fnfn−1 · · · f1 where
each fi is either an open immersion or a pseudoproper map. In these two special
cases, there is a simple version of this bifunctorial map and the general case is
handled by putting together these special ones. In Proposition 5.2.4 below we
prove that χf (−,−) is independent of the choice of the factorization.

Since (−)# is only a pre-pseudofunctor, even for f any identity map, say f = 1X ,

some non-trivial considerations arise. For F ,G ∈ D̃+
qc(X ), we define

qX (F ,G ) : F
L
⊗OX

ΛX G → ΛX (F
L
⊗OX

G )

to be the map, which, via right adjointness of ΛX to RΓ ′X , corresponds to the
composite of natural maps

RΓ ′X (F
L
⊗OX

ΛX G ) −→∼ F
L
⊗OX

RΓ ′X ΛX G → F
L
⊗OX

G .
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Below we shall define χ1X to be qX . For now, we collect a few properties of qX
that we shall use.

The natural map 1→ ΛX on F
L
⊗OX

G factors through qX (F ,G ) :

F
L
⊗OX

G → F
L
⊗OX

ΛX G
qX (F ,G )−−−−−−→ ΛX (F

L
⊗OX

G ).

Note that qX (F ,G ) is an isomorphism if both G and F
L
⊗OX

G have coherent
homology or if F is perfect, i.e., locally isomorphic to bounded complex of finite-
rank locally free modules. Also note that RΓ ′X qX is an isomorphism and hence
ΛX qX , which is isomorphic to ΛX RΓ ′X qX , is also an isomorphism, i.e., the natural
map is an isomorphism

ΛX qX (F ,G ) : ΛX (F
L
⊗OX

ΛX G ) −→∼ ΛX (F
L
⊗OX

G ).

Via natural identifications, qX (OX ,G ) identifies with the identity map on ΛX G .
Finally, to get a more explicit description of qX , if we choose the adjoint pair
(ΛX , ε) to RΓ ′X to be ΛX M = RH omX (RΓ ′XOX ,M ) with ε being the following
composition on canonical maps

RΓ ′X RH omX (RΓ ′XOX ,M ) −→∼ RH omX (RΓ ′XOX ,M )
L
⊗X RΓ ′XOX

eval−−→M ,

then qX (F ,G ) can be described as the canonical map

F
L
⊗OX

RH omX (RΓ ′XOX ,G )→ RH omX (RΓ ′XOX ,F
L
⊗OX

G ).

We will now set up some notation that will be useful for keeping track of the
numerous issues that arise out handling factorizations of maps into open immersions
and pseudoproper maps.

Let f : X → Y be a morphism in G and f = fnfn−1 · · · f1 a factorization
where each fi : Xi → Xi+1 is an open immersion or a pseudoproper map with
X1 := X and Xn+1 := Y . Let us assign to each fi a label λi, with λi being one of
either O or P (where O = open immersions and P = pseudoproper maps), together
with the requirement that each fi lies in the subcategory corresponding to λi. We
shall denote the labelled map as fλii and the above factorization together with the
assigned labels will be called a labelled factorization (of f). The corresponding

sequence F = (fλ1
1 , . . . , fλnn ) will be called a labelled sequence of length n and |F |

shall denote the composite f . To ease notation, the labels shall often be suppressed
and we shall spell them out only when it is necessary. Thus we shall often denote
a labelled map fλ by the underlying map f itself. If F = (f1, . . . , fn) and G =
(g1, . . . , gm) are labelled sequences, and if g1fn makes sense, then we denote the
composite labelled sequence (f1, . . . , fn, g1, . . . , gm) as (F,G), which is evidently a
labelled factorization of |(F,G)| = |G||F |.

For a labelled sequence F = (f1, . . . , fn), set

F ∗ := Lf∗1 Lf∗2 · · ·Lf∗n, F # := f#1f
#
2 · · · f#n.

With |F | = f , there are canonical pseudofunctorial isomorphisms F ∗ −→∼ Lf∗ and
F # −→∼ f#. If F,G are labelled sequences such that the composite (F,G) exists,
then (F,G)# = F #G# and (F,G)∗ = F ∗G∗.



5.2. ABSTRACT TRANSITIVITY 33

For a labelled sequence F = (f1, . . . , fn) factoring f : X → Y and for com-

plexes F ,G ∈ D̃+
qc(Y ), we recursively define

χF (F ,G ) : F ∗F
L
⊗OX

F #G −→ F #(F
L
⊗OY

G )

as follows. If n = 1, then F = fO or F = fP and moreover F ∗ = Lf∗ = f∗, F # = f#.
If F = fO, so that f is an open immersion, then using f# = ΛX f∗ −→∼ f∗ΛY , we
take χF (F ,G ) to be the composite along the top row of the following commutative
diagram

(5.2.2)

f∗F
L
⊗OX

ΛX f∗G˜

��

qX // ΛX (f∗F
L
⊗OX

f∗G ) ˜ // ΛX f∗(F
L
⊗OY

G )˜

��

f∗F
L
⊗OX

f∗ΛY G ˜ // f∗(F
L
⊗OX

ΛY G )
f∗qY // f∗ΛY (F

L
⊗OY

G )

where q− is defined above. (The commutativity of this diagram, which will only be

used later, follows easily from the explicit description of q− above.) If F = fP, so
that f is pseudoproper, we set χF (F ,G ) to be the map adjoint to the composite

Rf∗RΓ
′

X (Lf∗F
L
⊗OX

f#G )
via (ptf )−1

−−−−−−−→∼=
F

L
⊗OY

Rf∗RΓ
′

X f#G
via Trf−−−−→ F

L
⊗OY

G

where pt− is the torsion projection isomorphism as defined in the beginning of

this chapter. In general, if n > 1, we decompose F as X
f1−→ X2

g−→ Y where
G = (f2, . . . , fn) gives a labelled factorization of g while f1 is naturally a labelled
sequence of length 1. Assuming χG(F ,G ) is already defined, we define χF (F ,G )
to be the composite (with ⊗X = ⊗OX

, ⊗Y = ⊗OY
)

F ∗F
L
⊗X F #G = f∗1G

∗F
L
⊗X f#1G

#G
χf1

(G∗F ,G#G ))
−−−−−−−−−−→ f#1 (G∗F

L
⊗X2 G

#G )

f#
1χG(F ,G )−−−−−−−→ f#1G

#(F
L
⊗Y G ) = F #(F

L
⊗Y G ).

In more concise terms, we may write that if F = (f1, G), then χF = (f#1χG) ◦ χf1
.

It follows from the recursive nature of the definition that for any decomposition
F = (F1, F2) we have χF = χ(F1,F2) = (F #

1χF2
) ◦ χF1

.

For F = OX , via the obvious natural identifications F ∗OY

L
⊗X F #G −→∼ F #G

and F #(OY

L
⊗Y G ) −→∼ F #G we see that χF (OX ,G ) identifies with the identity

map on F #G .
The identity map 1X for any formal scheme X , being in both O and P, forms

a factorization of length 1 of itself for any of the two labels. With either label, we
see that χ1X

equals qX defined above.
More generally, f : X → Y is in O and P iff f is an isomorphism of X onto a

connected component of Y and so any such f is a length-one factorization of itself
with either label.

Lemma 5.2.3. If f : X → Y is an isomorphism, then χfP = χfO .

Proof. In this case, f∗ = Lf∗ and f∗ = Rf∗ are both left and right adjoint to
each other and the unit/counit maps for either adjoint pair is given by the canonical
isomorphisms f∗f

∗ ∼= 1, f∗f∗ ∼= 1. Since f# = Λf∗, the result follows from the
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commutativity of the outer border of the following diagram for F ,G ∈ D̃+
qc(Y ),

where to reduce clutter, the derived functors are denoted by their non-derived
counterparts and moreover Λ = ΛX , Γ ′ = RΓ ′X .

(f∗F ⊗Λf∗G )

ttiiiiiiiiiiiiiiii

��
ΛΓ ′(f∗F ⊗Λf∗G )

��

// Λf∗f∗Γ ′(f∗F ⊗Λf∗G )

��
Λ(f∗F ⊗ Γ ′Λf∗G ) //

��

Λf∗f∗(f
∗F ⊗ Γ ′Λf∗G ) //

��

Λf∗(F ⊗ f∗Γ ′Λf∗G )

��
Λ(f∗F ⊗ f∗G ) //

**UUUUUUUUUUUUUUUU
Λf∗f∗(f

∗F ⊗ f∗G ) // Λf∗(F ⊗ f∗f∗G )

ttiiiiiiiiiiiiiiiii

Λf∗(F ⊗ G )

The bottom triangle is seen to commute by unravelling the definition of the pro-
jection isomorphism. The remaining parts commute trivially. �

If f : X → Y is in G and F is a labelled factorization of f , for F ,G ∈ D̃+
qc(Y )

we set χfF (F ,G ) to be the composite

Lf∗F
L
⊗OX

f#G −→∼ F ∗F
L
⊗OX

F #G
χF−−→ F #(F

L
⊗OY

G ) −→∼ f#(F
L
⊗OY

G ).

If f = 1X , then χff = qX for either label as mentioned before.

Proposition-Definition 5.2.4.

(i) If F1 and F2 are two labelled factorizations of a map f : X → Y in G,

then χfF1
(−,−) = χfF2

(−,−). We thus define χf (−,−) in (5.2.1) to be

χfF (−,−) for any choice of a labelled factorization F of f .

(ii) If X
f−→ Y

g−→ Z are maps in G, then for any complexes F ,G ∈
D̃+

qc(Z ), the following diagram commutes.

Lf∗Lg∗F
L
⊗OX

f#g#G
χf //

∼=
��

f#(Lg∗F
L
⊗OY

g#G )
f#χg // f#g#(F

L
⊗OZ

G )

∼=
��

L(gf)∗F
L
⊗OX

(gf)#G
χgf // (gf)#(F

L
⊗OZ

G )

Part (ii) of Proposition 5.2.4 is the transitivity property for χ. It is an easy
consequence of part (i) and the relation χ(F,G) = (F #χG) ◦ χF where F,G are

labelled factorizations of f, g respectively so that (F,G) can be chosen as a labelled
factorization of fg.

The proof of Proposition 5.2.4(i) is somewhat long and proceeds via several
special cases of both parts (i) and (ii) first. We tackle these in the next few lem-
mas. In all these proofs, to reduce clutter in numerous diagrams, we shall use the



5.2. ABSTRACT TRANSITIVITY 35

following shorthand notation where f is a generic name for a map and X for a
formal scheme.

f∗ = Lf∗, ⊗ =
L
⊗, Γ ′X = RΓ ′X , f t∗ = Rf∗RΓ

′
X

Lemma 5.2.5. Let X
f−→ Y be a map in G.

(i) If F1, F2 are labelled factorizations of f such that χfF1
= χfF2

, then for

any maps W
h−→ X and Y

g−→ Z in G and labelled factorizations G,H

of g, h respectively, we have χgf(F1,G) = χgf(F2,G) and χfh(H,F1) = χfh(H,F2).

(ii) For any labelled factorization F of f we have χf(1X ,F ) = χfF = χf(F,1Y ).

Proof. (i) To prove that χgf(F1,G) = χgf(F2,G) it suffices to check that for any

complexes F ,G ∈ D̃+
qc(Z ) the outer border of the following diagram commutes.

F ∗1G
∗F ⊗ F #

1G
#G

∼=
��

// F #
1 (G∗F ⊗G#G )

∼=
��

// F #
1G

#(F ⊗ G )

∼=
��

f∗g∗F ⊗ f#g#G

∼=
��

f#(G∗F ⊗G#G )

∼=
��

f#g#(F ⊗ G )

∼=
��

F ∗2G
∗F ⊗ F #

2G
#G // F #

2 (G∗F ⊗G#G ) // F #
2G

#(F ⊗ G )

Along the leftmost and the rightmost columns, the composite of maps remains
unchanged if in the objects of the middle row, g∗, g# are replaced by G∗, G# respec-

tively. Thus the left half commutes if χfF1
= χfF2

while the right one commutes for
functorial reasons. The proof of the other relation is similar.

(ii) For F ,G ∈ D̃+
qc(Y ), the following diagram, where 1 = 1X , is easily seen

to commute keeping in mind the isomorphisms F # −→∼ ΛX F # = 1#F #.

f∗F ⊗ f#G

∼=
��

∼= // F ∗F ⊗ F #G
∼=

uulllllllllllllll

��

// F #(F ⊗ G )

∼=
��

∼= // f#(F ⊗ G )

∼=wwnnnnnnnnnnnn

1∗F ∗F ⊗ 1#F #G // 1#(F ∗F ⊗ F #G ) // 1#F #(F ⊗ G )

From the outer border we get that χf(1X ,F ) = χfF . The other relation is proved

similarly. �

Lemma 5.2.6. Let f : X → Y be a map in G and F = (f1, . . . , fn) a labelled
sequence factoring f such that all the fi’s have the same label, say λ, so that f is

also in λ. Then χfF = χf
fλ

.

Proof. It suffices to prove the case n = 2 for then, by Lemma 5.2.5(i), in

the general case we have χf(f1,...,fn) = χf(f2f1,...,fn), whence the result follows by

induction.
In effect, we have reduced to proving Proposition 5.2.4 (ii), with χf , χg, χgf

replaced by χf , χg, χgf respectively. For the rest of the proof, we use the notation

from there. Let F ,G ∈ D̃+
qc(Z ).
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If λ = O, then the result follows from the outer border of the following commu-
tative diagram where (‡) commutes by (5.2.2) and the remaining parts commute
for trivial reasons.

f∗g∗F ⊗ΛX f
∗ΛY g

∗G

��

// ΛX (f∗g∗F ⊗ f∗ΛY g
∗G )

(‡)

��

// ΛX f
∗(g∗F ⊗ΛY g

∗G )

��
f∗g∗F ⊗ΛX f

∗g∗G

��

//

**UUUUUUUUUUUUUUUUUU ΛX (f∗g∗F ⊗ΛX f
∗g∗G )

��

ΛX f
∗ΛY (g∗F ⊗ g∗G )

yyrrrrrrrrrrrrrrrrrrrrrrrr

��
(gf)∗F ⊗ΛX (gf)∗G

��

ΛX (f∗g∗F ⊗ f∗g∗G )

ttiiiiiiiiiiiiiiiii

��

ΛX f
∗ΛY g

∗(F ⊗ G )

��

ΛX ((gf)∗F ⊗ (gf)∗G )

��

ΛX f
∗(g∗F ⊗ g∗G )

**UUUUUUUUUUUUUUUUU

ΛX (gf)∗(F ⊗ G ) // ΛX f
∗g∗(F ⊗ G )

If λ = P, then by adjointness it suffices to check that the outer border of the
following diagram commutes where pt− is the torsion projection isomorphism as
defined in the beginning of this chapter.

gt∗f
t
∗(f
∗g∗F ⊗ f#g#G )

(ptf )−1

//

��

gt∗(g
∗F ⊗ f t∗f#g#G )

Trf //

(ptg)−1

��

gt∗(g
∗F ⊗ g#G )

(ptg)−1

��
g∗f

t
∗(f
∗g∗F ⊗ f#g#G )

∼=
��

F ⊗ gt∗f t∗f#g#G
Trf //

∼=
��

F ⊗ gt∗g#G

Trg

��
(gf)t∗((gf)∗F ⊗ (gf)#G )

(ptgf )−1

// F ⊗ (gf)t∗(gf)#G
Trgf // F ⊗ G

The upper rectangle on the right commutes trivially, while the lower one on the
right commutes because of the way the composite of adjoints is identified as an
adjoint pseudofunctorially. Commutativity of the diagram on the left follows easily
from the outer border of the following one with obvious natural maps where we use
E = f#g#G .

gt∗f
t
∗(f
∗g∗F ⊗ E ) //

��

gt∗f∗(f
∗g∗F ⊗ Γ ′X E ) //

zztttttttttttttttttttttttt
gt∗(g

∗F ⊗ f∗Γ ′X E )

ttiiiiiiiiiiiiiiii

��
g∗f

t
∗(f
∗g∗F ⊗ E )

((

��

g∗(g
∗F ⊗ f∗Γ ′X E )

��ttjjjjjjjjjjjjjjjj
g∗(g

∗F ⊗ Γ ′Y f∗Γ ′X E )oo

��
g∗f∗(f

∗g∗F ⊗ Γ ′X E ) (†)

**TTTTTTTTTTTTTTTT
F ⊗ g∗f∗Γ ′X E

**UUUUUUUUUUUUUUUU
F ⊗ gt∗f∗Γ ′X Eoo

��
(gf)t∗((gf)∗F ⊗ E ) // (gf)∗((gf)∗F ⊗ Γ ′X E ) // F ⊗ (gf)∗Γ

′
X E
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Here (†) commutes by [L4, p. 125, Prop. 3.7.1]. Commutativity of the remaining
parts is obvious. �

Consider a cartesian diagram in G as follows.

(5.2.7)

W

g

��

v // X

f

��
Z

u
// Y

Pick labelled factorizations F = (f1, . . . , fn) and U = (u1, . . . , um) of f, u respec-
tively so that these in turn, induce corresponding ones G,V of g, v by base change
in the obvious manner. Thus the composite map h = fv = ug admits two labelled
factorizations, namely, (V, F ) and (G,U).

Lemma 5.2.8. In the above setup, χh(V,F ) = χh(G,U).

Proof. By decomposing the factorizations F and U , let us first reduce to
the case m = n = 1. For instance, a decomposition U = (U ′, U ′′), induces a
corresponding one V = (V ′, V ′′) and we have a horizontally decomposed cartesian
diagram as follows.

W

g

��

v′ // W ′

g′

��

v′′ // X

f

��
Z

u′
// Z ′

u′′
// Y

Set h′ := u′g = g′v′ and h′′ := u′′g′ = fv′′. If G′ is the induced factorization
of g′, then by Lemma 5.2.5(i), it suffices to prove that χh

′

(G,U ′) = χh
′

(V ′,G′) and

χh
′′

(G′,U ′′) = χh
′′

(V ′′,F ). Thus we inductively reduce to the case m = 1. A similar

argument further reduces it to n = 1. Moreover, after assuming m = n = 1, by
Lemma 5.2.6 it suffices to consider the case when f, g have label P while u, v have
label O.

For this special case, using the identifications u# = ΛZ u
∗, v# = ΛW v

∗, prov-
ing the relation χh(v,f) = χh(g,u) amounts to proving that the following diagram

commutes for F ,G ∈ D̃+
qc(Y ).

(5.2.8.1)

v∗f∗F ⊗ΛW v
∗f#G

��

˜ // h∗F ⊗ h#G ˜ // g∗u∗F ⊗ g#ΛZ u
∗G

��
ΛW v

∗(f∗F ⊗ f#G )

��

g#(u∗F ⊗ΛZ u
∗G )

��
ΛW v

∗f#(F ⊗ G ) ˜ // h#(F ⊗ G ) ˜ // g#ΛZ u
∗(F ⊗ G )

The composite along each of the two rows is induced by the composite isomorphism
v#f# −→∼ h# −→∼ g#u# which in fact, identifies with the base-change isomorphism
β# : ΛW v

∗f# −→∼ g#ΛZ u
∗. Using the adjointness of g# to gt∗ = g∗Γ

′
W , we consider

the adjoint of (5.2.8.1). The adjoint diagram is expanded below, which, for con-
venience, is broken into two parts. Thus the rightmost column of (5.2.8.2) is the
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same as the left column of (5.2.8.3) and the outer border of the conjoined diagram
is the adjoint of (5.2.8.1). The maps are natural ones induced by isomorphisms

Γ ′? (M⊗N ) −→∼ Γ ′?M⊗N , Γ ′? Λ −→∼ Γ ′? , Γ ′Z u
∗ −→∼ u∗Γ ′Y , Γ ′W v

∗ −→∼ v∗Γ ′X ,

and also the isomorphisms Γ ′X f# −→∼ f !Γ ′Y , Γ ′W g
# −→∼ g!Γ ′Z .

(5.2.8.2)

gt∗(v
∗f∗F ⊗ΛW v

∗f #G )

��

**UUUUUUUUUUUUUUUU
// gt∗(g∗u∗F ⊗ g#ΛZ u

∗G )

��
g∗(v

∗f∗F ⊗ v∗f !Γ ′Y G )

��

// g∗(g∗u∗F ⊗ g!u∗Γ ′Y G )

��
gt∗ΛW v

∗(f∗F ⊗ f #G )

��

// g∗v∗(f∗F ⊗ f !Γ ′Y G )

�

��

u∗F ⊗ g∗g
!u∗Γ ′Y G

��
gt∗ΛW v

∗f #(F ⊗ G )

��

g∗v
∗f !(F ⊗ Γ ′Y G )

��

u∗F ⊗ u∗Γ ′Y G

��
g∗v
∗f !Γ ′Y (F ⊗ G )

44iiiiiiiiiiiiiiii
u∗f∗f

!(F ⊗ Γ ′Y G ) // u∗(F ⊗ Γ ′Y G )

(5.2.8.3)

gt∗(g
∗u∗F ⊗ g#ΛZ u

∗G )

��

gt∗(g
∗u∗F ⊗ g#ΛZ u

∗G )

��
g∗(g

∗u∗F ⊗ g!u∗Γ ′Y G )

��

// g∗(g∗u∗F ⊗ Γ ′W g#ΛZ u
∗G )

��
u∗F ⊗ g∗g!u∗Γ ′Y G

��

// u∗F ⊗ g∗Γ ′W g#ΛZ u
∗G

��
u∗F ⊗ u∗Γ ′Y G

��

// u∗F ⊗ u∗ΛY G

��
u∗(F ⊗ Γ ′Y G ) // ΛZ (u∗F ⊗ u∗G )

For the commutativity of the diagram labelled as � in (5.2.8.2) we refer to the
diagram at the bottom of [L4, p. 196]. The commutativity of the remaining parts
is straightforward. �

Lemma 5.2.9. For any labelled factorization F of the identity map 1X , we have
χ1X
F = χ1X

1X
= qX .

Proof. First we consider the special case where the length of F is two, say
F = (f1, f2), and where the label of f1 is P. If the label of f2 is also P then the
result follows from Lemma 5.2.6 while if the label is O, then f2, which is necessarily
surjective (as f2f1 = 1X ), is an isomorphism. By Lemma 5.2.3, χ1X

F does not
change if we replace the label of f2 by P, and upon doing so, the result follows from
Lemma 5.2.6.
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In general, fix an integer n ≥ 2 and let F = (f1, . . . , fn) be a factorization
of 1X so that with fi : Xi → Xi+1 we have X1 = X = Xn+1. Let r(F ) be the
largest integer between 1 and n such that if 1 ≤ i ≤ r then fi has label P. We prove
the result by descending induction on r(F ). If r(F ) = n, then the result follows by
Lemma 5.2.6. Let r(F ) = k and assume that the result is true for any complex for
which r > k. Consider the following diagram containing a fibered square

X
∆ // X ×Xn

X
p2 //

p1

��

X

g

��
X

g // Xn
fn // X

where g = fn−1 · · · f1 is pseudoproper, ∆ is the diagonal map and pi are the usual
projections. For the map g which is drawn in parallel to p2 we choose the factoriza-
tionG = (f1, . . . , fn−1) while for the other one we choose the length 1 factorization g
itself with label P. The parallel edges pick up corresponding labelled factorizations
by base change: for p2 we denote it as G′ = (f ′1, . . . , f

′
n−1) while for p1 it is p1 itself

with label P. Finally, we assign to ∆, the label P.
By the special case considered in the first para, χ1X

(∆,p1) = χ1X
1X

= χ1X

(g,fn). Since

(∆, G′) has length n and r(∆, G′) = k + 1, hence by induction, χ1X

(∆,G′) = χ1X
1X

.

Therefore, by Lemma 5.2.5 and Lemma 5.2.8,

χ1X
F = χ1X

(G,fn) = χ1X

(1X ,G,fn) = χ1X

(∆,p1,G,fn)

= χ1X

(∆,G′,g,fn) = χ1X

(1X ,g,fn) = χ1X

(g,fn) = χ1X
1X
.

�

Using the above lemmas, Proposition 5.2.4 is proved as follows.

Proof of 5.2.4(i). Consider the following diagram with a fibered square.

X
∆ // X ×Y X

p1

��

p2 // X

f

��
X

f
// Y

We choose for the map f which is drawn parallel to p1, the factorization F1, and
denote the induced factorization of p1 by F ′1, while for the other f we choose F2

as a factorization and denote the induced one on p2 by F ′2. Assigning to ∆, the
label P, by Lemma 5.2.5, Lemma 5.2.8 and Lemma 5.2.9 we have

χfF2
= χf(1X ,F2) = χf(∆,F ′1,F2) = χf(∆,F ′2,F1) = χf(1X ,F1) = χfF1

.

�

Proof of 5.2.4(ii). Let us pick labelled factorizations F,G of f, g respectively
so that (F,G) is a factorization for gf . It suffices to prove that the outer border of
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the following diagram of obvious natural maps commutes.

f∗g∗F ⊗ f#g#G

�f
��

// f#(g∗F ⊗ g#G )

��

// f#g#(F ⊗ G )

��
F ∗g∗F ⊗ F #g#G

��

// F #(g∗F ⊗ g#G )

�g
��

// F #g#(F ⊗ G )

��
F ∗G∗F ⊗ F #G#G

�gf
��

// F #(G∗F ⊗G#G ) // F #G#(F ⊗ G )

��
(gf)∗F ⊗ (gf)#G // (gf)#(F ⊗ G )

Here �f ,�g,�gf commute by definition of χfF , χ
g
G, χ

gf
(F,G) respectively while the

rest of the diagram commutes trivially. �

Here are some additional properties of χ that we need below. We begin with
compatibility with flat base change. For simplicity we shall assume that the com-
plexes have coherent homology.

Proposition 5.2.10. Suppose σ is a cartesian square as follows

V

g

��

v //

�

X

f

��
U

u
// Y

with f and g in G and u flat. Then for any F ,G ∈ D+
c (Y ) the diagram Dσ given

as follows, commutes:

v∗(f∗F
L
⊗ f#G )

v∗χf // v∗f#(F
L
⊗ G )˜

��

g∗u∗F
L
⊗ v∗f#G˜

��

g#u∗(F
L
⊗ G )

g∗u∗F
L
⊗ g#u∗G

χg
// g#(u∗F

L
⊗ u∗G )

where the two isomorphisms displayed are the ones arising from the flat base change
isomorphism β#σ : v∗f# −→∼ g#u∗.

Proof. If f is an open immersion, the base-change isomorphism β#σ is induced,
via canonical identifications, by the pseudofunctoriality of (−)∗ and the same is true
of χf , χg, hence the result is obvious in this case. If f is pseudoproper, the result
follows from the proof of commutativity of (5.2.8.1). In general, suppose f = f2f1
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where fi ∈ G, so that σ can be correspondingly expanded into a diagram as follows.

V

g1

��

v //

σ1

X

f1

��
W

g2

��

w //

σ2

Z

f2

��
U

u
// Y

Then checking commutativity of Dσ reduces to checking that of the outer border
of the following diagram of obvious natural maps.

v∗f∗1 f
∗
2 F

L
⊗ v∗f#1f#2G //

��

v∗(f∗1 f
∗
2 F

L
⊗ f#1f#2G ) //

Dσ1

v∗f#1 (f∗2 F
L
⊗ f#2G )

��

||yyyyyyyyyyyyyyyyyyyyyyy

g∗1w
∗f∗2 F

L
⊗ g#1w∗f#2G //

��

g#1(w∗f∗2 F
L
⊗ w∗f#2G )

��

{{wwwwwwwwwwwwwwwwwwwwwwww
v∗f#1f

#
2 (F

L
⊗ G )

��

g∗1g
∗
2u
∗F

L
⊗ g#1g#2u∗G

��

g#1w
∗(f∗2 F

L
⊗ f#2G ) //

Dσ2

g#1w
∗f#2 (F

L
⊗ G )

��

g#1(g∗2u
∗F

L
⊗ g#2u∗G ) // g#1g

#
2(u∗F

L
⊗ u∗G ) // g#1g

#
2u
∗(F

L
⊗ G )

Since the unlabelled parts commute trivially, we reduce to checking commutativity
of Dσ1

, Dσ2
. Thus if we fix a labelled factorization of f then proceeding inductively

we reduce to the already-resolved case of when the length of the factorization is 1.
�

Lemma 5.2.11. Let Y be a formal scheme and I a coherent open OY -ideal.
Let κ : X → Y be the completion of Y with respect to I . Let F ,G ∈ D+

c (Y ).
Then the following diagram commutes where the vertically drawn maps are induced
by the natural isomorphisms κ∗ −→∼ κ# on D+

c (Y ) while the map in the top row is
the obvious isomorphism.

κ∗F
L
⊗OX

κ∗G

��

// κ∗(F
L
⊗OY

G )

��

κ∗F
L
⊗OX

κ#G
χκ // κ#(F

L
⊗OY

G )

Proof. By adjointness of κ# to κ∗RΓ
′

X , the assertion reduces to checking
commutativity of the corresponding adjoint diagram which appears as the outer
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border of the following one.

κ∗RΓ
′

X (κ∗F
L
⊗OX

κ∗G ) //

))SSSSSSSSSSSSSSS

��

κ∗RΓ
′

X κ∗(F
L
⊗OY

G ) //

�

RΓI (F
L
⊗OY

G )

��

F
L
⊗OY

κ∗RΓ
′

X κ∗G

��

// F
L
⊗OY

RΓI G

��

κ∗RΓ
′

X (κ∗F
L
⊗OX

κ#G ) // F
L
⊗OY

κ∗RΓ
′

X κ#G // F
L
⊗OY

G

The unlabelled parts of the above diagram commute trivially, while commutativity
of � follows from that of the outer border of the following commutative diagram of
obvious natural isomorphisms, where for convenience, RΓ ′− is replaced by Γ ′−.

F
L
⊗Y κ∗Γ

′
X κ∗G //

��

κ∗Γ
′

X (κ∗F
L
⊗X κ∗G ) //

��

κ∗Γ
′

X κ∗(F
L
⊗Y G )

��

F
L
⊗Y κ∗Γ

′
X κ∗Γ ′Y G //

��

κ∗Γ
′

X (κ∗F
L
⊗X κ∗Γ ′Y G ) //

��

κ∗Γ
′

X κ∗(F
L
⊗Y Γ ′Y G )

��

F
L
⊗Y κ∗κ

∗Γ ′Y G //

,,YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY κ∗(κ
∗F

L
⊗X κ∗Γ ′Y G ) // κ∗κ∗(F

L
⊗Y Γ ′Y G )

��

F
L
⊗Y Γ ′Y G

�

For a map f : X → Y in G, and F ,G ∈ D̃+
qc(Y ), we define a conjugate version

of χf (F ,G ), denoted as χf (F ,G ), to be the following composite of obvious natural
maps

(5.2.12) f#F
L
⊗X Lf∗G −→∼ Lf∗G

L
⊗X f#F

χf−−→ f#(G
L
⊗Y F ) −→∼ f#(F

L
⊗Y G ).

Transitivity, completions and traces. We apply the abstract results of the
previous subsection to relative dualizing modules.

Lemma 5.2.13. Suppose

X
f−→ Y1

κ−→ Y2
g−→ Z

are maps in G with κ a completion map with respect to an ideal I of OY2
. Then

the following diagram commutes where the unlabelled arrows are the obvious natural
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isomorphisms.

Lf∗κ#g#OZ

L
⊗OX

f#κ∗OY2
//

κ∗∼= κ#

��

Lf∗(gκ)#OZ

L
⊗OX

f#OY1

χf // f#(gκ)#OZ

��
Lf∗κ∗g#OZ

L
⊗OX

f#κ#OY2
// L(κf)∗g#OZ

L
⊗OX

(κf)#OY2

χκf // (κf)#g#OZ

Proof. It suffices to prove that the following diagram commutes since the
outer border gives us the required commutativity. As before, to simplify notation,
we use f∗ instead of Lf∗ and drop the subscripts to ⊗. For the definition of χ we
refer to (5.2.12).

f∗(gκ)#OZ ⊗ f#OY1

χf //

��

f#((gκ)#OZ ⊗ OY1
)

f#χgκ //

♦
��

f#(gκ)#OZ

��
f∗κ#g#OZ ⊗ f#κ∗OY2

χf //

κ∗∼= κ#

��

f#(κ#g#OZ ⊗ κ∗OY2)

4κ∗∼= κ#

��

f#χκ

))TTTTTTTTTTTTTTT
f#κ#g#OZ

xx

f∗κ∗g#OZ ⊗OX
f#κ#OY2

��

χf // f#(κ∗g#OZ ⊗ κ#OY2)
f#χκ //

♦

f#κ#(g#OZ ⊗ OY2)

f#κ#χg

OO

(κf)∗g#OZ ⊗ (κf)#OY2

χκf // (κf)#(g#OZ ⊗ OY2)
(κf)#χg //

55jjjjjjjjjjjjjjj
(κf)#g#OZ

The unlabelled parts commute for functorial reasons. Both ♦,♦ commute by Propo-
sition 5.2.4 (ii), namely transitivity of χ (which also implies transitivity of χ). Fi-
nally for 4 we use the outer border of the following diagram where G = g#OZ and
where θ denotes the canonical isomorphism M ⊗N −→∼ N ⊗M .

κ#G ⊗ κ∗OY2

θ //

��

κ∗OY2 ⊗ κ#G //

5.2.11

��

κ#(OY2 ⊗ G )

��
κ∗G ⊗ κ∗OY2

θ //

5.2.11

�� ++XXXXXXXXXXXXXXXXXXXXXXX κ∗OY2 ⊗ κ∗G // κ∗(OY2 ⊗ G )

��
κ∗G ⊗ κ#OY2

// κ#(G ⊗ OY2) // κ∗(G ⊗ OY2)

�

Proposition 5.2.14. Suppose

X̂

f̂
��

κ2 // X

f

��
Ŷ

ĝ   BBBBBBBB
κ1 // Y

g

��
Z
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is a commutative diagram of formal schemes with κ1 and κ2 being completions
with respect to open coherent ideals of OY and OX respectively. Then, making the
identifications κ#i = κ∗i , i = 1, 2, the following diagram commutes, with the map

labelled α being the isomorphism arising from κ∗2f
# = κ#2f

# −→∼ f̂#κ#1 = f̂#κ∗1.

κ∗2(Lf∗g#OZ

L
⊗ f#OY )

κ∗2χ
f

// κ∗2f
#g#OZ

// κ∗2(gf)#OZ

κ∗2Lf∗g#OZ

L
⊗ κ∗2f#OY )

α

˜

��

κ#2(gf)#OZ˜

��
Lf̂∗κ∗1g

#OZ

L
⊗ f̂#κ∗1OY˜

��

(gfκ2)#OZ

Lf̂∗ĝ#OZ

L
⊗ f̂#OŶ

χĝ,f̂ // f̂#ĝ#OZ
// (ĝf̂)#OZ

Proof. This follows from the outer border of the following diagram where the
unlabelled parts commute trivially.

κ∗2(f∗g#OZ ⊗ f#OY )
κ∗2χ

f

//

κ∗2
∼=κ#

2

��

κ∗2f
#g#OZ

κ∗2
∼=κ#

2

��
κ∗2f

∗g#OZ ⊗ κ∗2f#OY

33ffffffffffffffffffffff

++WWWWWWWWWWWWWWWWWWWWWW

α

��

5.2.11 κ#2(f∗g#OZ ⊗ f#OY )
κ#

2χ
f

// κ#2f
#g#OZ

5.2.4(ii)

��
f̂∗κ∗1g

#OZ ⊗ f̂#κ∗1OY

κ∗1
∼=κ#

1

�� ++WWWWWWWWWWWWWWWWWWWWW
κ∗2f

∗g#OZ ⊗ κ#2f#OY
χfκ2

//

χκ2

OO

��

(fκ2)#g#OZ

��
f̂∗κ#1g

#OZ ⊗ f̂#κ∗1OY
κ∗1
∼=κ#

1

//

��

f̂∗κ∗1g
#OZ ⊗ f̂#κ#1OY

5.2.13

χκ1f̂

// (κ1f̂)#g#OZ

��
f̂∗ĝ#OZ ⊗ f̂#OŶ

// f̂#ĝ#OZ
// f̂#κ#1g

#OZ

�

Definition 5.2.15. Let X
f−→ Y

g−→ Z be maps in G. We define χ
[g,f]

to the
composite of the following natural maps:

Lf∗(g#OZ )
L
⊗OX

f#OY
χf−−→ f#(g#OZ

L
⊗OY

OY ) −→∼ f#g#OY −→∼ (gf)#OY .

When, f, g are both pseudoproper, this definition agrees with the one given in
the beginning of this chapter.

Definition 5.2.16. A → R → S be pseudo-finite maps between adic rings.
Let f : Spf(S) → Spf(R) and g : Spf(R) → Spf(A) denote the resulting maps of
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formal schemes. We define

χ
[S/R/A]

: ω•R/A
L
⊗R ω•S/R → ω•S/A

to be the map corresponding to χ
[g,f]

of 5.2.15, where ω• is defined as in the begin-
ning of §5.1.

Proposition 5.2.17. Let A → R → S be a pair of maps of rings, I ⊂ R,
J ⊂ S ideals, such that A→ R/I and R→ S/J are finite. Let L = IS + J .

(a) Suppose R is complete in the I-adic topology and S is complete in the
L-adic topology (so that S is then complete in the J-adic topology too).
The following diagram commutes, with χ = χ

[S/R/A]
:

RΓL(ω•R/A
L
⊗R ω•S/R)

RΓL(χ) // RΓLω
•
S/A

TrS/A

##FFFFFFFFFF

RΓIRΓJ(ω•R/A
L
⊗R ω•S/R)

˜ OO
A[0]

RΓI (ω•R/A
L
⊗R RΓJ(ω•S/R))

˜ OO
RΓI (1⊗TrS/R)

// RΓI (ω•R/A)

TrR/A

;;xxxxxxxxxxx

(b) Suppose the topology on A, R, and S are discrete, and A→ R, R→ S are
of finite type. Then the following diagram commutes with χ = χ

[S/R/A]
:

RΓL(ω•R/A
L
⊗R ω•S/R)

RΓL(χ) // RΓLω
•
S/A

TrL

##FFFFFFFFFF

RΓIRΓJ(ω•R/A
L
⊗R ω•S/R)

˜ OO
A[0]

RΓI (ω•R/A
L
⊗R RΓJ(ω•S/R))

˜ OO
RΓI (1⊗TrJ ) // RΓI (ω•R/A)

TrI

;;xxxxxxxxxxx

Proof. For part (a), first note that the diagram below commutes:

RΓL(ω•R/A
L
⊗R ω•S/R) ˜ // ω•R/A

L
⊗R RΓL(ω•S/R)

RΓIRΓJ(ω•R/A
L
⊗R ω•S/R) ˜ //

˜ OO
ω•R/A

L
⊗R RΓIRΓJ(ω•S/R)

˜OO

˜

��

RΓI (ω•R/A
L
⊗R RΓJ(ω•S/R))

˜
iiTTTTTTTTTTTTTTT

The assertion now follows from the commutativity of (5.1.4.1) and the definition
of χ

[S/R/A]
.
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For part (b), let R̂ be the completion of R with respect to I, S′ the completion

of S with respect to J and Ŝ the completion of S with respect to L. Let Î = IR̂,

J ′ = JS′, L′ = LS′, L̂ = LŜ. Let X = Spf(Ŝ, L̂), X ′ = Spf(S′, J ′), X = SpecS,

Y = Spf(R̂, Î), Y = SpecR, and Z = SpecA. The various natural relations
between the adic rings can be represented by a commutative diagram of formal
schemes:

X
κ1 //

f̂
��

X ′

f ′

��

κ2 // X

f~~||||||||

Y
κ3 //

ĝ !!CCCCCCCC Y

g

��
Z

We have:

κ∗1f
′#OY −→∼ (κ1f

′)#OY −→∼ f̂#κ∗3OY = f̂#OY .

Moreover, κ∗2f
#OY −→∼ f ′

#OY . We may thus make the following identifications:

ω•S/R ⊗S Ŝ = ω•S/R ⊗S Ŝ = ω•
Ŝ/R̂

, and ω•S′/R = ω•S/R ⊗S S
′. The natural isomor-

phism κ∗3g
#OZ −→∼ ĝ#OZ allows us to make the identification ω•

R̂/A
= ω•R/A ⊗R R̂.

Let us write χ = χ
[S/R/A]

and χ̂ = χ
[Ŝ/R̂/A]

. The above identifications and Proposi-

tion 5.2.14 gives χ⊗ Ŝ = χ̂, whence the following diagram commutes:

RΓL(ω•R/A
L
⊗R ω•S/R)

χ //˜

��

RΓLω
•
S/A˜

��
RΓ̂

L
(ω•
R̂/A

L
⊗R̂ ω

•
Ŝ/R̂

)
χ̂
// RΓ̂

L
ω•
Ŝ/A

By part (a), it is therefore enough to prove that the diagram below commutes:

(∗)

RΓL(ω•R/A
L
⊗R ω•S/R) ˜ // RΓ̂

L
(ω•
R̂/A

L
⊗R̂ ω

•
Ŝ/R̂

)

RΓIRΓJ(ω•R/A
L
⊗R ω•S/R)

˜

OO

˜ // RΓ̂
I
RΓ̂

J
(ω•
R̂/A

L
⊗R̂ ω

•
Ŝ/R̂

)

˜OO

RΓI (ω•R/A
L
⊗R RΓJ(ω•S/R))

˜

OO

˜ //

TrJ

��

RΓ̂
I
(ω•
R̂/A

L
⊗R̂ RΓ̂

J
(ω•
Ŝ/R̂

))

˜OO

TrŜ/R̂

��
RΓI (ω•R/A)

TrI

��

˜ // RΓ̂
I
(ω•
R̂/A

)

TrR̂/A

��
A[0] A[0]
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The proof of the commutativity of (∗) is as follows. Suppose F is a bounded-below
complex of R-modules with finitely generated cohomology and G is a bounded-
below complex of finitely generated S-modules, we have a bifunctorial commutative

diagram (with F̂ = F ⊗R R̂, G′ = G⊗S S′, and Ĝ = G⊗S Ŝ):

RΓL(F
L
⊗R G) ˜ // RΓL′(F

L
⊗R G′) ˜ // RΓ̂

L
(F̂

L
⊗R̂ Ĝ)

RΓIRΓJ(F
L
⊗R G)

˜
OO

˜ // RΓIRΓJ′(F
L
⊗R G′)

˜

OO

˜ // RΓ̂
I
RΓ̂

J
(F̂

L
⊗R̂ Ĝ)

˜OO

RΓI (F
L
⊗R RΓJG)

˜
OO

˜ // RΓI (F
L
⊗R RΓJ′G

′)

˜

OO

˜ // RΓ̂
I
(F̂

L
⊗R̂ RΓ̂

J
Ĝ)

˜OO

This shows that the top two rectangles in (∗) commute. For the rest of (∗) it is
enough to show that the following diagram commutes:

RΓI (ω•R/A
L
⊗R RΓJ(ω•S/R))˜
��

TrJ // RΓI (ω•R/A)

TrI

##FFFFFFFFFF

RΓI (ω•R/A
L
⊗R RΓJ′(ω

•
S′/R))˜

��

TrS′/R // RΓI (ω•R/A)˜

��

A[0]

RΓ̂
I
(ω•R/A

L
⊗R̂ RΓ̂

J
(ω•
Ŝ/R̂

))
TrŜ/R̂

// RΓ̂
I
(ω•
R̂/A

)

TrR̂/A

<<xxxxxxxxxxx

The rectangle on the top commutes by definition of TrJ . The triangle on the right
end of the diagram commutes by definition of TrI . The rectangle at the bottom
commutes by flat base change, since the following diagram is cartesian:

Spf(Ŝ, Ĵ)

��

//

�

Spf(S′, J ′)

��
Spf(R̂, Î) // SpecR

�





CHAPTER 6

Iterated residues

6.1. Comment on Translations

This is more of an orienting remark. Suppose M and N are OX -modules on a
ringed space (X, OX), and d, e are integers. According to [L4, pp.28–29, (1.5.4)] the
functor FN [d] = (−)⊗N [d] on the homotopy category of complexes of OX -modules
is triangle preserving with the isomorphism (A•[1])⊗N [d] −→∼ (A•⊗N [d])[1] being
the identity map (“without the intervention of signs” in the language of [C1]). Signs
do intervene if the first argument in the tensor product is fixed and the second varies.
However, if the fixed first argument is an OX -module, i.e., a complex concentrated
in the 0th-spot, then signs do not intervene. More precisely, GM = M ⊗ (−) is
triangle preserving, for the identity isomorphism M ⊗ (B•[1]) −→∼ (M ⊗ B•)[1].
The same sign conventions apply for the derived tensor product on the derived
category, see [L4, pp.62–63, (2.5.7)].

For complexes of OX -modules A• and B•, let

θij : (A•[i])⊗ (B•[j]) −→∼ (A• ⊗B•)[i+ j]

be as in [L4, pp.28–29, (1.5.4)]. Then the following composite is a composite of
identity maps and hence is the identity map.

M [e]⊗N [d] ˜−−−−−→
θe0

(M ⊗N [d])[e] ˜−−−−−→
θ0d

(M ⊗N)[d][e](6.1.1)

=−−−−→ (M ⊗N)[d+ e].

(Strictly speaking, (6.1.1) is the identity map when the tensor product is in the
ordinary category of complexes; over the derived category, the induced map on
the homology in degree −(d + e) canonically identifies with the identity map. In
particular, if either of M,N is flat as OX -modules, then (6.1.1), viewed as a derived-
category map, also canonically identifies with identity.)

Thus, given a map ψ̄ : M ⊗N → T of OX -modules, we get a map in D(X)

(6.1.2) ψ : M [e]⊗N [d]→ T [d+ e]

given by (ψ̄[d + e]) ◦ (6.1.1). The maps ψ̄ and ψ determine each other. Indeed,
ψ̄ = H−(d+e)(ψ).

6.2. Iterated generalized fractions

Let R be a (noetherian) ring, I ⊂ R an ideal generated by u = (u1, . . . , ud).
For any R-module M we have a map of complexes

(6.2.1) M [d]⊗R K•∞(u) −→ Hd
I(M)[0]

49
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defined on 0-cochains by

m⊗ 1

uα1
1 . . . uαdd

7→ (−1)d
[

m
uα1

1 , . . . , uαdd

]
.

This is a map of complexes since every 0-cochain of M [d] ⊗R K•∞(u) (and of
Hd
I(M)[0]) is a 0-cocycle and because Hd

I(M)[0] is a complex concentrated only
in degree 0. In the event M is a free R-module and u is a quasi-regular sequence
(or if u is locally an M -sequence), (6.2.1) is a quasi-isomorphism. The map (6.2.1)
is functorial in M .

Let ModR be the category of R-modules. While (6.2.1) is a morphism in the
category C(ModR) there is an analogous map in D(ModR) described as follows.

Since Hj
I(M) = 0 for j > d, there is a canonical map in D(ModR),

(6.2.2) φR,I(M) : RΓI (M [d]) −→ Hd
I(M)[0]

such that H0(φR,I(M)) is the identity map on Hd
I(M). One checks, using the defi-

nition of the generalized fraction [
m

u
α1
1 ,...,u

αd
d ] , that the following diagram commutes

in D(ModR)

(6.2.3)

M [d]⊗R K•∞(u)˜
(C.5.2)

��

(6.2.1)

))TTTTTTTTTTTTTTT

RΓI (M [d])
φR,I

// Hd
I(M)[0]

Next, suppose S is an R-algebra and J ⊂ S is an S-ideal generated by v =
(v1, . . . , ve). Suppose N is an R-module. We have an isomorphism

(6.2.4) Hd+e
IS+J(M ⊗R N) −→∼ Hd

I(M ⊗R He
J(N))

given by

(6.2.5)

[
m⊗ n

vβ1

1 , . . . , vβee , u
α1
1 , . . . , uαdd

]
7→

m⊗ [ n

vβ1

1 , . . . , vβee

]
uα1

1 , . . . , uαdd


We claim that the following diagram commutes where we identify M [d] ⊗R N [e]
with (M ⊗R N)[d+ e] as in (6.1.1):

(6.2.6)

(M [d]⊗R N [e])⊗S K•∞(v,u, S)
(6.2.1) // Hd+e

IS+J(M ⊗N)[0]

(6.2.4)

��

M [d]⊗R (N [e]⊗S K•∞(v, S))⊗R K•∞(u, R)

(6.2.1)

��
M [d]⊗R He

J(N)[0]⊗R K•∞(u, R)
(6.2.1)

// Hd
I(M ⊗R He

J(N))[0]

Indeed, consider a 0-cocycle m⊗n⊗ 1

v
β1
1 ...vβee ,u

α1
1 ...u

αd
d

of M [d]⊗N [e]⊗K•∞(v,u, S).

Its image along either possible route (east-followed-by-south or south-followed-by-

east) is (−1)d+e[m⊗[ n
vβ

]
uα

]. This proves that (6.2.6) commutes.
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The above is diagram in the category of complexes C(ModR). This can be
upgraded to the following:

Proposition 6.2.7. The following diagram commutes in D(ModR):

RΓIS+J(M [d]⊗R N [e])
φS,IS+J // Hd+e

IS+K(M ⊗N)[0]

(6.2.4)

��

RΓISRΓJ(M [d]⊗R N [e])

˜ OO

RΓI (M [d]
L
⊗R RΓJN [e])

˜ OO

φS,J

��
RΓI (M [d]⊗R He

J(N)[0])
φR,I

// Hd
I(M ⊗R He

J(N))[0]

Proof. This is a straightforward re-interpretation of the commutativity of
(6.2.6) using the commutativity of (6.2.3). �

Remark 6.2.8. Proposition 6.2.7 can be interpreted as saying (6.2.4) is the
isomorphism given by the Leray spectral sequence for the composite functor ΓIS+J =
ΓI ◦ΓJ . See [LS, Proposition (3.3.1)] as well as the correction by the second author.

6.3. Cohen-Macaulay maps and iterated residues

Suppose X = SpecS, Y = SpecR, Z = SpecA are affine schemes, and f : X →
Y is Cohen-Macaulay of relative dimension e, g : Y → Z is Cohen-Macaulay of
relative dimension d. Note that we have finite type maps of rings A → R and
R → S. Suppose I ⊂ R and J ⊂ S are as in §6.2 with the added condition that
the given generators of I and J , namely u = (u1, . . . , ud) and v = (v1, . . . , ve)
repectively are quasi-regular, and that A→ R/I and R→ S/J are finite.

Since A → R and R → S are flat with Cohen-Macaulay fibres, under our
hypotheses, A → R/I and R → S/J are finite and flat, i.e., Cohen-Macaulay of
relative dimension 0. Let L = IS+J , W1 = SpecS/J ↪→ X, W2 = SpecR/I ↪→ Y ,
and W = W1 ∩ f−1(W2) = SpecS/L ↪→ X.

In what follows, for M ∈ ModR and N ∈ ModS we make the standard identi-

fications, Hd
I(M) = Hd

W2
(Y, M̃), He

J(N) = He
W1

(X, Ñ), and Hd+e
L (N) = Hd+e

W (Ñ).

We remind the reader that ω•R/A = ω#
R/A[d], ω•S/R = ω#

S/R[e], and ω•S/A = ω#
S/A[d+e].

Finally, let R̂ be the I-adic completion of R, Ŝ the L-adic completion of S,

and S∗ the J-adic completion of S. Let Ĵ = JŜ, L̂ = LŜ, and Î = IR̂. Note that

R̂→ Ŝ/Ĵ is finite. Let ω#

Ŝ/A
= ω#

S/A⊗S Ŝ, ω#

Ŝ/R̂
= ω#

S/R⊗S Ŝ and ω#

R̂/A
= ω#

R/A⊗R R̂

The maps Tr(Ŝ,L̂)/A, Tr(Ŝ,Ĵ)/R̂, and TrR̂/A give rise, on applying the cohomology

functor H0(−) to maps tr#Ŝ/A : Hd+e

L̂
(ω#

Ŝ/A
) → A, tr#Ŝ/R̂ : He

Ĵ
(ω#

Ŝ/R̂
) → R̂, and

tr#R̂/A : Hd
Î
(ω#

R̂/A
)→ A.

Proposition 6.3.1. Let notations be as above.
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(a) The following diagram commutes, with χ = χ
[g,f]

:

Hd+e
L (ω#

R/A ⊗R ω
#
S/R)

Hd+e
L (χ) //

(6.2.4)

˜

��

Hd+e
L (ω#

S/A)

res#
W

��

Hd
I(ω

#
R/A ⊗R He

J(ω#
S/R))

via res#
W1

��
Hd
I(ω

#
R/A)

res#
W2

// A

(b) Let χ̂ = χ
[Ŝ/R̂/A]

. Then the following diagram commutes:

Hd+e

L̂
(ω#

R̂/A
⊗R̂ ω

#

Ŝ/R̂
)

via χ̂ //

(6.2.4)

˜
��

Hd+e

L̂
(ω#

Ŝ/A
)

tr#Ŝ/A

��

Hd
Î
(ω#

R̂/A
⊗R̂ He

Ĵ
(ω#

Ŝ/R̂
))

via tr#R̂/A

��
Hd
Î
(ω#

R̂/A
)

tr#R̂/A

// A

Proof. Part (a) is mainly a re-statement of Proposition 5.2.17 (b), with Propo-
sition 6.2.7 explaining how (6.2.4) enters into the picture. Before giving more de-
tails, we make some observations. First, let Jn denote the S-ideal generated by
(vn1 , . . . , v

n
e ). Then S/Jn is finite and flat over R, and hence is Cohen-Macaulay

of relative dimension 0 over R. This means that the relative dualizing module
for the algebra R → S/Jn, i.e., ω#

S/R ⊗S ∧
e
SJn/J

2
n, is flat over R, whence so its

direct limit over n, namely He
J(ω#

S/R). Since f , g and gf are Cohen-Macaulay of

relative dimensions e, d, and d+ e respectively, the maps φS,J(ω#
S/R), φR,I(ω

#
R/A),

and φS,L(ω#
S/A) are all isomorphisms. Moreover, since He

J(ω#
S/R) is R-flat, the map

φR,I(ω
#
R/A ⊗R He

J(ω#
S/R)) is also an isomorphisms.

Since ω#
S/R and He

J(ω#
S/R) are both flat over R, we can apply Proposition 6.2.7

with M = ω#
R/A, N = ω#

S/R. Using the isomorphisms φS,J(ω#
S/R), φR,I(ω

#
R/A),

φS,L(ω#
S/A), φR,I(ω

#
R/A⊗RHe

J(ω#
S/R)), and applying Proposition 6.2.7, our assertion

is equivalent to the commutativity of the diagram in part (b) of Proposition 5.2.17.
This proves (a)

The proof of (b) is identical, with part(a) of Proposition 5.2.17 replacing part
(b) of loc.cit. �

Proposition 6.3.1 gives rise to two related residue formulas. The following is
a consequence of part (a) of the proposition and the formula for the map (6.2.4)
given in (6.2.5). For µ ∈ ω#

R/A and ν ∈ ω#
S/R and for integers αl > 0, βk > 0,
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l ∈ {1, . . . , d}, k ∈ {1, . . . , e}, we have

(6.3.2) res#
W2

res#
W1

[
ν

vβ1

1 , . . . , vβee

]
µ

uα1
1 , . . . , uαdd

 = res#
W

[
χ

[S/R/A]
(µ⊗ ν)

vβ1

1 , . . . , vβee , u
α1
1 , . . . , uαdd

]
Similarly, for µ ∈ ω#

R̂/A
and ν ∈ ω#

Ŝ/R̂
and αl, βk as above, we have by part (b) of

the proposition, and the formula for the map (6.2.4) given in (6.2.5),

(6.3.3) tr#R̂/A

tr#Ŝ/R̂

[
ν

vβ1

1 , . . . , vβee

]
µ

uα1
1 , . . . , uαdd

 = tr#Ŝ/A

[
χ

[Ŝ/R̂/A]
(µ⊗ ν)

vβ1

1 , . . . , vβee , u
α1
1 , . . . , uαdd

]

Remark 6.3.4. We will apply part (b) of the Proposition 6.3.1 in Part 2 in the
following situation. Let R = A[u1, . . . , ud], S = R[v1, . . . , ve] where u = (u1, . . . , ud)
and v = (v1, . . . , ve) are algebraically independent variables over A and R respec-

tively. Let I = uR, and J = vS. Then R̂ = A[[u]] and Ŝ = R[[v]] = A[[u,v]]. See
Theorem 12.2.4





Part 2

The concrete theory via Verdier’s
isomorphism





CHAPTER 7

Overview for Part 2

For this overview, unless otherwise stated, schemes are ordinary noetherian
schemes. In the main body of Part 2, we use formal schemes as a way around
compactifications of separated finite-type maps, so that complications involving
compatibilities between different compactifications do not need to be addressed.

The principal aim of Part 2 is to describe explicitly the residues—and the trace,
when the map in question is proper—associated with Verdier’s isomorphism

ΩnX/Y [n] −→∼ f !OY

(see [V, p. 397, Thm. 3]) for a smooth separated map f : X → Y of relative dimen-
sion n. Recall that the foundations of Grothendieck duality (GD) that we use are
the ones initiated by Deligne in [D1].

If the map f above is proper, there is an associated trace trf : Rnf∗Ω
n
X/Y → OY

obtained by transferring the source of the map tr#f (defined in (3.2.2)) to Rnf∗Ω
n
X/Y

via Verdier’s isomorphism. As discussed in the introduction to the book, the task
of finding a concrete expression for trf is not simple. In this part we take up this
task, and believe we give a satisfactory answer to the problem. Briefly, any theory
of traces comes with an associated theory of residues, and we show that residues
associated with trf satisfy the formulas [RD, III, § 9], which are stated without
proof in loc.cit.1

The prime object of study in Part 2 of this book is Verdier’s isomorphism above.
Strictly speaking, the isomorphism given by Verdier in [V, p. 397, Thm. 3] is from
f !OY to ΩnX/Y [n], and thus, we are talking about the inverse of the map in loc.cit.

In view of recent results of Lipman and Neeman, this is the fundamental class map
cf associated with f [LN2, p. 152, (4.4.1)], but we use the description given in [V]
and hence call it the Verdier isomorphism. In [L3], Lipman outlines a programme
for a global residue theorem via the fundamental class map (see [ibid., § 5.5 and
§ 5.6]). Part 2 is intimately related to that programme via the just mentioned results
of Lipman and Neeman. However, we do not use the results on the fundamental
class map of Ibid. Since the isomorphism we use (between ΩnX/Y [n] and f !OY )

is that described by Verdier, we call it the Verdier isomorphism rather than the
fundamental class.

We now give a more more detailed description of the contents of Part 2. We
are mainly concerned with three (intertwined) aspects:

1. Understanding the abstract traces

Trf (OY ) : Rf∗f
!OY → OY

1though all the formulas stated in [RD] (labelled (R1)–(R10) there) have been proved with
great care by Conrad in [C1, Appendix A].

57
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and

Trf,Z(OY ) : RZf∗f
!OY → OY

in concrete terms (using differential forms via Verdier’s isomorphism)
when f : X → Y is smooth and separated. The first map is meaningful
when f is proper, as the co-adjoint unit for the adjoint pair (Rf∗, f

!) (cf.
(1.1.2)). The second is meaningful when Z is a closed subscheme of X
proper over Y (cf. (2.3.1)). If Z = X, Trf,Z = Trf . In fact, we will
concentrate on the case when Z is finite over Y , in which case we are
talking about abstract residues. The aim to is realise these abstractions
concretely when we substitute ΩnX/Y [n] for f !OY via Verdier’s isomor-

phism (n being the relative dimension of f). Understanding Trf,Z for
such Z is tantamount to understanding Trf for f proper via the so-called
Residue Theorem.

2. Making the abstract transitivity map

χ[g,f ] : Lf∗g!OZ
L
⊗OX f

!OY −→ (gf)!OZ

of [L4, § 4.9] and (2.3.1) concrete in terms of differential forms (again
using Verdier’s isomorphism) when f : X → Y and g : Y → Z are sepa-
rated finite-type maps in certain situations. Our main interest is in the
following two situations:
(i) The maps f and g are smooth, say of relative dimensions m and

n respectively, and we use Verdier’s isomorphisms to identify g!OZ ,
f !OY , and (gf)!OZ with ΩnY/Z [n], ΩmX/Y [m], and Ωm+n

X/Z [m + n] re-

spectively. This is closely related to the results in [LS].
(ii) The map f is a closed immersion say of codimension d, and the

maps g and gf are smooth, say of relative dimensions n + d and n
respectively.

In fact these two cases are essentially enough to develop a theory of
residues which give the formulas (R1) to (R10) in [RD, Chap. III, § 9].

3. Finding a concrete expression for the abstract trace map

h∗f
!OZ ∼= h∗h

!g!OZ
Trh−−→ g!OZ

where f : X → Z and g : Y → Z are smooth separated maps, h : X → Y
is a finite flat map and f, g, h satisfy f = g ◦h. This concrete expression
is in terms of differential forms (via our now familiar way of identifying
f !OZ and g!OZ with differential forms). In fact we show that it is the
trace of Lipman and Kunz, defined in [Ku, § 16]. One consequence is that
if f : X → Y is an equidimensional map of relative dimension n such
that X and Y are excellent with no embedded points and the smooth
locus of f is dense in X, then H−n(f !OY ) can be identified, via the
Verdier isomorphism on the smooth locus of f , with a coherent subsheaf
of the sheaf of meromorphic differentials ∧nk(X)Ω

1
k(X)/k(Y ), namely the

sheaf of regular differentials of Kunz and Waldi [KW, § 3, § 4]. One
therefore recovers the main results in [HK1], [HK2], [HS], and [LS] via
our approach.

4. Giving explicit formulas for residues in important cases, and complete
proofs of the residue formulas R1–R10 in [RD, III, §9] using our chosen
foundations of GD. The proofs of R1-R10 are given in Chapter 15.
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We elaborate on these points in the rest of this introduction.

7.1. The twisted image pseudofunctor −!

GD is concerned with constructing a variance theory, i.e., a pseudofunctor,
“upper shriek”, which we denote −!, on a suitable subcategory of schemes and
finite type maps.2 For a fixed scheme Z, Z ! is a suitable full subcategory of D(Z)
containing Dc(Z). We will say more about these subcategories later. For now we
wish to paint with broad strokes. Whichever way one approaches the foundations
of GD, the resulting pseudofunctor −! should be local (more on that in a moment),
stable under, at least, flat base change, and such that when f is proper, f ! is
right adjoint to Rf∗. By local, this is what we mean: If U → Y is an open Y -
subscheme of g : V → Y as well as of h : W → Y (g, h of finite type), then g!|U and
h!|U are canonically isomorphic — canonical enough that if we have a third finite
type Y -scheme f : X → Y which contains U as an open Y -subscheme, then the
isomorphisms between f !|U , g!|U , and h!|U are compatible. All of this (and much
more) can be found in [L4] for the theory of −! initiated in [D1]. For schemes with
finite Krull dimension, the local nature of upper-shriek was proved by Deligne in
[D1], and using his flat base change result, by Verdier in [V].

Additonally, one wants a theory which specializes to the familiar Serre duality
for smooth complete varieties, with the top differential forms playing a critical
dualizing role. For a slightly more general situation, this means that from the
theory of upper shriek one should recover the duality isomorphisms

E xt if (V , ΩdX/Y ) ∼= H omY (Rd−if∗V , OY ) (0 ≤ i ≤ d)

when f : X → Y is smooth and proper of relative dimension d, V is a finite rank
vector bundle on X. This amounts to showing that f !OY ∼= ΩdX/Y [d] for such a

smooth map f .

7.2. Traces and residues

Recall that if f : X → Y is separated of finite type and Z is closed subscheme
of X which is proper over Y , then one has a map (the trace of f along Z)

Trf,Z : RZf∗f
! → 1

defined in (2.3.1). Note that when Z = X (so that f is proper), then Trf,Z = Trf .
If f is smooth of relative dimension n, Z as above is cut out by a sequence

t = (t1, . . . , tn) ∈ Γ(X, OX) with Z → Y finite, and Zm is the thickening of Z
defined by tm = (tm1 , . . . , t

m
n ), and say Y = SpecA, then Verdier’s isomorphism

ΩnX/Y −→
∼ f !OY gives us maps (one for each m)

ExtnX(OZm , ΩnX/Y ) −→ A.

As Verdier argued in [V, bottom of p.399], by passing to the completion of a
localisation of A (via flat base change), and making étale base changes, to know
the above map (for any m) is to know Trf when f is proper. If one passes to the
direct limit as m→∞, then we get a map

Hn
Z(X, ΩnX/Y ) −→ A.

2One can have essentially finite-type maps.
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The above map is easily seen to be H0(−) applied to the composite

(7.2.1) RΓZ(X,ΩnX/Y [n]) −→∼ RΓZ(X, f !OY )
Trf,Z−−−→ A.

This map, which we denote res
Z

, also determines Trf if f is proper. We prefer
to work with cohomology with supports (rather than with ExtnX(OZ , ΩnX/Y )), fol-

lowing the general philosophy underlying Lipman’s body of work, especially [L2].
Berthelot in [Ber] also makes the connection between the map on ExtnX(OZ ,ΩnX/Y )

and the map on cohomology with supports. However Berthelot uses the foundations
of GD based on residual complexes.

The relationship between upper shriek and the associated traces is intimate.
To assert that one has a concrete understanding of upper shriek in a particular
situation is tantamount to asserting that one understands Trf,Z for a certain class
of closed subschemes Z which are proper over the base scheme Y . For example if f
is a Cohen-Macaulay map (i.e., a flat finite type map with Cohen-Macaulay fibres),
then to “know” Trf,Z(OY ) for Z which are finite and flat over Y is to “know”
duality for f .

Returning to the case we are discussing (f smooth of relative dimension n),
suppose Z ↪→ X is a closed immersion cut out by a sequence of global sections
t = (t1, . . . , tn) of OX , and Y = SpecA. Assume Z → Y is an isomorphism and
further assume that Z is contained in an affine open subscheme U = SpecB of X
(something that can be achieved by shrinking Y , since Z → Y is an isomorphism).
Let

res
Z

: Hn
Z(X, ΩnX/Y ) = Hn

Z(U, ΩnU/Y ) −−−−→ A

be H0((7.2.1)). It is well known that elements of Hn
tB(ΩnB/A) are finite B-linear

combinations of elements of the form
[
dt1∧···∧tn
t
β1
1 ,...,tβnn

]
with βi positive integers. Ideally

one would like

(7.2.2) res
Z

[
dt1 ∧ · · · ∧ tn
tβ1

1 , . . . , tβnn

]
=

{
1 when βi = 1 for all i = 1, . . . , n

0 otherwise.

The exact answer depends on the isomorphism f !OY −→∼ ΩnX/Y [n] chosen. This is

at the heart of this part of the book, since our choice is the isomorphism Verdier
gives in [V, p. 397, Thm. 3]. In fact we show that Verdier’s isomorphism does give
the above formula in the case being considered, i.e., when Z is a section of f . This
is the critical case, and we deduce other residue formulas from this one by either
making étale base changes, or base changing f by itself and using the diagonal
section X ↪→ X ×Y X of the first projection (which is to be thought of as the base
change of f).

We could obtain the above explicit description of res
Z

when Z is a section of
f because of the results in [S2]. The main results there state that if f : X → Y
is Cohen-Macaulay of relative dimension d, then for any base change u : Y ′ →
Y , there is a natural isomorphism θfu : v∗ω#

f −→∼ ω#
g , where v : X ×Y Y ′ → X

and g : X ×Y Y ′ → Y ′ are the respective projections. When f is proper, this
isomorphism is compatible with traces. If f is smooth (proper or not), then this
isomorphism when transferred to v∗ΩnX/Y [n] and ΩnX×Y Y ′/Y ′ [n] is the identity map

under the standard identification of differential forms. These are very similar to
the main results in [C1]. The difference is that in [S2] the foundations of GD are
based on the one initiated by Deligne in [D1], whereas in [C1] it is the based on
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residual complexes. In [C1] the identification of differential forms is built into the
definition of the base change isomorphism between v∗ω#

f and ω#
g , since the strategy

is to embed X into schemes smooth over Y . The challenge in [C1] is to show that
the result is compatible with traces when f is proper.

In our approach to finding explicit formulas for res
Z

, the role played by θfu,
when u is non-flat, is crucial. Roughly speaking, Verdier’s isomorphism can be

regarded as the residue formula res
∆

[
ds1∧···∧dsn
s1,...,sn

]
= 1 for the diagonal section ∆

in X×Y X where the diagonal is cut out by s = (s1, . . . , sn) in X×Y X. If Z ↪→ X
is a section of f , cut out by t1, . . . , tn ∈ Γ(X, OX) then pulling back the diagonal
via the base change Z → X, we get

(7.2.3) res
Z

[
dt1 ∧ · · · ∧ dtn
t1, . . . , tn

]
= 1.

We can do this because Verdier’s isomorphism is compatible with arbitrary base
change – the result in [S2, p.740, Thm. 2.3.5 (b)] that we alluded to above. The
formula (7.2.3) says that (7.2.2) is true when all the βi are 1. If X = PnY , f the
standard projection PnY → Y , and Z = ∩ni=1{Ti 6= 0}, where Ti, i = 0, . . . , n
are homogeneous co-ordinates on PnY (and ti = Ti/T0, for i = 1, . . . , n), then one
can show easily that (7.2.3) implies (7.2.2). The crucial ingredient needed is the
simple and elegant computation of Lipman in [L2, pp.79–80, Lemma (8.6)]. The
proof is essentially carried out in the proof of Proposition 10.2.3 (ii). Since res

Z

depends only on the formal completion of X along Z, therefore if Z and t satisfy
the hypotheses given when stating (7.2.2), then formula (7.2.2) holds. This is the
first, and a very important step in our proofs in Chapter 15 of the residue formulas
(R1)–(R10) of [RD, Chap. III, § 9].

If the closed subscheme Z of X cut out by t = (t1, . . . , tn) is finite over Y (and
hence necessarily flat over Y ) of constant rank (not necessarily an isomorphism),
then it turns out that the right side of (7.2.3) needs to be replaced by rank(Z/Y ).

Remark 7.2.4. One way to think about formula (7.2.3) is to regard

ϕ 7→ res
Z

[
ϕdt1 ∧ · · · ∧ dtn

t1, . . . , tn

]
,

(for ϕ a section of OX in an open, or even formal, neighbourhood of Z) as the
Dirac distribution along Z. Indeed, (with Y = Spec(A)), since Z is a section of f ,
the completion of X along Z is the power series ring A[|t1, . . . , tn|], and according
to (7.2.3), the right side is ϕ(0, . . . , 0), after developing ϕ as a power-series in t.
If A = C, and field of complex numbers (so that Z = {p}, a point), this can
be interpreted as the fact that the Dolbeault representative of the Cauchy kernel
dt1 ∧ · · · ∧ dtn/t1 · · · tn at the point p is the Dirac distribution at p (see [ST]).

7.3. Transitivity

Finding concrete expressions (when we have two finite-type separable maps
f : X → Y and g : Y → Z) for the abstract transitivity map

χ[g,f ] : Lf∗g!OZ
L
⊗OX f

!OY −→ (gf)!OZ

of [L4, § 4.9] and Definition 5.2.16 is perhaps the most important technical task
undertaken in Part 2. To establish this, we rely heavily on the abstract transitivity
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results on formal schemes that we established in the first part of this monograph.
As we pointed out earlier (see item (2.) on p.58) there are two key situations where
concrete manifestations of χ[−,−] are important. The first situation of importance is
when we have two smooth separated maps, f : X → Y and g : Y → Z, say of relative
dimensions m and n respectively. If we use Verdier’s isomorphisms to identify g!OZ ,
f !OY , and (gf)!OZ with ΩnY/Z [n], ΩmX/Y [m], and Ωm+n

X/Z [m + n] respectively, then

χ[f,g] transforms to the map f∗µ⊗ν 7→ ν∧f∗µ (see Theorem 12.2.4). In fact we show
this at the level of formal schemes, and formal schemes enter in an essential way in
our proof (via the results on transitivity for residues in (6.3.2) and Theorem 13.1.1)
even when X and Y are ordinary schemes. The proof is carried out in Chapter 12.

The second situation of importance occurs when the smooth map f : X → Y
factors as f = π ◦ i, where i : X ↪→ P is a closed immersion say of codimension d,
and π : P → Y is smooth of relative dimension n+ d. The concrete expression for
χ[i,π] then is governed by

i∗(η ∧ dt1 ∧ · · · ∧ dtd)⊗ 1/t 7→ i∗η

where η is a section of Ωn+d
P/Y , ti ∈ Γ(P, OP ), i = 1, . . . , d, are sections which cut out

X and 1/t is a well-defined generating section, depending upon t = (t1, . . . , td), of
the top exterior product ∧dN of the normal bundle N of X in P , which exterior
product, by the fundamental local isomorphism is identified with f !OP [d]. The
proof of this concrete representation of χ[i,π]is carried out in §13.2.

In both situations, we need the residue formula (7.2.2) for residues along sec-
tions of smooth maps. We turn this around later, and use the concrete expressions
for χ[−,−] to arrive at formulas for res

Z
for smooth maps f : X → Y when Z → Y

is not an isomorphism (but is finite).
There is one interesting way in which (7.2.3) brings in concrete answers. Let A

be a ring, and C = A[T1, . . . , Tn]/(f1, . . . , fn) be a finite flat algebra overA. Let Z =
SpecC, X = AnA and Y = SpecA. Let I = fA[T] where f = (f1, . . . , fn), so that I
is the ideal of Z in the polynomial ring A[T]. By the general calculus of generalized

fractions, if p(T) ∈ A[T] then the element
[
p(T)dT1∧···∧dTn

f1,...,fn

]
∈ Hn

I (ΩnA[T]/A) depends

only on the image of p(T) in C. We show that the map

c 7→ res
Z

[
p(T)dT1 ∧ · · · ∧ dTn

f1, . . . fn

]
with p(T) a pre-image of c, is the Tate trace described in [MR, Appendix]. We
prove this in Theorem 14.1.7, and (7.2.3) plays an important role. The point is,
knowing the residue in a very special situation allows us to deduce formulas for
residues in many other situations.

Perhaps the most important way that that (7.2.2) comes into play is that it
characterises the Verdier isomorphism (or more accurately the fundamental class).
Continuing with the situation where f : X → Y is smooth of relative dimension n,
suppose we have some isomorphism ψ : ΩnX/Y [n] −→∼ f !OY . When is ψ Verdier’s

isomorphism? The answer is, if and only if, for every étale base change u∗Y ′ → Y
and every section Z of the base change map f ′ : X ×Y Y ′ → Y ′, the composite

Rn
Zf
′
∗Ω

n
X×Y Y ′/Y ′ ˜−−−→

via ψ
H0(RZf

′
∗f
′!OY ′)

Trf′,Z−−−−→ OY ′
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is given by (7.2.2). Note that the first isomorphism involves flat base change for f !.
The precise statement is given in Theorem 10.4.8. This characterisation of Verdier’s
isomorphism allows us to relate the fundamental class with the regular differentials
of Kunz. We work this out in Chapter 11. We give a different proof later of the
relationship between the fundamental class and regular differentials.

7.4. Trace for finite flat maps

Suppose the smooth map f : X → Z of relative dimension n can be factored as
f = g ◦h, where h : X → Y is finite and g : Y → Z is smooth of relative dimension

n (so that h is in fact flat). Then the composite h∗f
! ∼= h∗h

!g! Trh−−→ g!, gives, via
Verdier’s isomorphism for f and g a map

trh : h∗Ω
n
X/Z −→ ΩnY/Z .

In [Ku], Kunz, based on a suggestion by Lipman (who in turn was influenced by
residue formulas stated without proof in [RD, Chap. III, § 9]) defined an explicit
trace σh : h∗Ω

n
X/Z −→ ΩnY/Z . We show that trh = σh. In fact, we use the two

concrete versions of transitivity that we mention above. Assuming h factors as a
closed immersion i : X → P followed by a smooth map π : P → Y , where P is an
open subscheme of An+d

Y and π the structure map, (a situation we can achieve,
retaining finiteness of h, if we pass to completions of local rings of points on Y )
then the assertion trh = σh amounts to the compatibilities between the abstract
transitivity maps χ[h,g], χ[i,π], χ[π,g], and χ[i,gπ] given in Proposition-Definition
5.2.4 (ii) or in [L4, p. 238]. The map trh occurs in formula (R10) for residues,
and it is satisfying that there is a more explicit description of it in terms of the
Kunz-Lipman trace σh.

7.5. Regular Differential Forms

The regular differentials of Kunz and Waldi developed in [KW] is a vast gen-
eralization of Rosenlicht’s differentials for singular curves [R]. We have already
alluded to the connection between the regular differential forms and Verdier’s iso-
morphism. Regular differntial forms are defined when f : X → Y is a generi-
cally smooth equidimensional map between excellent schemes having no embedded
points. In such a case, if Xsm is the smooth locus of f , and f sm : Xsm → Y the
restriction of f , there is an isomorphism ΩnXsm/Y [n] → (f sm)!. The isomorphism

is based on the construction of regular differentials in [KW] and the principal re-
sults of [HS]. What we show in this part of the book is that this isomorphism is
Verdier’s isomorphism. We give two proofs. The first uses the characterisation of
Verdier’s isomorphism via (7.2.2) that we alluded to before. The other, more satis-
fying, proof relies on the equality of traces trh = σh for finite flat maps h between
schemes smooth over a base that we discussed above. (See §14.3.)





CHAPTER 8

Verdier’s isomorphism

8.1. The Definition

Let f : X → Y be a smooth map of relative dimension r between (formal)
schemes. Assume f is a composite of compactifiable maps. Set X ′′ := X ×Y X
and let ∆: X →X ′′ be the diagonal immersion, which is closed by our hypotheses.
Denote by p1 and p2 the two projections from X ′′ on to X , and by N∆ the locally
free OX -module corresponding to the “normal bundle” of the regular immersion ∆.
In other words, if I∆ is the ideal sheaf of X in X ′′, then N

∆
= (I∆/I 2

∆)∗, the
dual of I∆/I 2

∆. As in (C.2.8) and (C.2.10), set

N r
∆ = ∧rOX

N∆

and

∆N = L∆∗(−)
L
⊗OX

N r
∆ [−r].

We then have an isomorphism

(8.1.1) f#OY

L
⊗OX

N r
∆ [−r] −→∼ OX

defined by the commutativity of the following diagram:

(8.1.2) f#OY

L
⊗OX

N r
∆ [−r]

˜(8.1.1)

��

∆Np∗
2
f#OY˜oo ˜

(2.2.2)
// ∆Np#

1
OX˜

η′∆

��
OX ∆#p#

1
OX˜oo

The map η′∆ is as in (C.2.13). The unlabelled arrow on the top row is the one arising
from L∆∗p∗

2
−→∼ 1 and the one on the bottom row from the functorial isomorphism

∆#p#
1
−→∼ 1#

X .
Writing L ∗ for the dual of an invertible OX -module L we see that N r

∆ = ω∗f .

Using this and (8.1.1) one deduces, as Verdier did in [V, p. 397, Theorem 3],
that f#OY and ωf [r] are isomorphic. However, there is some ambiguity about the
exact isomorphism (see the discussion around (7.2) in p. 758 of [S2]). But at the
very least we note that f is Cohen-Macaulay. We give the isomorphism we will
work with in Definition 8.1.5 after some necessary preliminaries.

As usual, let ω#
f = H−r(f#OY ) and make the identification

f#OY = ω#
f [r].

Applying H0 to (8.1.1) we get an isomorphism

(8.1.3) ω#
f ⊗OX

ω∗f −→∼ OX .

65
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Let

(8.1.4) v̄
f
(= v̄) : ωf −→∼ ω#

f

be the canonical isomorphism induced by (8.1.3).

Definition 8.1.5. The Verdier isomorphism for the smooth map f is the iso-
morphism

v
f
(= v) : ωf [r] −→∼ ω#

f [r] = f#OY

given by v
f

= v̄
f
[r].

We will often refer to v̄
f

also as the Verdier isomorphism. Indeed v
f

and v̄
f

determine each other.

Remark 8.1.6. The isomorphism p∗
2
f#OY −→∼ p#

1
OX of (2.2.2) induces (on

applying H0) an isomorphism

θ : p∗
2
ω#
f −→∼ ω#

p
1
.

Note that the original isomorphism p∗
2
f#OY −→∼ p#

1
OX is θ[r] under the identifi-

cations we have agreed to make throughout, namely, f#OY = ω#
f [r] and p#

1
OX =

ω#
p1

[r]. Applying the functor H0 to the commutative diagram (8.1.2) we get the fol-

lowing commutative diagram, showing the relationship between the pairing (8.1.3)
and maps of the form τ #h defined in (3.4.2) (below, h is the identity map).

(8.1.6.1) ω#
f ⊗OX

ω∗f˜
(8.1.3)

��

∆∗(p∗
2
ω#
f ⊗OX ′′ ∆∗ω

∗
f )˜

via θ

��
OX ∆∗(ω#

p
1
⊗OX ′′ ∆∗ω

∗
f )˜

τ #
1,p1,∆

oo

Here the map on the bottom row is as in (3.4.2), with h = 1X , i = ∆, and f = p
1
.

It is an isomorphism because h = 1X is an isomorphism.

Definition 8.1.7. Suppose f : X → Y is pseudo-proper and smooth of rela-
tive dimension r. The Verdier integral (or simply the integral)

(8.1.8) trf : R′
r
X f∗ωf → OY

is the composite R′
r
X f∗ωf

v−→ R′
r
X f∗ω

#
f

tr#f−−→ OY . If in the above situation, X =

Spf(R, J) and Y = Spf(A, I), then we write

(8.1.9) trR/A : Hr
J(ωR/A)→ A

for the global sections of trf . Here ωR/A is the r-th exterior power of the universally
finite module of differentials for the A-algebra R. If we wish to emphasise the adic
structure on R and A, we will use the inconvenient notation tr(R,J)/(A,I) for trR/A.

Remark 8.1.10. While we have defined trf in general, our interest is really

in the case where R′
j
X (F ) = 0 for every j > r and every F ∈ A~c(X ), for then

(ωf , trf ) represents the functor HomY (R′
r
X (−), OY ) on coherent OX -modules (see

Corollary 3.2.4). Even here the notion is most useful in this part of the book when
Y is an ordinary scheme and either X is also ordinary (and hence proper over Y )
or else Y = SpecA and X = Spf R where R is an adic ring, one of whose defining
ideals I is generated by a quasi-regular sequence of length r and such that R/I is
finite and flat over A.
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8.2. Local description of Verdier’s isomorphism

In the above situation suppose X = SpfR, Y = SpfA, so that X ′′ = SpfR′′

where R′′ = R⊗̂AR is the complete tensor product of R with itself over A. The
diagonal map ∆: X ↪→ X ′′ corresponds to the surjective map R′′ → R given
by t1 ⊗ t2 7→ t1t2. Let us assume that the kernel of this map, i.e., the ideal I
of the diagonal immersion, is generated by r elements {s1, . . . , sr}. Since R is
smooth over A of relative dimension r, the sequence s = (s1, . . . , sr) is necessarily
an R′′-sequence. This condition on the diagonal is locally (in X and X ′′) always
achievable.

Let R1 and R2 be the two R-algebra structures on R′′ corresponding to the
projections pi : X ′′ → X, i = 1, 2. For specificity, if a ∈ R, then the R-algebra
structure on R′1 is given by a(b⊗ c) = (ab)⊗ c whilst on R2 it is given by a(b⊗ c) =
b ⊗ (ac). Let ω#

R/A, ω#
Ri/A

, ωR/A, ωRi/A be the global sections of ω#
f , ω#

p
i
, ωf , ωp

i

respectively, where i ∈ {1, 2}. Similarly, Verdier’s isomorphism in this context is
the isomorphism

v̄
R/A

: ωR/A −→∼ ω#
R/A

obtained by taking global sections of v̄
f

: ωf −→∼ ω#
f .

The isomorphism (8.1.3) is equivalent to the isomorphism of finitely generated
R-modules obtained by taking global sections:

(8.2.1) ω#
R/A ⊗R ω

∗
R/A −→

∼ R.

Here is the promised local description of Verdier’s isomorphism. The module
of differentials ωR/A = ∧rRI/I2 is a free rank-one R-module with generator

ds := (s1 + I2) ∧ · · · ∧ (sr + I2).

Let 1/s be the element of (∧rRI/I2)∗ = ω∗R/A = HomR(ωR/A, R) which sends ds

to 1, i.e., it is the generator of the rank one free module (∧rRI/I2)∗ which is dual

to ds.

Proposition 8.2.2. In the above situation we have the following:

(a) Let ν0(s) ∈ ω#
R/A be the unique element such that ν0(s) ⊗ 1/s 7→ 1 un-

der (8.2.1). Verdier’s isomorphism v̄
R/A

: ωR/A −→∼ ω#
R/A is given by the

formula
v̄
R/A

(r ds) = r ν0(s) (r ∈ R).

(b) Suppose further that the adic rings A and R have discrete topology so
that Spf A = SpecA, Spf R = SpecR and A → R is of finite type. The
following formula holds:

res#
∆, p1

[
v̄
R1/R

(ds1 ∧ · · · ∧ dsr)

s1, . . . , sr

]
= 1.

Remarks: Here ds1 ∧ · · · ∧dsr ∈ ωR1/R and the notation res#∆, p1
is to indicate that

the residue is to be taken for the map p
1

and not for p
2
. The hypotheses in part (b)

regarding the adic topologies on A and R is there because we need the result that
Verdier’s isomorphism is compatible with base change. This is one of the main
results of [S2] (see [S2], p.740, Theorem 2.3.5 (b)]). Unfortunately the results in
[S2] are for maps between ordinary schemes. Since certain special compactifications
are locally used, and these are unavailable for arbitrary formal schemes, we decided
it is best not pursue these issues in this book, except in the following special case.
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Suppose the base change is flat. Then the proof in [S2] works mutatis mutandis,
and we see that Verdier’s isomorphism is compatible with flat base change whether
we are working with ordinary schemes or formal schemes. See Theorem 8.4.1.

Proof. Part (a) is an immediate consequence of the definition of v̄
R/A

in

(8.1.4). It remains to prove part (b).
Let us save on notation and write

θ : ω#
R/A ⊗R R2 −→∼ ω#

R1/R

for the R′′-isomorphism corresponding to θ : p∗
2
ω#
f −→∼ ω#

p1
of Remark 8.1.6. Then

the affine version of the commutative diagram (8.1.6.1) is the commutative diagram

(8.2.3) ω#
R/A ⊗R ω

∗
R/A

˜(8.2.1)

��

(ω#
R/A ⊗R R2)⊗R′′ ω∗R/A˜

via θ

��
R ω#

R1/R
⊗R′′ ω∗R/A˜

τ #

R/R,R1

oo

Since ν0(s) ⊗ 1/s 7→ 1 under (8.2.1), from the commutative diagram (8.2.3) we
get τ #

R/R,R1
(θ(ν0 ⊗ 1) ⊗ 1/s) = 1. Moreover, by part (a), ν0 = v̄

R/A
(ds). Thus

Proposition 3.5.4 gives us

res#
∆, p1

[
θ((v̄

R/A
(ds))⊗ 1))

s1, . . . , sr

]
= 1.

Next, if M and N are finitely generated modules over R and ϕ : M → N a map
of R-modules, then we denote the map ϕ ⊗R Ri by p∗

i
(ϕ). One checks easily that

in N ⊗R R2 we have the following equality for m ∈M and ϕ ∈ HomR(M, N):

(p∗
2
(ϕ))(m⊗ 1) = (ϕ(m))⊗ 1.

It is immediate that

res#∆, p1

[
(θ ◦ (p∗

2
(v̄
R/A

)))(ds⊗ 1))
s1, . . . , sr

]
= 1.

Now if s =
∑
i ai⊗bi ∈ I ⊂ R′′ = R⊗AR, then one checks from the definitions that

as elements of the R-module I/I2 = Ω1
R/A, we have the equality s+ I2 =

∑
i aidbi.

This means in particular that in the R′′-module Ω1
R/A ⊗R R2 = Ω1

R1/R
we have

(s+ I2)⊗ 1 = ds. It is immediate from here that ds⊗ 1 = ds1 ∧ · · · ∧ dsr.
We will be done if we can show that θ ◦ (p∗

2
(v̄
R/A

)) = v̄
R1/R

. This statement
about the compatibility of Verdier’s isomorphism with arbitrary base change follows
from [S2, p.740, Theorem 2.3.5] (see also [ibid., pp.739–740, Remark 2.3.4]). Inciden-
tally, this is where we need our hypothesis that our formal schemes are ordinary
schemes and our map is of finite type. �

Remarks 8.2.4. Two observations are worth making.
1) v̄ = H−r(v).
2) If U is an open subscheme of X , and f

U
: U → Y is the structural

morphism on U , then we have a natural isomorphism f#|U −→∼ f#
U

from the
main results of [Nay], whence an isomorphism ω#

f
|U −→∼ ω#

f
U

. From the def-

initions of v
f

and v
f

U
it is easy to see that the composition of isomorphisms
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ωf
U

= ω
f
|U −→∼ ω#

f
|U −→∼ ω#

f
U

is v
f

U
, where the first arrow is v

f
|U and the second

the just mentioned isomorphism.

8.3. Compatibility of Verdier’s isomorphism with completions

We now wish to show the compatibility of Verdier’s isomorphism with comple-

tion. More precisely if f : X → Y is a smooth map and f̂ : W → Y its “comple-
tion” along a closed subscheme of X , then Verdier’s isomorphism (i.e., (8.1.5)) for

f̂ is the “completion” of the Verdier isomorphism for f . The formal statement is
given in Theorem 8.3.2.

Let f : X → Y be a smooth map of relative dimension r between formal
schemes. Suppose I is a defining ideal of X and J ⊂ OX a coherent ideal
containing I (so that J is the ideal of an ordinary scheme Z which is a closed
subscheme of X ). Let W be the completion of X along J (i.e., along Z). Let

κ : W → X be the completion map and f̂ : W → Y the composite f̂ = f ◦κ. We

wish to show that the Verdier isomorphism for f̂ “is” κ∗ of the Verdier isomorphism
for f . As before let X ′′ = X ×Y X , and ∆: X → X ′′ the diagonal immersion.
Let W ′′ = W ×Y W , and let δ : W → W ′′ be the diagonal immersion.

Let κ̃ : W ′′ → X ′′ be the map κ2 = κ × κ. As usual, we have projections
pi : X ′′ →X and πi : W ′′ → W for i = 1, 2. The following commutative diagrams
may help the reader map the relative positions of the schemes and maps involved:

W ′′
κ′2

//

κ′1

��

π2

((

π1

��

κ̃

!!CCCCCCCCCCCCCCCCC •
p′2

//

κ1

��

W

κ

��
f̂

��

•
κ2

//

p′1

��

X ′′
p2

//

p1

��

X

f

��
W

f̂

66
κ // X

f // Y

W
κ //

δ

��

X

∆

��
W ′′

κ̃
// X ′′

In what follows, let

(8.3.1) κ∗f# −→∼ f̂#

be the composite Lκ∗f# ˜−−−−→
(2.1.3)

κ#f# −→∼ f̂#, and let κ∗ωf [r] −→∼ ωf̂ [r] be the one

induced by the canonical isomorphsm κ∗ωf −→∼ ωf̂ .
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Theorem 8.3.2. The following diagram commutes

Lκ∗ωf [r] ˜ //

˜Lκ∗v
f

��

κ∗ωf [r] ωf̂ [r]˜

v
f̂

��
Lκ∗(f#OY ) ˜

(8.3.1)
// f̂#OY

Proof. Since v
f

and v
f̂

are isomorphisms, we assume f#OY and f̂#OY are

complexes which are zero in all degrees except at the (−r)-th spot, where each
is locally free (in fact invertible). This means we write h∗(f#OY ) = Lh∗(f#OY )

(resp. h∗(f̂#OY ) = Lh∗(f̂#OY )) for any map of schemes to X (resp. W ). Similarly
Lh∗ωf [d] = h∗ωf [d] etc. Let

φ : κ∗(N r
∆ ) −→∼ N r

δ

be the canonical isomorphism. We have to show that the diagram ♣ below com-
mutes.

f̂ #OY ⊗N r
δ [−r]

˜

(8.1.1)

��

♣

κ∗f#OY ⊗N r
δ [−r]˜

(8.3.1)
oo κ∗(f#OY ⊗N r

∆ [−r])
ṽia φ
oo

˜

via (8.1.1)

��
OW κ∗OX

We expand ♣ as follows:

f̂ #OY ⊗N r
δ [−r] κ∗f#OY ⊗N r

δ [−r]˜
(8.3.1)
oo

�2

κ∗(f#OY ⊗N r
∆ [−r])

ṽia φ
oo

δN(π∗
2
f̂#OY )

�1

˜

(2.2.2)

��

δN(π∗
2
κ∗f#OY )˜

(8.3.1)
oo

δN(κ̃∗p∗
2
f#OY )˜

(2.2.2)

��

κ∗∆N(p∗
2
f#OY )˜

(2.2.2)

��

˜
(C.4.2)

oo

δN(π#
1
OW )˜

η′δ
��

δN(κ̃∗p#
1
OX )

�3

˜

η′δ
��

α̃1

oo κ∗∆N(p#
1
OX )˜

(C.4.2)
oo ˜

η′∆
��

δ#(π#
1
OW )˜

��
�4

δ#(κ̃∗p#
1
OX )

α̃2

oo κ∗∆#(p#
1
OX )˜

(2.2.2)
oo ˜

��
OW κ∗OX

The maps η′∆ and η′δ are the maps defined in (C.2.13). The maps α−1
i are induced

by the isomorphism π#
1
κ∗OX −→∼ κ̃∗p#

1
OX resulting from the following composite
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of natural maps

π#
1
κ∗ −→∼ κ′#

1
p′#

1
κ∗ ˜−−−−→

(2.1.3)
κ′#

1
p′#

1
κ# −→∼ κ̃#p#

1 ˜−−−−→
(2.1.3)

κ̃∗p#
1
.

In the above expansion of ♣, the unlabelled sub-rectangles clearly commute. Sub-
rectangle �2 commutes by definition of the isomorphism (C.4.2). Proposition C.4.3
gives the commutativity of �3. For �4 we apply the outer border of the following
diagram on OX .

δ#π#
1
κ∗

��

// δ#κ′#
1
p′#

1
κ∗

��

κ∗∼=κ#

// δ#κ′#
1
p′#

1
κ# //

��

δ#κ̃#p#
1

��4

��

κ̃#∼=κ̃∗ // δ#κ̃∗p#
1

(2.2.2)

��
κ#∆#p#

1

��

κ#∼=κ∗
// κ∗∆#p#

1

��
κ∗ κ∗

κ∗∼=κ#

// κ# κ#
κ#∼=κ∗

// κ∗

The unlabelled arrows are the obvious ones. The rectangle ��4 commutes by
Lemma A.1.4 while the remaining commute for obvious reasons.

It remains to prove that �1 commutes. To that end, it suffices to prove that
the outer border of the following diagram commutes where the unlabelled arrows
are the obvious ones coming from pseudofunctoriality of (−)∗ or (−)#, the ones
labelled b-ch are induced by suitable base-change isomorphisms as given in (2.2.2),
the ones labelled # = ∗ are induced by (2.1.3) and the ones labelled γi are induced
by the composite κ′#

2
κ#

1
−→∼ κ̃# ˜−−−−→

(2.1.3)
κ̃∗.

π∗
2
f̂#

b-ch

��

// κ′∗
2
p′∗

2
κ#f#

b-ch N

��

#=∗ // κ′∗
2
p′∗

2
κ∗f#

��
κ′∗

2
κ#

1
p∗

2
f#

b-ch

��

#=∗ //

#=∗

&&MMMMMMMMMM
κ′∗

2
κ∗

1
p∗

2
f#

4
��

‡ κ′#
2
κ#

1
p∗

2
f#

b-ch

��

γ1

// κ̃∗p∗
2
f#

b-ch

��
κ′#

1
κ∗

2
p#

1
f∗

b-ch N

��

b-ch //

#=∗

**VVVVVVVVVVVVVVVVVVVVV κ′∗
2
κ#

1
p#

1
f∗

#=∗ // κ′#
2
κ#

1
p#

1
f∗

γ2

//

N

��

κ̃∗p#
1
f∗

π#
1
f̂∗ // κ′#

1
p′#

1
κ∗f∗

#=∗ // κ′#
1
p′#

1
κ#f∗ // κ′#

1
κ#

2
p#

1
f∗

Now ‡ commutes by transitivity of the base-change isomorphism, (see Proposi-
tion A.1.1). For the diagrams labelled N, we refer to Lemma A.1.4, while 4 com-
mutes because of the pseudofunctorial nature of the isomorphism (−)# ∼= (−)∗

of (2.1.3) over the category of formally étale maps. The unlabelled diagrams com-
mute for trivial reasons. �
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8.3.3. There is a related result. Suppose f : X → Y is a smooth map of
relative dimension d in G and suppose f factors as

X

f

@@
f̂ // Ŷ

κ // Y

where κ is the completion of Y along a coherent OY -ideal I , and f̂ is smooth
(necessarily of relative dimension d). Note that

Ŷ ×Y Ŷ = Ŷ .

Consider the commutative diagram of cartesian squares:

X

f̂
��

�

X

f̂
��

f

��

Ŷ

�

Ŷ

κ

��
Ŷ

κ
// Y

From (2.2.2) we conclude that we have an isomorphism

(∗) f# −→∼ 1∗X f# −→∼ f̂#κ∗.

Now clearly, ωf = ωf̂ . Call the common OX -module ω. We have two related

isomorphisms, namely, v̄
f̂

: ω[d] −→∼ f̂#OŶ and v̄
f

: ω[d] −→∼ f#OY . With these

notations, we have the following Proposition, related to Theorem 8.3.2:

Proposition 8.3.4. With notations as above, the following diagram commutes:

ω[d]

v̄
f ˜

��

v̄
f̃̂

// f̂#OŶ

f#OY
(∗)̃

// f̂#κ∗OY .

Proof. We have the following commutative diagram with all squares cartesian:

X ′′

p1

��

p2 //

�

X

f̂
��

�

X

f̂
��

f

��

X
f̂

//

�

Ŷ

�

Ŷ

κ

��
X

f̂

// Ŷ
κ
// Y
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We claim that diagram (∗∗) below commutes:

(∗∗) p∗
2
f#

(2.2.2)
˜ //

(∗) ˜

��

p#
1
f∗

p∗
2
f̂#κ∗

(2.2.2)
˜ // p#

1
f̂∗κ∗

Indeed, this follows immediately from the horizontal transitivity of the base-change
isomorphism (see Proposition A.1.1) corresponding to the “composite” of base-
change diagrams:

X ′′

p1

��

p2 //

�

X

f̂
��

�

X

f

��
X

f̂

// Ŷ
κ
// Y

We therefore have the following commutative diagram, where the square on the left
in induced by (∗∗).

∆∗(p∗
2
f#OY)⊗ ω−1[−d]

(2.2.2)
˜ //

(∗) ˜

��

∆∗(p#
1
OX)⊗ ω−1[−d] ˜ // ∆#(p#

1
OX) ˜ // OX

∆∗(p∗
2
f̂#OŶ)⊗ ω−1[−d]

(2.2.2)
˜ // ∆∗(p#

1
f̂∗OŶ)⊗ ω−1[−d] ˜ // ∆#(p#

1
OX) ˜ // OX

In other words

f#OY ⊗ ω−1[−d]

(∗) ˜

��

˜ // OX

f̂#OŶ ⊗ ω
−1[−d] ˜ // OX

commutes. This is equivalent to the statement of the Proposition. �

8.4. Base change and Verdier’s isomorphism

As mentioned earlier, by [S2, p.740, Theorem 2.3.5 (a)], for any Cohen-Macaulay
map between ordinary schemes f : X → Y , and any base change u : Y ′ → Y , with
X ′ = X ×Y Y ′, f ′ : X ′ → Y ′ and v : X ′ → X the base change maps, there is a nat-
ural isomorphism θfu : v∗ω#

f −→∼ ω#
f ′ . In the event f is smooth, then using Verdier’s

isomorphisms for f and f ′ to identify ω#
f with ωf and ω#

f ′ with ωf ′ , the map θfu
corresponds to the obvious canonical map (see [Ibid., p.740, Theorem 2.3.5 (b)]).
The difficulty in transferring this statement to formal schemes is that defining θfu
required certain special local compactifications of f which may or may not be avail-
able for general formal scheme maps. However these difficulties disappear if the map
u is flat, and the proof in loc.cit. works mutatis mutandis. The precise statement
is:
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Theorem 8.4.1. Suppose

X ′

f ′

��

v //

�

X

f

��
Y ′

u
// Y

is a cartesian square with f smooth, in G, of relative dimension d, and u flat.
Let θ : v∗f#OY −→∼ (f ′)#u∗OY = (f ′)#OY ′ be the resulting base change isomor-
phism (see (2.2.2)). Then the isomorphism v−1

f ′
◦ θ ◦ v∗(vf ) : v∗ωf [d] −→∼ ωf ′ [d] is

the obvious canonical map.



CHAPTER 9

Residues

9.1. Verdier residue

Let f : X → Y be a smooth map of ordinary schemes of relative dimension r
and let Z ↪→ X be a closed subscheme proper over Y . Let κ : X → X be the

completion of X along Z and let f̂ : X → Y be composite f̂ = f ◦κ. Analogous to
the abstract residue res#

Z
in (3.3.2) one has the Verdier residue along Z

(9.1.1) res
Z

: Rrf∗ωf → OY

defined as the composite

Rr
Zf∗ωf ˜−−−−→

(3.3.3)
R′
r
X f̂∗κ

∗ωf −→∼ R′
r
X f̂∗ωf̂

tr
f̂−−→ OY .

where the middle isomorphism is induced by the canonical one κ∗ωf −→∼ ωf̂ . By

compatibility of the Verdier isomorphism with completions (Theorem 8.3.2), the
following diagram commutes (where, as before, res#

Z
is the abstract residue map

defined in (3.3.2)):

(9.1.2) Rr
Zf∗ωf ˜̄v //

res
Z ..

Rr
Zf∗κ

∗ω#
f

res#
Z

��
OY

Remark 9.1.3. While we have defined residues in general, our interest is re-

ally in the case where R′
j
X (F ) = 0 for every j > r and every F ∈ A~c(X ), for

then (ωf , trf ) represents the functor HomY (R′
r
X (−), OY ) on coherent OX -modules

(cf. Corollary 3.2.4). Even here the most useful situation is when Y = SpecA and
X = Spf R where R is an adic ring, with a defining ideal I generated by r elements,
with R/I finite and flat over A.

The various relationships between the abstract residue, Verdier residue, the
trace and the Verdier intergal are captured in the following commutative commu-
tative diagram:

(9.1.4)

Rr
Zf∗ωf ˜

(3.3.3)
//

v

��
res

Z

&&

R′
r
X f̂∗ωf̂

v

��
tr
f̂

xx

Rr
Zf∗ω

#
f ˜

(A.3.1)
//

res#
Z

��

R′
r
X f̂∗ω

#

f̂

tr#
f̂

��
OY OY

75



76 9. RESIDUES

In the event f : X → Y is proper we have the following commutative diagram

(9.1.5)

Rr
Zf∗ωf

//

v

��
res

Z

&&

Rrf∗ωf

v

��
trf

xx

Rr
Zf∗ω

#
f

res#
Z

��

// Rrf∗ω
#
f

tr#f

��
OY OY

9.2. Some residue formulas

Suppose A→ R is a finite type map of rings which is smooth. Set R′′ = R⊗AR.
As before, the two R-algebra structures on R′′ will be denoted R1 and R2, with
Rk denoting the algebra corresponding to the projection p

k
: X ′′ := X ×Y X → X

for k ∈ {1, 2}. The diagonal map ∆: X ′ ↪→ X ′′ corresponds to the surjective map
R′′ → R given by t1 ⊗ t2 7→ t1t2. Suppose the kernel of this map, i.e., the ideal of
the diagonal immersion, is generated by r-elements {s1, . . . , sr}. Since R is smooth
over A of relative dimension r, the sequence s = (s1, . . . , sr) is necessarily a R′′-
sequence. By part (b) of Proposition 8.2.2 we get the following formula, which is
at the heart of much of what we do in this part of the book.

(9.2.1) res
∆, p1

[
ds1 ∧ · · · ∧ dsr
s1, . . . , sr

]
= 1.

Proposition 9.2.2. Let X = SpecA and Y = SpecR be affine schemes, and
suppose f : X → Y is a smooth map of relative dimension r. Suppose further that
we have a closed subscheme Z of X such that Z → Y is an isomorphism and
the ideal J of R giving the closed subscheme Z of X is generated by r-elements
{t1, . . . , tr} of R. Then

(9.2.3) res
Z

[
dt1 ∧ · · · ∧ dtr
t1, . . . , tr

]
= 1.

Proof. First note that since f is smooth, t = (t1, . . . , tr) is an R-regular
sequence. Next note that the question is local on Y and so we may assume, without
loss of generality, that the diagonal immersion ∆: X → X ′′ is cut out by r-elements
{s1, . . . , sr} in R′′ = R ⊗A R. As in §8.2, we write I for the ideal of the diagonal
and use the notations of that subsection. Let Z = SpecB. Let σ : Y → X be the
section defined by Z, and i : Z ↪→ X the natural closed immersion. We have a
commutative diagram with all sub-rectangles cartesian.

Z
� _

i

��

σ
Z //

�

X
� _

∆

��
X

σ
X //

f

��
�

X ′′

p
1

��
Y

σ
// X
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We now need some results from [S2] regarding non-flat base-change. Since σ
is a closed immersion, the usual flat-base-change results do not apply. Never-
theless, we do have the following. First, there is a base change isomorphism
θ = θfσ : σ

X
∗ω#
f −→∼ ω#

p
1

as in [Ibid., p.740, Theorem 2.3.5 (a)]. Next, by [Ibid.,

Prop. 6.2.2, pp.755–756], under this isomorphism, residues are compatible. In other
words, the diagram

σ∗Rr
∆p1∗(ω

#
p1

) ˜ //

σ∗res#
∆

��

Rr
Zf∗(σX

∗ω#
p1

)˜
θ

��
OY Rr

Zf∗ω
#
f

res#
Zoo

commutes. Finally on replacing ω#
f by ωf and ω#

p
1

by ωp1
via vf and vp1

, accord-

ing to [Ibid., p.740, Theorem 2.3.5 (b)], the map θ reduces to the standard identity
σ
X
∗ωp1

= ωf .
Thus it follows that if ui, i = 1, . . . , r, are the images of si in R under the

map R′′ → R corresponding to σ
X

: X → X ′′, (so that J is generated by the set
{u1, . . . , ur}) we have (via (9.2.1))

res
Z

[
du1 ∧ · · · ∧ dur
u1, . . . , ur

]
= 1.

Since [ du1∧···∧dur
u1,...,ur ] = [ dt1∧···∧dtr

t1,...,tr
], hence the result. �





CHAPTER 10

Residues along sections

Let f : X → Y be a smooth separated map of noetherian schemes of relative
dimension r. We begin with some notations and conventions. In general, if we are
working over affine schemes (ordinary or formal) we will use the same notations
for maps between modules as the corresponding sheaves. For example if A→ R is
smooth map of rings of relative dimension r, and I an R ideal generated by a regular
sequence {t1, . . . , tr} such that A → B := R/I is finite, then with X = SpecR,
Y = SpecA and Z = SpecB, and f : X → Y the map given by A → R, we will
write res

Z
: Hr

Z(X, ωf ) → A instead of Γ(Y, res
Z

). As another illustration of this
principle, in the above situation, if ωR/A is theA-module given by ωR/A = Γ(X, ωf ),
then we will make no distinction between Hr

Z(X, ωf ) and Hr
I(ωR/A).

10.1. The local cohomology class of a section

Suppose Y = SpecA and Z ↪→ X is a closed subscheme such that Z → Y is
an isomorphism and Z lies in an open affine subscheme U = SpecR of X such that
Z is given in U by an ideal I which is generated by r elements t1, . . . , tr of R. We
have a map

rest : Hr
Z(X, ωf )→ A

defined by the formula

(10.1.1) rest

[
dt1 ∧ · · · ∧ dtr
tα1
1 , . . . , tαrr

]
=

{
1 when α1 = · · · = αr = 1

0 otherwise.

This map depends a priori on the choice of t = (t1, . . . , tr), but as we will see later,
it is independent of it. It should be pointed out that if Z is also defined (in U) by
the vanishing of s1, . . . , sr, then by Theorem C.7.2

(10.1.2)

[
dt1 ∧ · · · ∧ dtr
t1, . . . , tr

]
=

[
ds1 ∧ · · · ∧ dsr
s1, . . . , sr

]
.

Moreover, there is an A-module direct sum decomposition

Hr
Z(X, ωf ) = Hr

I(ωR/A) =
⊕
α

A[ dt1∧···∧dtr
t
α1
1 ,...,tαrr

]

with α = (α1, . . . , αr) running over r-tuples of positive integers. The summands are
a free A-modules. While this decomposition depends on t, the summand generated
by [ dt1∧···∧dtr

t1,...,tr
] is independent of t by (10.1.2). In what follows, let

θ
Z

=

[
dt1 ∧ · · · ∧ dtr
t1, . . . , tr

]
.

79
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10.2. Relative projective space

Let P = PrY , the relative projective space of relative dimension r over an or-
dinary scheme Y . We regard P = Proj(OY [T0, . . . , Tr]). Let π : P → Y be the
structure map and ∫

P/Y
: Rrπ∗ωπ −→∼ OY

be the standard trace map (known to be an isomorphism) defined, for example in
[EGA, III1, 2.1.12] or [RD, p.152, Theorem 3.4]. The generating section µ = µP

of Rrπ∗ωπ corresponding to the standard section 1 of OY is described as follows.
Let U = {Ui | i = 0, . . . , r} be the open cover of P given by Ui = {Ti 6= 0}. On
U0 ∩ · · · ∩Ur we have inhomogeneous coordinates ti = Ti/T0, i = 1, . . . , r whence a
section

µ̌T :=
dt1 ∧ · · · ∧ dtr

t1 . . . tr
∈ Γ(U0 ∩ · · · ∩ Ur, ωπ).

We have an isomorphism

Hr(π∗Č•(U , ωπ)) −→∼ Rrπ∗ωπ

and µ̌T has a natural image in the left side as a Čech cohomology class. Let µ
be the corresponding element on the right side. The section µ does not depend on
the choice of homogeneous coordinates T0, . . . , Tr of P (cf. [C1, p.34, Lemma 2.3.1])
and is the sought after section.

Let Z0 be the closed subscheme of P defined by {Ti = 0 | i = 1, . . . , r}, i.e., the
intersection of the relative hyperplanes Hi = {Ti = 0}, i = 1, . . . , r. Then Z0 → Y
is an isomorphism. The section σ0 : Y → P defined by Z0 is the Y -valued point of
the Y -scheme P given by the “homogeneous co-ordinates” (1, 0, 0, . . . , 0).

Now suppose Y = SpecA. It is well known (see [L2, p.74, Prop. (8.4)] for
example, the proof of which generalizes to our situation) that the following diagram
commutes.

(10.2.1) Hr
Z0

(P, ωπ)

rest //

// Hr(P, ωπ)∫
P/Y

��
A

We now indicate how the commutativity of (10.2.1) is proved in [L2]. For
an n-tuple of positive integers α = (α1, . . . , αr) one can regard fractions of the
form dt1 ∧ · · · ∧ dtr/t

α1
1 · · · tαrr as r-cocycles in the Čech complex Č•(U , ωπ) =

Γ(P, Č•(U , ωπ)). Let us write ν(α) for the image of this fraction in Hr(P, ωπ).
(Note that ν(1, . . . , 1) = µ.) According to [L2, pp.79–80, Lemma (8.6)] the natural
map

Hr
Z0

(P, ωπ)→ Hr(P, ωπ)

is described by

(10.2.2)

[
dt1 ∧ · · · ∧ dtr
tα1
1 · · · tαrr

]
7→ ν(α)

In particular θ
Z0
7→ µ = ν(−1, . . . ,−1). It is well known that if α 6= (−1, . . . ,−1)

the Čech r-cocycle dt1∧· · ·∧dtr/t
α1
1 · · · tαrr for the complex Č•(U , ωπ) is a cobound-

ary, whence in this case ν(α) = 0. This establishes the commutativity of (10.2.1).
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If KZ0
is the kernel of rest , we have a split short exact sequence of A-modules,

with µ 7→ θ
Z0

giving the splitting:

0 −→ KZ0 −−−−→ Hr
Z0

(P, ωπ)
canonical−−−−−−→ Hr(P, ωπ) −→ 0.

Proposition 10.2.3. With the above notations we have:

(i) The Verdier integral for π equals the standard trace for the relative pro-
jective space PrY , i.e.,

trπ =

∫
P/Y

.

(ii) Let A be a ring, t = (t1, . . . , tr) analytically independent variables over
A, and J ⊂ A[[t]] the ideal of A[[t]] generated by t. Then the Verdier
integral trA[[t]]/A : Hr

J(ωA[[s]]/A)→ A defined in (8.1.9) is given by[
dt1 ∧ · · · ∧ dtr
tα1
1 , . . . , tαrr

]
7→

{
1 when α1 = · · · = αr = 1

0 otherwise.

Proof. For part (i) without loss of generality we may assume Y = SpecA. Let
µ be the canonical generator of the free rank one A-module Hr(P, ωπ) corresponding
to 1 ∈ A under the isomorphism

∫
P/Y : Hr(P, ωπ) −→∼ A. It is enough to show that

trπ(µ) =
∫
P/Y (µ), i.e., it is enough to show that trπ(µ) = 1. According to (10.2.2),

the image of θ
Z0
∈ Hr

Z0
(P, ωπ) in Hr(P, ωπ) is µ. We have

trπ(µ) = res
Z0

(θ
Z0

) (by (9.1.5))

= 1 (via Proposition 9.2.2)

and hence we are done for part (i).
For part (ii), let us agree to write Y = SpecA. Let us write P = Pr

A for
Spf A[[t]], and π̂ : P → Y for the structure map. With P, π, Z0 as above, we can
identify P with the completion of P along Z0. We thus have a completion map
κ : P → P, which factors through the open subscheme U0 of P where T0 6= 0 as
P → U0 ⊂ P. Moreover, if U0 is identified in the usual way with SpecA[t1, . . . , tr]
(via ti = Ti/T0), then the first map in the factorization arises from the inclusion of
the polynomial ring A[t] into the power series ring A[[t]]. Now, by part (a), (9.1.5),
and (10.2.1), we have rest = res

Z0
. Since the composite

Rr
Z0
π∗ωπ −→∼ R′

r
P π̂∗ωπ̂

trπ̂−−→ OY

is res
Z0

by (9.1.4), and res
Z0

= rest , by taking global sections we are done. �

10.3. The Verdier residue for sections of smooth maps

Let us return to our smooth map f : X → Y of relative dimension r, and
suppose Y = SpecA and Z ↪→ X as before a closed subscheme such that Z → Y is
an isomorphism, Z lies in affine open set U = SpecR of X, and Z is cut out in U
by the vanishing or r elements t1, . . . , tr in R.

Proposition 10.3.1. In the above situation rest = res
Z

. In particular, if
s = (s1, . . . , sr) is another sequence in R generating the ideal defining Z, then
rest = ress .



82 10. RESIDUES ALONG SECTIONS

Proof. Let I be the ideal generated by t. Suppose I is also generated by
s = (s1, . . . , sr). The completion of R in the I-adic topology is A[[t]] = A[[s]] and

both are the completion R̂ of R in the I-adic topology. It follows that trA[[t]]/A =
trR̂/A = trA[[s]]/A. Part (ii) of Proposition 10.2.3 and the relationship between res

Z

and trR̂/A then proves our assertion. �

Consider again the A-module decomposition

Hr
Z(X, ωf ) = Hr

I(ωR/A) =
⊕
α

A[ dt1∧···∧dtr
t
α1
1 ,...,tαrr

]

with α = (α1, . . . , αr) running over r-tuples of positive integers. Each summand is a
free A-module. While this decomposition depends on t = (t1, . . . , tr), we have seen

that the summand generated by θZ = [ dt1∧···∧dtr
t1,...,tr

] is independent of t by (10.1.2).
Moreover, since the sum of the remaining summands in the direct sum is the kernel
KZ of res

Z
, it too is independent of t. Thus, we have a canonical decompostion of

A-modules

(10.3.2) Hr
Z(X, ωf ) = KZ ⊕A·θZ

which is independent of t with KZ = ker(res
Z

).

Remark 10.3.3. Let A and t = (t1, . . . , tr) be as in Proposition 10.2.3 (ii).
Then a little thought shows that for f ∈ A[[t]], with µ(i1, . . . ir) the coefficient of

ti11 · · · tirr in the power series expansion of f , one has the formula:

trA[[t]]/A

[
f · dt1 ∧ · · · ∧ dtr
tα1
1 , . . . , tαrr

]
= µ(α1 − 1, . . . , αr − 1).

In particular, we have

trA[[t]]/A

[
f · dt1 ∧ · · · ∧ dtr

t1, . . . , tr

]
= f(0, . . . , 0).

Similarly, if A, t, Z, R are as in Proposition 10.3.1, then for any f ∈ R,

res
Z

[
f · dt1 ∧ · · · ∧ dtr

t1, . . . , tr

]
= f̄

where f̄ ∈ A is the image of f in A under the natural surjection R → R/I ∼= A.
More generally, given positive integers α1, . . . , αr one can write

f =
∑

i1,...,ir

µ(i1, . . . , ir)t
i1
1 · · · tirr + g,

where ik are non-negative integers such that
∑
j ij < α1+· · ·+αr, µ(i1, . . . , ir) ∈ A,

and g ∈ Iα1+···+αr . In this case we have

res
Z

[
f · dt1 ∧ · · · ∧ dtr
tα1
1 , . . . , tαrr

]
= µ(α1 − 1, . . . , αr − 1).

10.4. A characterisation of the Verdier isomorphism

Now suppose Y is not necessarily affine, and as above we have a closed sub-
scheme Z ↪→ X such that Z → Y is an isomorphism. Let z ∈ Z be a point. Pick
affine open subschemes U ′ in X and V ′ in Y such that z ∈ U ′ and f(U ′) ⊂ V ′ and
such that U ′∩Z is given in U ′ by the vanishing of r-elements t1, . . . , tr ∈ Γ(U ′,OX).
Let V = f(U ′∩Z). Then V is an affine open subscheme of V ′ (since it is isomorphic
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to U ′ ∩ Z which, being a closed subscheme of U ′ is affine). Moreover U ′ → V ′ is
affine, whence U := f−1(V ) ∩ U ′ is affine. Note that U ′ ∩ Z = U ∩ Z, f(U) = V ,
Z ∩ U is given by the vanishing of t1, . . . , tr and Z ∩ U → V = f(Z ∩ U) is an
isomorphism. Thus locally we can reduce to the situation in §10.1. If ZU = U ∩Z,
then from (10.1.2), it is clear that θ

ZU
glue to give a section θ

Z
of Rr

Zf∗ωf :

θ
Z
∈ Γ(X, Rr

Zf∗ωf ).

Moreover, the A-module KZ in (10.3.2) being independent of t means that its
construction globalizes to give a quasi-coherent submodule KZ of Rr

Zf∗ωf . Finally,
since the decomposition (10.3.2) is canonical, it globalizes to give a decompostion:

(10.4.1) Rr
Zf∗ωf = KZ ⊕ (OY ·θZ ).

Theorem 10.4.2. Let Z be a closed subscheme of X such that Z → Y is an
isomorphism. Then res

Z
is the composite

Rr
Zf∗ωf = KZ ⊕ (OY ·θZ )

projection−−−−−−→ OY ·θZ −→∼ OY

where the direct sum decomposition is (10.4.1) and the last isomorphism is θ
Z
7→ 1.

Proof. Without loss of generality we may assume X = SpecR, Z = SpecR/I
where I is an ideal of R generated by r elements {t1, . . . , tr} and Y = SpecA. The
result then follows from Proposition 10.3.1 and the explicit description of rest . �

Before stating the next theorem we need some notation. If ψ : ωf [r] → f !OY
is a map of OX -modules, then ψ̄ : ωf → ω#

f will denote the map ψ̄ = H−r(ψ). We

remind the reader that v = v
f

denotes the Verdier isomorphism ωf [r] −→∼ f !OY .
We alert the reader to one notational issue. In this subsection, for good book-
keeping purposes we will write v̄ : ωf −→∼ ω#

f for H−r(v). For most of the book
we do not put the “bar” over v for this map, as that abuse of notation is usually
harmless. (Cf. also Remark 8.2.4.)

Lemma 10.4.3. Let Z be a closed subscheme of X such that Z → Y is finite and
flat. Suppose we have an isomorphism ψ : ωf [r] −→∼ f !OY such that the composite

Rr
Zf∗ωf ˜−−−→

via ψ̄
Rr
Zf∗ω

#
f

res#
Z−−−→ OY

is the residue map res
Z

. Then there is an open neighbourhood U of Z in X such
that ψ|U = v|U .

Proof. It is enough to prove that there is an open neighbourhood U of Z such
that ψ̄|U = v̄|U . Let ϕ : ω#

f −→∼ ω#
f be the automorphism given by ϕ = v̄ ◦ ψ̄−1.

Let κ : X = X/Z → X be the completion of X along Z and f̂ = f ◦κ. By the

hypothesis we have res#
Z
◦Rr

Zf∗(ϕ) = res#
Z

, and hence by definition of tr#f̂ we get

tr#f̂ ◦R′
r
X f̂∗(κ

∗(ϕ)) = tr#f̂ . Thus by local duality, i.e., Corollary 3.2.4, we see that

κ∗(ϕ) is the identity map, whence there is an open neighbourhood U of Z such that
ϕ|U is the identity map. �
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We need a little more notation in order to state the next Lemma. Consider a
cartesian diagram

(10.4.4)

X ′

�f ′

��

v // X

f

��
Y ′

u
// Y

where f is smooth (and hence Cohen-Macaulay) of relative dimension r. We will
use the notation of [S2] and denote by

θfu : v∗ω#
f −→∼ ω#

f ′

the corresponding base change isomorphism (see [S2, p.740, Theorem 2.3.5 (a)]).
Now suppose we have an isomorphism ψ : ωf [r] −→∼ f !OY and suppose Z ↪→ X ′ is
a closed subcheme such that Z → Y ′ is an isomorphism. We write

(10.4.5) res
ψ,Z

: Rr
Zf
′
∗ωf ′ → OY ′

for the composite:

Rr
Zf
′
∗ωf ′ = Rr

Zf
′
∗v
∗ωf

via ψ̄−−−→ Rr
Zf
′
∗v
∗ω#
f ˜−−−−→

via θfu

Rr
Zf
′
∗ω

#
f ′

res#
Z−−−→ OY ′ .

In other words res
ψ,Z

= res#
Z
◦Rr

Zf∗(θ
f
u ◦v∗(ψ̄)).

Lemma 10.4.6. Let u : Y ′ → Y be an étale map, and let X ′, f ′, v, θfu be as
above. Suppose we have an isomorphism ψ : ωf [r] −→∼ f !OY , and a closed sub-
scheme Z of X ′ such that Z → Y ′ is finite and flat and such that res

ψ,Z
= res

Z
.

Then there is an open neighbourhood U of the locally closed set v(Z) such that
ψ|U = v

f
|U .

Proof. By the hypothesis on ψ and by (10.4.3) we can find an open neigh-
bourhood V of Z in X ′ such that (θfu ◦v∗(ψ̄))|V = v̄

f′ |V . On the other hand, by

[S2, p.740, Theorem 2.3.5 (b)], we have θfu ◦v∗v̄f = v̄
f′ . It follows that v∗(ψ̄))|V =

v∗v̄
f
|V . Set U = v(V ). Since v is étale, U is open, and V → U is faithfully flat,

whence ψ̄|U = v̄
f
|U . �

Remark 10.4.7. Since f is smooth, if x is an associated point of X, then
y = f(x) is an associated point of Y , and x is a generic point of the fibre f−1(y).
This means that if an open subscheme V of X is such that V ∩ f−1(s) is dense in
f−1(s) for every associated point s of Y , then V is scheme theoretically dense in
X, since it contains every associated point of X. We use this fact in what follows.

Theorem 10.4.8. Let ψ : ωf [r] −→∼ f !OY . A necessary and sufficient condi-
tion that ψ is the Verdier isomorphism v

f
is the following:

For every étale map u : Y ′ → Y and every closed subscheme Z of X ′ such that
Z → Y ′ is an isomorphism, we have res

ψ,Z
= res

Z
. Here X ′, f ′, v are as in

diagram (10.4.4).

Proof. For u : Y ′ → Y , f ′ : X ′ → Y ′, v : X ′ → X as above, according to [S2,
p.740, Theorem 2.3.5 (b)] we have θfu ◦v∗v̄f = v̄

f′ . The necessity part of the theorem
then follows from Theorem 10.4.2.

Conversely, suppose we have an isomorphism ψ : ωf [r] −→∼ f !OY satisfying the
condition stated in the theorem. We have to show that ψ̄ = v̄

f
. Fix y ∈ Y . Since
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f is smooth, the set Wy of points x ∈ f−1(y) such that k(x) is finite and separable
over k(y), is dense in f−1(y) by [BLR, p. 42, §2.2, Cor. 13]. Let x be such a point.
We can find an étale map u : Y ′ → Y such that (with the usual notations) there is
a section of f ′ passing through a point x′ satisfying v(x′) = x [BLR, p. 43, §2.2,
Prop. 14]. Let Z be the image of this section. Then Z is closed, and Z → Y ′ is
an isomorphism, whence by our hypotheses on f and by Lemma 10.4.6 there is an
open neighbourhood U of v(Z) on which ψ̄ = v̄

f
. Since x ∈ v(Z), this equality

holds in an open neighbourhood of x. Varying x over Wy, and varying y over Y ,
by Remark 10.4.7 the equality holds in a scheme theoretically dense open subset of
X and hence everywhere, for ωf and ω#

f are invertible OX -modules. �
Recall that given a point x ∈ X, closed in its fibre, with k(x) separable over

k(f(x)), since f is smooth we can find an étale neighbourhood Y ′ → Y of f(x)
and a section of f ′ (with the usual notations for base change that we have been
following) passing through one of the points of v−1(x). It is immediate that one
can find an open cover {Uα} of Y , étale surjective maps uα : Yα → Uα, such that
(with Xα := X ×Y Yα, and fα : Xα → Yα, vα : Xα → X the projections) there is a
closed subscheme Zα of Xα which maps isomorphically on to Yα. Let Y ′ =

∐
α Yα,

X ′ =
∐
αXα, f ′ =

∐
α fα, u =

∐
α uα. Then we have a closed subscheme Z of X ′

such that Z → Y ′ is an isomorphism (take Z =
∐
α Zα). Note that u : Y ′ → Y is

étale and surjective, whence it is faithfully flat.

Proposition 10.4.9. Let ψ : ωf [r] −→∼ f !OY be an isomorphism.

(a) If the fibres of f are connected, and Z is a closed subscheme of X such
that Z → Y is an isomorphism and res#

Z
◦Rr

Zf∗(ψ̄) = res
Z

, then ψ = v
f
.

(b) Suppose the fibres of f are geometrically connected. Then ψ = v
f

if and
only if there is an étale surjective map u : Y ′ → Y and (with the usual
notation) a closed subscheme Z of X ′ = X ×Y Y ′ with Z → Y ′ an
isomorphism such that res

ψ,Z
= res

Z
.

Proof. For part (a), we note that if κ : X → X is the completion of Z along
X, then κ∗ψ̄ = κ∗v̄

f
. We therefore have an open subscheme V containing Z such

that ψ̄|V = v̄
f
|V . Since f is smooth, it (locally) has a factorization f = π ◦h, where

h is étale and π is the structural map ArY → Y . Since the fibres of f are connected,
and f−1(y) ∩ V ⊃ f−1(y) ∩ Z 6= ∅, it follows that V ∩ f−1(y) is dense in f−1(y).
Thus V is scheme-theoretically dense in X by Remark 10.4.7. Now ψ̄−1 ◦ v̄

f
is the

identity automorphism on ωf on V , which is scheme theoretically dense on X, and
ωf is invertible on X. It follows that it ψ̄−1 ◦ v̄

f
is the identity automorphism on

all of X.
For part (b), first suppose ψ = v

f
. By the remarks made above the statement

of the theorem, there is an étale surjective map u : Y ′ → Y , and (with the usual
meaning attached to X ′, f ′ and v) a closed subscheme Z of X ′ such that Z → Y ′ is
an isomorphism. Now res

ψ,Z
= res#

Z
◦Rr

Zf∗(θ
f
u ◦v∗(ψ̄)) = res#

Z
◦Rr

Zf∗(θ
f
u ◦v∗(v̄f )).

On the other hand, by [S2, p.740, Theorem 2.3.5 (b)], v behaves well with respect
to base change, i.e., θfu ◦v∗(v̄f ) = v̄

f′ . Thus res
ψ,Z

= res#
Z
◦Rr

Zf∗(v̄f′ ) = res
Z

.

Conversely, suppose we have an étale surjective map u : Y ′ → Y and a closed
subscheme Z of X = X ×Y Y ′, with Z → Y ′ an isomorphism satisfying res

ψ,Z
=

res
Z

. Let f ′ : X ′ → Y ′ and v : X ′ → X be the projections. Since the fibres of
f ′ are connected, by part (a) we have θfu ◦v∗(ψ̄) = v̄

f′ . Now, v̄
f′ = θfu ◦v∗(v̄f )

(by [S2, p.740, Theorem 2.3.5 (b)] again) from which it is immediate that v∗(ψ̄) =
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v∗(v̄
f
). The map v : X ′ → X is étale surjective, and hence faithfully flat, giving

the result. �



CHAPTER 11

Regular Differential Forms

The results in this section do not affect the results in the rest of the book, and
so may be skipped on first reading. These results are here to give a non-trivial
application of the characterisation of Verdier’s map in the previous section. The
main results of this section, connecting the Kunz-Waldi regular differentials with
Verdier’s isomorphism, are proved again in §14.3 without making use of the results
in [KW] or the results in this section. There is a fleeting reference to definition of
the map (11.4.1) of this section in §14.3 (see in §§14.3.3).

All schemes in this section, unless otherwise stated, are ordinary schemes. The
aim is to relate the concrete form of Grothendieck duality via Kunz’s regular differ-
ential forms to Verdier’s isomorphism. In somewhat greater detail, regular differen-
tial forms defined for certain types of maps f : X → Y are concrete representations
of many aspects of Grothendieck duality. A well-known special case is that of Rosen-
licht’s differentials on singular curves [R]. Kunz defined generalization of these to
more general situations (higher dimensions) in a series of papers, and in [KW],
Kunz and Waldi defined the sheaf of (relative) regular differentials for dominant
finite type equidimensional maps f : X → Y between excellent schemes which do
not have embedded components. When such an f is generically smooth, this was
related to duality theory by Kunz, Lipman, Hübl, Sastry (see [L2], [HK1], [HK2],
[HS]). All the papers just mentioned work within the framework of a simpler ver-
sion of Grothendieck duality (one eschewing derived categories) due to Kleiman
[Kl]. We now review this, taking a slightly revisionist view, in that that we in-
terpret the principal objects (r-dualizing pairs) in terms of the full blown duality
theory of Grothendieck.

11.1. Overview of Kleiman’s functor

Regular differentials are a vast generalization of the differentials Rosenlicht used
for describing describing duality for singular curves [R]. To put the theory in con-
text we give a quick account of Kleiman’s theory of r-dualizing pairs given in [Kl].
Let f : X → Y be a proper map such that dim(X ⊗ k(y)) ≤ r for every y ∈ Y . For
any scheme Z, let Zqc denote the category of quasi-coherent OZ-modules. Accord-
ing to [loc. cit., pp. 41–42, Definition (1)], an r-dualizing pair (fK , tf ) consists of a
covariant functor fK : Yqc → Xqc and a natural transformation tf : Rrf∗f

K → 1Yqc
inducing a bifunctorial isomorphism of quasi-coherent sheaves,

f∗H omX(F , fKG ) −→∼ H omY (Rrf∗F , G )

for each F ∈ Xqc and each G ∈ Yqc. Kleiman explicitly eschewed derived categories
in his paper, and shows the existence of an r-dualizing pair (for f of the kind we are
considering) using the special adjoint functor theorem. From our point of view fK

can identified with H−r(f !(−)). Our hypotheses on f ensure that Hj(f !(−)) = 0

87
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for j < −r, whence we get a map (of functors from Yqc to Dqc(X)) fK(−)[r]→ f !.
The map tf is then the composite

Rrf∗f
K = H0(Rf∗f

K(−)[r]) −→ H0(Rf∗f
!OY )

Trf−−→ H0(OY ) = OY .

When f is not proper, fK still makes sense (even if f is not compactifiable, i.e.,
even if f is not separated), since Hn(f !) makes sense for every integer n, even if f !

is not defined (see comment above Definition 3.1.2), and hence one can set fK =
H−r(f !). If f is Cohen-Macaulay of relative dimension r, fKOY = ω#

f , and if further

f is smooth we have, via Verdier’s isomorphism ωf −→∼ fKOY . In the proper,
Cohen-Macaulay case we have (ω#

f , tr#f ) = (fKOY , tf (OY )). If f is in addition

smooth, we have a unique isomorphism of pairs (ωf , trf ) −→∼ (fKOY , tf (OY )).

11.2. Regular Differentials

Let f : X → Y be a finite-type map. Following Kunz in [Ku, B.17] we say it is
equidimensional of dimension r if

• the generic points of X are mapped to the generic points of Y , and
• the non-empty fibres of f are such that the irreducible components of

these fibres are all of dimension r.

Now suppose the map f : X → Y satisfies the following conditions

• X,Y are excellent schemes, and neither has embedded points amongst
their associated points;

• f is equidimensional of dimension r, and
• the smooth locus of f is scheme-theoretically dense in X (which, given

our hypotheses, means that the smooth locus of f contains all the generic
points of X).

Next let X0 be the artinian scheme

X0 =
∐
s

Spec OX,s

where s runs through the set of associated (= generic in this case) points and
iX : X0 → X the natural affine map. Similarly, we have the artinian scheme Y0

constructed out of the generic points of Y , and an affine map iY : Y0 → Y . We
write

k(X) = iX∗OX0

where as before s runs over generic points of X. The sheaf of relative meromorphic
r-forms Ωrk(X)/k(Y ) onX is then the quasi-coherent OX -module given by the formula

Ωrk(X)/k(Y ) = iX∗Ω
r
X0/Y0

= ωf ⊗OX k(X).

Under our hypotheses on f the OX -module of regular differentials ωreg
f (denoted

ωrX/Y in [HK1], [HK2], and [HS]) is defined in [KW, § 3, § 4]. It is coherent and

is an OX submodule of the module of meromorphic r-differentials Ωrk(X)/k(Y ), and

hence is torsion-free. On the smooth locus Xs of f , writing fs : Xs → Y for the
smooth map obtained by restricting f , we have ωreg

f |Xs = ωreg
fs = ωfs .

When f is proper we have a trace map (denoted
∫
X/Y

in [HK1], [HK2], [HS])∫ reg

f

: Rrf∗ω
reg
f → OY .
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This map is defined when f is projective in [HK1], and is generalized to proper f
in [HS]. One of the main results of [HS] is that the resulting map ωreg

f → fKOY
is an isomorphism (a fact proved in [HK2] for projective maps f). There is also a
notion of a residue map Rr

Zf∗ω
reg
f → OY (denoted

∫
X/Y,Z

in [HK1], [HK2], and

[HS]) for certain special closed subschemes Z of X which are finite over Y (see
[HK1, pp.77–78, Assumption 4.3 and Theorem 4.4]).

To avoid notational confusion we denote this

resreg
Z

: Rr
Zf∗ω

reg
f → OY .

11.3. Summary of the main result of [HS]

The complete statement concerning ωreg
f (= ωrX/Y ),

∫ reg

f
(=
∫
X/Y

) and resreg
Z

(=∫
X/Y,Z

) can be found in [HS, pp.750–752, Theorem]. In brief, here are the main

points of this result:

(i) One has a canonical isomorphism ϕ = ϕ
f

: ωreg
f −→∼ fKOY such that

when f is proper ϕ is the unique isomorphism for which the diagram

Rrf∗ω
reg
f

∫ reg
f --

via ϕ // Rrf∗f
KOY

tf (OY )

��
OY

commutes [HS, pp.750–751, (i) (The Duality Theorem)].
(ii) The isomorphism ϕ

f
is compatible with open immersions into X. In

greater detail, if j : U → X is an open immersion, as submodules of the
OX module Ωk(U)/k(Y ), i

∗ωreg
f = ωreg

fi and the diagram

i∗ωreg
f ˜

i∗ϕ
f

// i∗fKOY˜

��
ωreg
fi ϕ̃

fi

// (fi)KOY

commutes [Ibid, pp.750–751, (i) and (ii)].
(iii) If Z is a closed subscheme of X satisfying Assumption 4.3 of [HK1, p.77]

then the diagram

Rr
Zf∗ω

reg
f

resreg

Z --

canonical // Rrf∗ω
reg
f∫ reg
f

��
OY

commutes [HS, p.752, (iii) (The Residue Theorem)].
(iv) If Z is a closed subscheme of X such that Z lies in the smooth locus of

f and Z → Y is an isomorphism, then resreg
Z

= res
Z

(see [HK1, p.62,
Cor. 1.13] and [HK1, p.78, 4.4] as well as the formulae in Remark 10.3.3).
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(v) The map ϕ is compatible with flat base change to excellent schemes
without embedded associated points [KW, 3.13] and [HS, pp.751–752,
(ii) and (iv)]. In particular ϕ is compatible with étale base change.

11.4. Regular Differentials and Verdier

Now suppose f is smooth. Then fKOY = ω#
f and ωreg

f = ωf . Let ψ = ϕ[r].

Identifying f !OY with ω#
f [r] we have an isomorphism

ψ : ωf [r] −→∼ f !OY .

Then using the notations of §10.4, we have ϕ = ψ̄. In light of the properties
listed above for ϕ

f
and ωreg

f we see that if u : Y ′ → Y is an étale map and Z is

a closed subscheme of X ′ = X ×Y Y ′ such that Z → Y ′ is an isomorphism, then
resreg

Z
= res

Z
. However, the left side is the map res

ψ,Z
of (10.4.5), whence we

conclude from Theorem 10.4.8 that ψ = v
f
, where the right side is the Verdier

isomorphism of (8.1.5).
Our next observation is one that was made by J. Lipman in pp. 33–34 of [L2]

for varieties over fields in his discussion leading to Lemma (2.2) of ibid. Suppose
f is as in the previous subsection, and U is the smooth locus of f . Let j : U → X
be the open immersion and g = f ◦ j : U → Y the resulting smooth map. By
our hypotheses, U contains all the associated points of X, whence it is scheme-
theoretically dense. Without getting into the notions of canonical structures and
dualizing structures, we have a composition

(11.4.1) fKOY ↪→ j∗g
KOY

j∗v̄g
−1

−−−−→ j∗ωg ↪→ Ωrk(X)/k(Y )

with every arrow an inclusion since fKOY , gKOY and ωg are torsion free and
j∗fKOY −→∼ gKOY . The image of fKOY in Ωrk(X)/k(Y ) must be ωreg

f since v̄g is

ϕ
g

of item (1) of §11.3. In greater detail, if ω̄ is the image of fKOY in Ωrk(X)/k(Y )

under (11.4.1), and α : fKOY −→∼ ω̄ the resulting isomorphism, then we have an
isomorphism β : ωreg

f −→∼ ω̄ such that α = β ◦ϕ
f
. Now j∗β = 1ωg since ϕg = v̄g .

Since U is scheme theoretically dense in X and the sheaves involved are torsion free,
the assertion follows. In other words Verdier’s isomorphism gives us the regular
differential forms of Kunz and Waldi, as well as the dualizing structure on them.

Here is the formal statement of the result(s) we just proved.

Theorem 11.4.2. Let f : X → Y be a finite type map between excellent schemes
such that X and Y have no embedded points, f is equidimensional of dimension r,
and the smooth locus of f contains all the associated points of X (i.e., the smooth
locus of X is scheme-theoretically dense in X).

(a) If f is smooth then the map ϕ
f

of item (i) in §11.3 is the Verdier iso-
morphism v̄

f
defined in (8.1.1).

(b) If j : U → X is the open immersion from the smooth locus of f to X, and
g : U → Y is the composite g = f ◦ i, then the module of regular differen-
tial r-forms ωreg

f of Kunz and Waldi [KW, § 3, § 4] is the image of fKOY
under injective composite (11.4.1). Moreover the resulting isomorphism
fKOY −→∼ ωreg

f is inverse of the map ϕ
f
.



CHAPTER 12

Transitivity for smooth maps

12.1. The map ζg,f between differential forms

Suppose f : X → Y and g : Y → Z are maps in G, with f a smooth map of
relative dimension e , and g a smooth map of relative dimension d. We have a map
of differential forms

(12.1.1) ζg,f : f∗ωg[d]⊗OX
ωf [e] −→ ωgf [d+ e]

defined by the commutativity of the following diagram

f∗ωg[d]⊗OX
ωf [e]

ζg,f //˜
f∗vg⊗v

f

��

ωgf [d+ e]˜

v
gf

��
f∗g#OZ

L
⊗OY

f#OY χ
[g,f]

// (gf)#OZ

where χ
[g,f]

: f∗g#OZ

L
⊗OY

f#OY → (gf)#OZ is the map defined in Definition 5.2.16.

Proposition 12.1.2. The following hold:

(a) (Flat Base Change) Suppose

U
u //

p

��
�

X

f

��
V

v
//

q

��
�

Y

g

��
W

w
// Z

is a cartesian square with u flat, f and g smooth and in G. Then

u∗ζg,f = ζg,f .

(b) Suppose f : X → Y and g : Y → Z are smooth maps and in G. Let
κ : X ∗ → X be the completion of X with respect to an open coherent
ideal. Then

ζ
g,fκ

= κ∗ζ
g,f
.

(c) Suppose X
f−→ Y1

κ−→ Y2
g−→ Z is a sequence of maps in G with f and g

smooth, and κ a completion map with respect to an open coherent ideal.
Then

ζg,κf = ζgκ,f .
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(d) Suppose

X̂

f̂
��

κ2 // X

f

��
Ŷ

ĝ   BBBBBBBB
κ1 // Y

g

��
Z

is a commutative diagram in G with f and g smooth, and κ1 and κ2 com-
pletions with respect to open coherent ideals of OY and OX respectively.
Then

κ∗2ζg,f = ζĝ,f̂ .

Proof. Follows from the properties for χ
g,f

listed in §5.2, Theorem 8.3.2,
Theorem 8.3.4, and the fact that the Verdier isomorphism is compatible with flat
base change. �

12.2. The map ϕg,f between differential forms

For a smooth map between ordinary schemes f : X → Y of relative dimension
d, ωf := ∧dOXΩ1

X/Y . Let X, Y , and Z be ordinary schemes. Suppose f : X → Y

is a smooth map of schemes of relative dimension d and g : Y → Z is smooth of
relative dimension e. Let

(12.2.1) ϕ̄g,f : f∗ωg ⊗ ωf −→∼ ωgf

be the map which is locally given by

f∗(dt1 ∧ · · · ∧ dte)⊗ ds1 ∧ · · · ∧ dsd 7→ ds1 ∧ · · · ∧ dsd ∧ dt1 ∧ · · · ∧ dte.

Here t = (t1, . . . , te) and s = (s1, . . . , sd) are local relative “co-ordinates”, i.e.,
t gives an étale map U → AeZ on an open subscheme U of Y , and on an open
sunscheme V of f−1(U), s gives an étale map V → AdY . The local map given above
(i.e., f∗(dt)⊗ ds 7→ ds∧ dt) is independent of these local relative co-ordinates and
hence globalises to give ϕ̄g,f .

Using the recipe that gives us ψ in (6.1.2) from ψ̄ we get a well defined isomor-
phism in Dc(X)

(12.2.2) ϕg,f : f∗ωg[e]⊗OX ωf [d] −→∼ ωgf [d+ e].

Note that

(12.2.3) H−(d+e)(ϕg,f ) = ϕ̄g,f

and hence one can go back and forth between ϕ̄g,f and ϕg,f .
Here is the main theorem:

Theorem 12.2.4. Let f : X → Y and g : Y → Z be maps in G which are
smooth. Then

ζg,f = ϕg,f .

Proof. We divide the proof into cases.
Case 1. Let A be a noetherian ring, u1, . . . , ud, v1, . . . , ve analytically in-

dependent variables over A, and consider the A-algebras R, S, and T given by
R = A[[u1, . . . , ud]], S = R[[v1, . . . , ve]] = A[[u1, . . . , ud, v1, . . . , ve]]. Let I = uR
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be the R-ideal generated by u = (u1, . . . , ud), J = vS the S-ideal generated by
v = (v1, . . . , ve), and L = IS + J . In other words, J is the S-ideal generated by
(u, v).

Suppose X = Spf(S,L), Y = Spf(R, I), Z = Z = SpecA, and that our
smooth maps f : X → Y , g : Y → Z = Z are the natural maps corresponding to
the maps of adic rings (R, I)→ (S,L) and (A, 0)→ (R, I).

We have additional schemes, namely Y = SpecR, and V = Spf(S, J). The
natural maps between the adic rings involved give us a commutative diagram with
the square on top being a cartesian square:

X

f

��

κ′ //

�

V

p

��
Y

g
!!CCCCCCCC

κ // Y ∗

q

��
Z

The maps κ and κ′are completion maps and f , g, p, q are the obvious maps. Note
that p, f , and g are smooth and pseudo-proper (however this is not true for the
map q, which is not of pseudo-finite-type unless d = 0).

The rank one free OX -modules ωf and ωgf correspond to the universal finite

S-module of differentials ωS/R := Ω̂eS/R and ωS/A := Ω̂d+e
S/A. The rank one free OY -

module ωg corresponds to the universal finite R-module of degree d differentials

ωR/A := Ω̂dR/A. Thus

ωS/R = S dv1 ∧ · · · ∧ dve,

ωS/A = S du1 ∧ · · · ∧ dud ∧ dv1 ∧ · · · ∧ dve,

ωR/A = Rdu1 ∧ · · · ∧ dud.

The S-module ωS/R gives us a rank one free OV -module. A little thought
shows us that this module is in fact ωp. Define ωq as the rank one free OY -
module corresponding to ωR/A. The equations Γ(X , ωf ) = ωS/R = Γ(V , ωp) and
Γ(Y , ωg) = ωR/A = Γ(Y, ωq) can be re-written as

ωf = (κ′)∗ωp and ωg = κ∗ωq.

Write ϕ̄ and ϕ for (the global sections of) the maps ϕ̄g,f and ϕg,f . Then the
S-module isomorphism

ϕ̄ : ωR/A ⊗R ωS/R −→∼ ωS/A

is given by ϕ̄(du⊗dv) = dv∧du. We have the following formula, where trA[[u,v]]/A

and trR[[v]]/R are as in (8.1.9).
(∗)

trA[[u]]/A

trR[[v]]/R

[
dv

vβ1

1 , . . . , vβee

]
du

uα1
1 , . . . , uαee

 = trA[[u,v]]/A

[
ϕ̄(du⊗ dv)

vβ1

1 , . . . , vβee , u
α1
1 , . . . , uαdd

]
.

Indeed, if any of the αl’s or βk’s is not equal to 1, then both sides equal zero. If
αl = βk = 1 for l = 1, . . . , d, k = 1, . . . , e, both sides equal 1. This means that the
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following diagram commutes.

Hd+e
L (ωR/A ⊗R ωS/R)

(6.2.4)

˜

��

˜̄ϕ // Hd+e
L (ωS/A)

trA[[u, v]]/A

��

Hd
I(ωR/A ⊗R He

J(ωS/R))

via trR[[v]]/R

��
Hd
I(ωR/A)

trA[[u]]/A

// A

If, in the above diagram, we replace ϕ̄ by ζ̄g,f , then by Proposition 6.3.1 (b), the
resulting diagram commutes. (See also Remark 6.3.4.) By the universal property
of the pair (ω#

S/A, trS/A) we see that ϕ̄ = ζ̄g,f , i.e., ϕg,f = ζg,f .

Case 2. Suppose we have a section σ : Z →X and τ := f ◦σ, and X and Y
are the completions of X and Y along the closed subschemes given by the closed
immersions σ : Z ↪→ X and τ : Z ↪→ Y respectively. More precisely, if I1 ⊂ OX

and I2 ⊂ OY are the coherent ideals giving the embeddings of Z into X and
Y (via σ and τ), and I ⊂ OZ is an ideal of definition of X , then I OX + I1

and I OY + I2 are ideals of definition of X and Y respectively. Since the source
and target of ζg,f and ϕg,f are concentrated in one degree, the question of their
equality is a local question on X and hence, without loss of generality, we may
assume that the schemes involved are affine, say X = Spf(S,L), Y = Spf(R, I)
and Z = Spf(A, I0) respectively. In fact we may assume that τ and σ are given
by regular sequences (u1, . . . , ud) and (u1, . . . , yd, v1, . . . , ve) respectively, and u is
analytically independent over A, and v is analytically independent over R. We then
have a cartesian diagram (where the power series rings A[[u1, . . . , ud]] = A[[u]] and
R[[v1, . . . , ve]] = R[[v]] are given the adic topologies from the ideals (u1, . . . , ud)
and (v1, . . . , ve) repsectively)

X
v //

f

��
�

Spf R[[v]]

p

��
Y

u //

g

��
�

Spf A[[u]]

q

��
Z

w
// SpecA

with the horizontal arrows being the natural ones. Note that w is flat being a
completion map. Therefore flat base change applies (see Proposition 12.1.2 (a))
and we have ζg,f = v∗ζq,p. Clearly ϕg,f = v∗ϕq,p from the explicit description of
ϕq,p and ϕg,f . By Case 1, we have ζq,p = ϕq,p. Applying v∗ to both sides, we get
the result for this case.

Case 3 (The General Case). In the general case, let Y ×Z X = Q,
X ×Z X = P, and let p : P → Q, q : Q → X be the base changes of f and g,
and let πi : P → X and π2 be the projections X ×Z X → X , with π1 = q ◦p.
It ∆: X → P is the diagonal immersion, then let κ : U → X be the completion
of X with respect to ∆(X ), and let κ′ : V → Y be the completion of Y along
(p ◦∆)(X ). We have a natural map p̂ : U → V such that κ′ ◦ p̂ = p ◦κ. Let
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q̂ = q ◦κ′ and let δ : X → U be the natural closed immersion. We then have a
commutative diagram with the two rectangles on the right being cartesian:

X

δ

!!BBBBBBBB
1X

!!

1X

,,

U
κ //

p̂

��

P

p

��

π2 //

�

X

f

��
V

κ′ //

q̂ !!BBBBBBBB Q

q

��

//

�

Y

g

��
X

f
// Z

Now, using the explicit formula for ϕg,f , ϕq,p, and ϕq̂,p̂, we see that π∗2ϕg,f = ϕq,p
and κ∗ϕq,p = ϕq̂,p̂. Thus κ∗π∗2ϕg,f = ϕq̂,p̂.

A similar relationship holds for the ζ•,• maps. Indeed, by Proposition 12.1.2 (a)
we have π∗2ζg,f = ζq,p and by Proposition 12.1.2 (d) we have κ∗ζq,p = ζq̂,p̂, giving
κ∗π∗2ζg,f = ζq̂,p̂. On the other hand, by Case 2 considered above, we have ζq̂,p̂ =
ϕq̂,p̂. Thus

κ∗π∗2ζg,f = κ∗π∗2ϕg,f .

Applying δ∗ to both sides of this equation, and noting that π2 ◦κ ◦ δ = 1X , we get
the result. �





CHAPTER 13

Applications of Transitivity

13.1. Iterated residues

Suppose f : X → Y is smooth of relative dimension e, g : Y → Z smooth of
relative dimension d, W1 ↪→ X a closed subscheme, finite and flat over Y , W2 ↪→ Y
a closed subscheme which is finite and flat over Z. Let W = W1 ∩ f−1(W2) ↪→ X.
Suppose further that W1 is cut out by a quasi-regular sequence v = (v1, . . . , ve) in
S and W2 is cut out by a quasi-regular sequence u = (u1, . . . , ud) in R.

Theorem 13.1.1. In the above situation, for ν ∈ Γ(OY , ωg), µ ∈ Γ(OX , ωf ),
we have

res
W2

res
W1

[
µ

vβ1

1 , . . . , vβee

]
ν

uα1
1 , . . . , uαdd

 = res
W

[
µ ∧ f∗ν

vβ1

1 , . . . , vβee , u
α1
1 , . . . , uαdd

]
where, for notational simplicity, we denote the image of ui in S also by ui.

Proof. Recall from the definition of ζg,f in (12.1.1) that ζg,f is the transform
of χ[g, f ] after applying Verdier’s isomorphism to f !OY , g!OZ and (gf)!OZ . From
Theorem 12.2.4 and (6.3.2) we get

res
W2

res
W1

[
µ

vβ1

1 , . . . , vβee

]
ν

uα1
1 , . . . , uαdd

 = res
W

[
ϕ̄g,f (ν ⊗ µ)

vβ1

1 , . . . , vβee , u
α1
1 , . . . , uαdd

]
.

The result then follows from the definition of ϕ̄g,f in (12.2.1). �

13.2. The Restriction Formula

An important application of our transitivity result is the so-called Restriction
Formula, namely the formula in Corollary 13.2.7 below. The formula is related to
the following problem. Suppose

(13.2.1)

X
� � i //

f   AAAAAAAA P

π

��
Y

is a commutative diagram of ordinary schemes, with π and f smooth and separated
and i a closed immersion. Let the relative dimension of π be n = d + e and the
relative dimension of f be e. As usual, let N d

i be the d-th exterior power of
the normal bundle Ni of X in P . We have, via Verdier’s isomorphism and the
isomorphism η′i of (C.2.13), an isomorphism

(13.2.2) a
X/P

: i∗ωπ[n]⊗OX N d
i [−d] −→∼ ωf [e],

97
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defined as the composite

(13.2.2)

i∗ωπ[n]⊗OX N d
i [−d]

η′i−−→ i!ωπ[n]

vπ−−→ i!π!OY = i!ω#
π[n]

−̃−→ f !OY = ω#
f [e]

v−1

f−−→ ωf [e].

The question then is, what is the concrete form of a
X/P

in terms of local relative
coordinates? We answer the question in Theorem 13.2.6 below.

We leave it to the reader to check that a
X/P

is compatible with open immersions
into Y and P . Indeed every map in the composition defining a

X/P
is well behaved

with respect to open immersions into Y and P . Thus we may assume that P and Y
are affine and that X is defined by an ideal generated by a quasi-regular sequence,
which is part of a relative system of co-ordinates for π : P → Y .

We now assume that Y = SpecA, P = SpecS, andX = SpecR where R = S/I,
and I is generated by a quasi-regular sequence t = (t1, . . . , td) in S, and there
is an étale map A[T1, . . . , Td, V, . . . , Ve] → S, (where Tl, l = 1, . . . , d, and Vk,
k = 1, . . . , e are algebraically independent variables), and ti is the image of Ti
for i = 1, . . . , d. This can always be achieved by shrinking Y and P (see [BLR,
pp. 39–40, Prop. 7(c)]). Now every µ ∈ ωS/A can be written uniquely as

(13.2.3) µ = dt1 ∧ · · · ∧ dtd ∧ ν
with ν ∈ ∧eSΩ1

S/A. Define

(13.2.4) b
X/P

: i∗ωπ ⊗OX N d
i −→∼ ωf

by the formula
µ⊗ 1/t 7→ i∗ν

where µ and ν are related by (13.2.3). We should clarify that i∗ν ∈ ωR/A is the
pull-back of ν as a differential form. In other words, i∗ν is the image of ν under
the composite of maps ∧eSΩ1

S/A → R⊗S ∧eSΩ1
S/A → ∧

e
RΩ1

R/A = ωR/A.

In what follows, let

(13.2.5) ā
X/P

: i∗ωπ ⊗OX N d
i → ωf

be the map
ā
X/P

= H0(a
X/P

).

The notation follows the conventions we have been using throughout, and as ob-
served earlier, a

X/P
can be recovered from ā

X/P
(see §6.1).

Theorem 13.2.6. Under the above assumptions on i, π, f , A, S, and R, we
have

ā
X/P

= b
X/P

.

Proof. Since the results we have established have been stated in terms of the
abstract dualizing sheaves of the form ω#

f , rather than in terms of ωf , it is convenient

for us to have an analogue of a
X/P

taking values in ω#
f [e]. To that end, suppose

k : W ↪→ P is a regular immersion of codimension m ≤ n, and that g = π ◦k is flat
over Y , so that g : W → Y is Cohen-Macaulay of relative dimension n−m. Define

a#
W/P

: k∗ωπ[n]⊗OW N m
k [−m] −→∼ ω#

g [n−m]
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as the composite:

k∗ωπ[n]⊗OW N m
k [−m]

η′k−−→ k!ωπ[n]

vπ−−→ k!π!OY = k!ω#
π[n]

−̃−→ g!OY = ω#
g [n−m]

(Similarly we have an isomorphism a#
W/X

for a regular immersion W ↪→ X of Y -

schemes such that W → Y is flat.) If W → Y is finite (in addition to being flat),
so that m = n, and W is given by the vanishing of v = (v1, . . . , vn), then by the
definition of the map τ #

g,π,k in (3.4.2), we have:

(†) tr#g ◦h∗(a
#
W/X

) = τ #
g,π,k .

By definition of a
X/P

, it is clear that v
f
◦a

X/P
= a#

X/P
.

We first prove that the map ā
X/P

is compatible with base change. In greater

detail, suppose u : Y ′ → Y is a map, X ′ := X×Y Y ′, P ′ := P×Y Y ′, and let f ′ : X ′ →
Y ′, π′ : P ′ → Y ′, i′ : X ′ → P ′, w : P ′ → P , v : X ′ → X be the resulting maps
obtained from base change. We then clearly have v∗(i∗ωπ ⊗OX N d

i ) = i′
∗
ωπ′ ⊗OX′

N d
i′ and v∗ωf = ωf ′ . We claim that v∗ā

X/P
= ā

X′/P ′ . In what follows, Y ′ =

SpecA′, R′ = R⊗A A′, S′ = S ⊗A A′.
Consider the base change isomorphism θ = θfu : v∗ω#

f −→∼ ω#
f ′ of part (a) of [S2,

p.740, Theorem 2.3.5 (a)]. According to loc.cit. (b) we have a commutative diagram

v∗ωf ˜
v∗(v̄

f
)

// v∗ω#
f

θ

˜

��
ωf ′ ˜̄v

f′

// ω#
f ′

Since, v
f
◦a

X/P
= a#

X/P
, from the above diagram we see that it is enough to show

that θ ◦v∗a#
X/P

= a#
X′/P ′ in order to show that v∗a

X/P
= a

X′/P ′ .

Let ηi and η′i be the maps defined in (C.2.11) and (C.2.13) of Appendix C. By
definition, η′i = (B.1.2) ◦ηi. It follows that ā#

X/P
is the composite of isomorphisms:

i∗ωπ ⊗OX N d
i ˜−−−−→

(C.2.7)
E xtdOP (OX , ωπ) ˜−−−−→

(B.1.2)
H0(i!ω#

π[n]) −→∼ ω#
f .

Let the composite of the last two maps in the above composition be denoted
c
X/P

: E xtdOP (OX , ωπ) −→∼ ω#
f . Consider the diagram

(‡) v∗(i∗ωπ ⊗OX N d
i ) ˜

(C.2.7)
// v∗ E xtdOP (OX , ωπ)˜

��

˜c
X/P

// v∗ωf

θ

˜

��
i′
∗
ωπ′ ⊗OX′ N d

i′ ˜
(C.2.7)

// E xtdOP ′ (OX′ , ωπ′) ˜c
X′/P ′

// ωf ′

where the isomorphism in the middle is the natural one, which we now describe.
Let Q• → R be a projective resolution of the S-module R. Then Q• ⊗R R′ =
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Q•⊗AA′ → R⊗AA′ = R′ is an S′-projective resolution of the S′-module R′. Now

Hom•S(Q•, ωS/A[d])⊗A A′ = Hom•S′(Q
• ⊗A A′, ωS/A[d]⊗A A′)

= Hom•S′(Q
• ⊗A A′, ωS′/A′ [d]).

Since t is a quasi-regular sequence in S, we can (and will) pick Q• to be the version
of the Koszul homology complex on t such that Hom•S(Q•, S) = K•(t), and the
equality Hom•S(Q•, ωS/A[d]) ⊗A A′ = Hom•S′(Q

• ⊗A A′, ωS′/A′ [d]) reduces to the
well-known equality ωS/A[d]⊗SK•(t)⊗SS′ = ωS′/A′ [d]⊗S′K•(t′), where t′ = t⊗1.
By right-exactness of tensor products, we get:

H0(ωS/A[d]⊗S K•(t))⊗S S′ = H0(ωS/A[d]⊗S K•(t)⊗S S′)
= H0(ωS′/A′ [d]⊗S′ K•(t′)).

The isomorphism v∗ E xtdOP (OX , ωπ) −→∼ E xtdOP ′ (OX′ , ωπ′) then follows from the

isomorphism in (C.2.3). (See also the proof of Lemma 1 of [L1, pp.39–40] as well as
[S2, p.762, (8.9)] for the case when X ↪→ P is not necessarily a regular immersion,
but R is relatively Cohen-Macaulay over A). The description of the isomorphism we
have given also shows that the rectangle on the left in diagram (‡) above commutes.
The rectangle on the right commutes by [S2, p.741, Theorem 2.3.6]. Thus diagram
(‡) commutes and θfu ◦v

∗ā#
X/P

= ā#
X′/P ′

, i.e., v∗ā
X/P

= ā
X′/P ′ .

Next suppose we have a closed subscheme j : Z ↪→ X such that (a) h =
f ◦ j : Z → Y is an isomorphism, and (b), if L̄ ⊂ R is the ideal of R which de-
fines Z, then L̄ is generated by a quasi-regular sequence ū = (ū1, . . . , ūe). Let
ui ∈ S be lifts of ūi ∈ R for i = 1, . . . , e. Let L be the ideal generated by (t,u).
Then L is the ideal defining the closed immersion ij : Z ↪→ P . Let B = Γ(Z, OZ).
For a sequence of positive integeres m = (m1, . . . ,me), let um = (um1

1 , . . . , umee ),
ūm = (ūm1

1 , . . . , ūmee ), Lm the R-ideal generated by ūm, Bm = R/Lm, Zm =
SpecBm and jm : Zm ↪→ X the natural closed immersion. Let hm : Zm → Y be
the finite flat map hm = f ◦ jm. Finally let κ : X → X be the completion of X
along Z.

For µ ∈ ωS/A, and positive integers mi, i = 1, . . . , e, it is easy to see that

(∗) res
Z,π

[
µ

t1, . . . , td, u
m1
1 , . . . , umee

]
= res

Z,f

[
b
X/P

(µ⊗ 1/t)
ūm1

1 , . . . , ūmee

]
.

Indeed, we can write µ in a unique manner as µ = fdt1 ∧ · · · ∧dtd ∧du1 ∧ · · · ∧due,
with f ∈ S. Then b

X/P
(µ ⊗ 1/t) = f̄ ∧ dū1 ∧ · · · ∧ dūe, where f̄ is the image of f

in R. Both sides of (∗) are then realised as the coefficient of um1−1
1 um2−1

2 . . . ume−1
e

in the power series expansion of f , whence(∗) holds. On the other hand, according
to Proposition C.6.6,

ā#
Zm/P

(µ⊗ 1/(t,um)) = ā#
Zm/X

(ā
X/P

(µ⊗ 1/t))⊗ 1/ūm).

Apply tr#hm
◦hm∗ to both sides. By (†) and Proposition 3.5.4, this yields,

(∗∗) res
Z,π

[
µ

t1, . . . , td, u
m1
1 , . . . , umee

]
= res

Z,f

[
ā
X/P

(µ⊗ 1/t)
ūm1

1 , . . . , ūmee

]
.

From (∗) and (∗∗) we conclude that res
Z
[ āX/P (µ⊗1/t)

ūm
] = res

Z
[ bX/P (µ⊗1/t)

ūm
]. Now

apply local duality, i.e. Corollary 3.2.4, to conclude that κ∗ā
X/P

= κ∗b
X/P

. This
means that on a Zariski open neighbourhood of Z, ā

X/P
= b

X/P
. We point out

that the hypothesis that Z be defined globally by the vanishing of a quasi-regular
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sequence is not necessary to reach this conclusion, since j is a regular immersion
and locally, one can arrange this. In other words, if we have a section of f , then in
an open neighbourhood U of the image of the section, ā

X/P
|U = b

X/P
|U .

In the general case, let X ′′ = X×Y X, P ′ = P×Y X, and consider the cartesian
square

X ′′

�p1

��

p2 // X

f

��
X

f
// Y

We know that p∗2āX/P = ā
X′′/P ′ . It is clear from the description of b

X/P
that it is

compatible with arbitrary base change and hence p∗2bX/P = b
X′′/P ′ Then by what

we have proven, there is a Zariski open subscheme V of X ′′ containing the diagonal
such that

p∗2āX/P |V = p∗2bX/P |V .
Let ∆: X ↪→ V be the map induced by the diagonal immersion X ↪→ X ′′. Applying
∆∗ to both sides of the displayed equation above, we see that ā

X/P
= b

X/P
. �

Corollary 13.2.7. Let v = (v1, . . . , ve) ∈ Γ(P, OP ) = S, J the ideal in S
generated by (t,v), Z = SpecS/J , and v′i the restriction of vi to Z for i = 1, . . . , e.
If Z → Y is finite and flat, then

res
Z,π

[
dt1 ∧ · · · ∧ dtd ∧ ν
t1, . . . , td, v1, . . . , ve

]
= res

Z,f

[
i∗ν

v′1, . . . , v
′
e

]
.

for ν ∈ ∧eΩ1
S/A.

Proof. Theorem 13.2.6 together with Proposition C.6.6 yields

ā#
Z/P

(dt1 ∧ · · · ∧ dtd ∧ ν ⊗ 1/(t,v)) = ā#
Z/X

(i∗ν ⊗ 1/v′)

where ā#
Z/P

and ā#
Z/X

are as in the proof of Theorem 13.2.6 and v′ is (v′1, . . . , v
′
e).

Let h : Z → Y be the composite Z ↪→ X
f−→ Y . Applying tr#h ◦h∗ to both sides, we

get the result. (See Proposition 3.5.4.) �

13.2.8. Quasi-finite maps. Suppose the map π : P → Y in (13.2.1) factors

as P
p−→ W

g−→ Y , with p smooth of relative dimension d, and g smooth of rela-
tive dimension e, and assume h = p ◦π is quasi-finite. In other words we have a
commutative diagram of ordinary schemes

X

h
��

� � i // P

p~~}}}}}}}}
π

��
W

g
// Y

with h quasi-finite and f = g ◦h = p ◦ i, and with p, π, g and f smooth of relative
dimensions d, d+ e, e and e, respectively. To lighten notation, we write

N = N d
i = (∧dOXI /I 2)∗

where I is the quasi-coherent ideal sheaf in OP defining i : X ↪→ P .
Since h is quasi-finite and flat over W (the latter because p is smooth, and i

is a local complete intersection map), for quasi-coherent OW -module F , h!F can
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be identified with H0(h!F ) in the standard way, and we will do so in what follows.
With this convention, we have three isomorphisms which we now describe. First,
we clearly have

(13.2.8.1) h!ωg −→∼ ωf

via the isomorphism h!g! −→∼ f !, and Verdier’s isomorphisms for f and g.
Next, for a quasi-coherent OW -module F , we have the transitivity isomor-

phism

(13.2.8.2) χh(F ,OW ) : h∗F ⊗OX h
!OW −̃−→ h!F

of (5.2.1). Since we are dealing with ordinary schemes, taking account of our
choice of order of tensor product, this is the same as the map χhF ,OW

of [L4, p. 231,

(4.9.1.1)]. The map χh(F ,OW ) is an isomorphism since h is flat and hence perfect
[L4, pp. 234–235, Thm. 4.9.4].

Finally, we have an isomorphism

(13.2.8.3) i∗ωp ⊗N −→∼ h!OW

given by η′i(ωp[d]) : iN(ωp[d]) −→∼ i!ωp of (C.2.13), the isomorphism i!p! −→∼ h!,
and Verdier’s isomorphism v̄ : ωp[d] −→∼ p!OW .

These three isomorphisms are related in the following way.

Proposition 13.2.8.4. The following diagram of isomorphisms commutes

i∗(p∗ωg ⊗OP ωp)⊗OX N
ϕ̄g,p˜// i∗ωπ ⊗OX N

āX/P˜// ωf
h∗ωg ⊗OX (i∗ωp ⊗OX N )

˜1⊗(13.2.8.3)

��
h∗ωg ⊗OX h

!OW ˜
(13.2.8.2)

// h!ωg

˜

(13.2.8.1)

OO

where ϕ̄g, p is the explicit map described in (12.2.1) and āX/P is the map (13.2.5)
described locally, via Theorem 13.2.6, by the explicit map bX/P in (13.2.4).

Proof. The essential point is that other than (13.2.8.1), all other maps in the
diagram are various avatars of transitivity maps. The map η′i which is used in the
definition of (13.2.8.3) is

χi(−,OP ) : Li∗(−)
L
⊗OX i

!OP −→∼ i!

with N [−d] substituted for i!OP , via the canonical isomorphism

η′(OP ) : N [d] −→∼ i!OP

(see also eqrefdiag:1-tensor-Tr for another way of looking at this).
Next, according to Theorem 12.2.4, and the definition in (12.1.1), the map ϕ̄g, p

is Hd+e of the composite (after substituting g!OY , π!OY , p!OW with ωg[e], ωπ[d+e],
and ωp[d] respectively, via Verdier’s isomorphisms):

p∗g!OY ⊗OP p
!OW −→∼ p!g!OY −→∼ π!OY ,

where the first arrow is the transitivity map χp(g!OY ,OW ), which is an isomorphism
since p is flat and hence perfect.
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The map āX/P is, according to (13.2.2) and (13.2.2) (after the usual Verdier

substitutions and the substitution N [−d] −→∼ i!OP ), Hd applied to the composite

Li∗π!OY
L
⊗OX i

!OP −→∼ i!π!OY −→∼ f !OY

where the first arrow is the transitivity map χi(π!OY ,OP ). This is an isomorphism
since a regular immersion is a perfect map.

Finally, (13.2.8.1) is by definition χh(ωg,OW ).
Consider the diagram below, in which the arrows are either natural ones arising

from the pseudofunctorial nature of −! or from abstract transitivity maps, and in
which:

i∗ = Li∗ and ⊗ =
L
⊗.

i∗(p∗g!OY ⊗ p!OW )⊗ i!OP ˜ // i∗(p!g!OY )⊗ i!OP ˜ // i∗π!OY ⊗ i!OP

˜

��
h∗(g!OY )⊗ (i∗p!OW ⊗ i!OP )

˜
��

i!π!OY

˜

��
f !OY

h∗(g!OY )⊗ i!p!OW ˜ // h∗(g!OY )⊗ h!OW ˜ // h!g!OY

˜OO

The diagram commutes by Prop.-Def 5.2.4 (ii) and [L4, p. 238]. The Proposition
follows. �





CHAPTER 14

Traces of differential forms for finite maps

14.1. Tate traces

Let A be a ring, and C an A-algebra which is finite and free as an A-module.
We have the canonical trace

(14.1.1) TrcC/A : C → A

given by the composite
C −→ EndA(C, C) −→ A

where the first arrow is the map c 7→ (x 7→ cx) and the second the standard trace
of an endomorphism of a finite free A-module.

If the C-module HomA(C, A) is a free C-module of rank one (this happens if
and only if, in addition to C being a finite free A-module, its fibres are Gorenstein)
then, following Kunz in [Ku], we regard any free generator of HomA(C, A) as a
“trace” for the A-algebra C (cf. [Ku, F8 (b), pp. 362–363]). If there is one, then
clearly we have exactly as many as the units of C. We point out that the canonical
trace, TrcC/A, need not be a trace in this sense on C. Indeed if A and C are fields
and C is a purely inseparable extension of A, then TrcC/A = 0 and hence cannot
be a free generator of HomA(C,A).

Tate studies the existence and characterisation of traces in an important sit-
uation which includes the case of C being a complete intersection algebra over
A.

In the rest of this sub-section we make the following assumptions and use the
following notations. The A-algebra C (which is free of finite rank as an A-module)
is such that the canonical map A→ C factors as

A −→ B
π−→ C

with π a surjective map, the kernel I of π generated by a regular B-sequence
f = (f1, . . . , fn), and the kernel J of the canonical map

s : B ⊗A C −→ C

is generated by a B⊗A C-sequence g = (g1, . . . , gn). In somewhat greater detail, if
m : C ⊗A C → C is the A-algebra map c⊗ c′ 7→ cc′, then s is the composition

B ⊗A C
π⊗1C−−−−−−→ C ⊗A C

m−−−−→ C.

Note that fi⊗1 ∈ J and hence we have hij ∈ B⊗AC such that fi⊗1 =
∑n
j=1 hijgj

for i = 1, . . . , n. Let

(14.1.2) ∆ = det (hij),

and

(14.1.3) ∆ = (π ⊗ 1C)(∆).

105
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Set J = kerm = (π ⊗ 1C)(J). We have the following commutative diagram with

š : C ⊗A B → C

being the composite m ◦ (1C ⊗ π).

(14.1.4)

C

C // C ⊗A B
1C⊗π //

s∨ ,,

C ⊗ C

m

;;vvvvvvvvv

B

π

OO

// B ⊗A B

π⊗1B

OO

1B⊗π
// B ⊗A C

π⊗1C

OO
s

OO

A

OO

// B

OO

π
// C

OO

In the above situation it is shown in [MR, Appendix] that traces exist (i.e.,
HomA(C, A) is a rank one free C-module) and there is a canonical free generator
(i.e., a trace) λ = λ(f ,g) of HomA(C, A). We summarise the results of Tate as given
in [MR, Appendix] in the following two theorems in which we make the standard
indentifications B⊗AHomA(C, A) = HomB(B⊗AC, B) and C⊗AHomA(C, A) =
HomC(C ⊗A C, C). Under these identifications it is clear that

(14.1.5) π ◦ (1B ⊗ φ) = (1C ⊗ φ) ◦ (π ⊗ 1C) (φ ∈ HomA(C, A)).

Theorem 14.1.6. (Tate) [MR, p.231, Lemma (A.10)] The map

t : HomA(C, A) −→ C

given by

φ 7→ π((1B ⊗ φ)(∆)) = (1C ⊗ φ)(∆)

is an isomorphism of C-modules.

In loc.cit. the description of t is φ 7→ π((1B ⊗ φ)(∆)). Using (14.1.5) it is clear
that t can also be described as φ 7→ (1C ⊗ φ)(∆).

The results in [MR, Appendix] are perhaps more useful when stated in the
following way.

Theorem 14.1.7. (Tate) Let λ = λ(f , g) be the free C-module generator of
HomA(C, A) given by

λ = t−1(1)

where t : HomA(C, A) −→∼ C is the isomorphism in Theorem 14.1.6.

(a) If φ ∈ HomA(C, A), then the constant of proportionality c ∈ C such that
φ = cλ, is given by

c = π((1B ⊗ φ)(∆) = (1C ⊗ φ)(∆).

(b) If ψ ∈ HomB(B⊗AC, B) and φ ∈ HomA(C, A) are such that 1B⊗φ−ψ ∈
JHomB(B ⊗A C, B), then

π((1B ⊗ φ)(∆)) = πψ(∆).



14.1. TATE TRACES 107

(c) If ψ ∈ HomC(C⊗AC, C) and φ ∈ HomA(C, A) are such that 1C⊗φ−ψ ∈
JHomC(C ⊗A C, C), then

(1C ⊗ φ)(∆)) = ψ(∆).

(d) If TrcC/A : C → A is the canonical trace given in (14.1.1), then

TrcC/A = m(∆)λ.

Proof. These are all results in [MR, Appendix], stated in perhaps a different
way. Part (a) is [ibid, pp. 229–230, 3. of Theorem (A.3)] (together with (14.1.5)).
Part (b) is an immediate consequence of [ibid, p. 230, Lemma (A.9)] and (c) is the
same, together with (14.1.5). Part (d) is [ibid, pp. 229–230, 4. of Theorem (A.3)]. �

The first application of Tate’s result we give is the following (this is (R6) of
[RD, p. 198] but for our version of residues).

Theorem 14.1.8. In the above situation, suppose B is smooth of relative di-
mension n over A, f : X → Y the corresponding smooth map from X = SpecB to
Y = SpecA, and Z = SpecC. Then

res
Z,f

[
bdf1 ∧ · · · ∧ dfn

f1, . . . , fn

]
= TrcC/A(b|Z).

Proof. It is important to keep diagram (14.1.4) in mind when following this
proof. There is an annoying issue that ∆ is defined in terms of fi ⊗ 1C and gi, but
in dealing with the base change 1C ⊗ φ, for φ ∈ HomA(C, A), the natural elements
that show up are 1C ⊗ fi ∈ C⊗AB. One has to do somewhat careful book-keeping
to avoid confusion. Since C ⊗A B and B ⊗A C play different roles, let us agree
to write x∨ for the element of C ⊗A B corresponding to x ∈ B ⊗A C under the
standard isomorphism between B ⊗A C and C ⊗A B.

In what follows, the C-algebra structures on C⊗AB and C⊗AC are c 7→ c⊗1B
and c 7→ c⊗ 1C respectively. Let N = (I/I2)∗ and NC = C ⊗A N . Let h : Z → Y
be the natural finite flat map corresponding to A→ C and i : Z ↪→ X the natural
closed immersion, with normal bundle N . If τ

C/A
: ΩnB/A ⊗B ∧

n
CN → A is the

map arising from the composite (all isomorphisms being the obvious ones, e.g., the
fundamental local isomorphism, Verdier’s isomorphism, . . . )

h∗(i
∗(ΩnX/Y )⊗Z ∧nN ) −→∼ H0(h∗(i

!f !OY )) −→∼ H0(h∗h
!OY )

H0(Trh)−−−−−→ OY

then (ΩnB/A ⊗B ∧
n
CN, τC/A) represents the functor M 7→ HomA(M, A) from finite

C-modules to finite A-modules, whence we have an isomorphism of C-modules

Φ: ΩnB/A ⊗C ∧
n
CN −→∼ HomA(C, A)

with τ
C/A

corresponding to “evaluation at 1” under this isomorphism. According
to Proposition 3.5.4, we have

τ
C/A

(µ⊗ 1/f) = res
Z

[
µ

f1, . . . fn

]
(µ ∈ ΩnB/A).

Thus

Φ(µ⊗ 1/f)(c) = res
Z

[
b · µ

f1, . . . , fn

]
(c ∈ C)

where b ∈ B is any pre-image of c. If b ∈ I, then bdf1 ∧ · · · ∧ dfn ⊗ 1/f = 0 in
ΩnB/A⊗B∧

nN and hence the right side of the above displayed formula is well-defined

as a function of c ∈ C.
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Similarly we have an isomorphism of C ⊗A C-modules

Φ′ : Ωn(C⊗AB)/C ⊗ ∧
nNC −→∼ HomC(C ⊗A C,C)

given by

Φ′(ν ⊗ 1/(1C ⊗ f))(x) = res
Z×Y Z,p

[
x̃ · µ

(1C ⊗ f1), . . . , (1C ⊗ fn)

]
(x ∈ C ⊗A C)

where x̃ ∈ C ⊗A B is any pre-image of x and p : Z ×Y X → Z is the natural
projection.

Let s∨ : C⊗AB → C be as in (14.1.4), i.e., s∨ = m ◦ (1C⊗π). Then J∨ := ker s∨

is generated by g∨1 , . . . , g
∨
n .

Let φ ∈ HomA(C, A) and ψ ∈ HomC(C ⊗A C, C) be the maps defined by

φ = Φ(df1 ∧ · · · ∧ dfn ⊗ 1/f),

and

ψ = Φ′((∆∨ · dg∨1 ∧ · · · ∧ dg∨n)⊗ 1/(1C ⊗ f)).

We have to show that φ = TrcC/A. By Theorem 14.1.7 (d), this is equivalent to

showing that (1C ⊗ φ)(∆) = m(∆). It easier to show that ψ(∆) = m(∆), and we
can reduce to this via Theorem 14.1.7 (c). The details are as follows. First, we
claim that 1C ⊗ φ − ψ ∈ JHomC(C ⊗A C, C) so that Theorem 14.1.7 (c) applies.
Before we prove the claim, we point out that

1C ⊗ φ = Φ′((d(1C ⊗ f1) ∧ · · · ∧ d1C ⊗ fn)⊗ 1/(1C ⊗ f).

Since 1C ⊗ fi =
∑
j h
∨
ijg
∨
j we have

d(1C ⊗ f1) ∧ · · · ∧ d(1C ⊗ fn) = µ+ ∆∨ dg∨1 ∧ · · · ∧ dg∨n

where µ ∈ J∨Ωn(C⊗AB)/C (for h∨ij ∈ J∨). It follows that

1C ⊗ φ− ψ = Φ′(µ⊗ (1/(1C ⊗ f))) ∈ JHomC(C ⊗A C, C)

as claimed.
We then have, with δ ∈ C ⊗A B a lift of ∆ ∈ C ⊗A C,

(∗)

(1C ⊗ φ)(∆) = ψ(∆) = res
Z×Y Z,p

[
δ∆∨ dg∨1 ∧ · · · ∧ dg∨n

(1C ⊗ f1), . . . , (1C ⊗ fn)

]
= res

Z,p

[
δ dg∨1 ∧ · · · ∧ dg∨n

g∨1 , . . . , g
∨
n

]
= s∨(δ)

= m(∆).

In the above sequence, the first equality is from Theorem 14.1.7 (c), the one in the

second line from Theorem 3.5.5, the third from the fact that the composite Z
via s∨−−−−→

Z ×Y X
p−→ Z is an isomorphism, which means the formulae in Remark 10.3.3

apply. The last equality is from the definition of s∨ as m ◦ (1C ⊗ π). From (∗) and
Theorem 14.1.7 (d) we get that φ = TrcC/A, and from this the Theorem follows. �

Remarks 14.1.9. 1) The above proof would be easier if one could show that

∆∨ is a pre-image of ∆ under C ⊗AB
1C⊗π−−−−→ C ⊗A C. But there is no guarantee it

is so. However, in the special case where B is a polynomial ring over A, something
like this be arranged as the proof Proposition 14.1.10 below shows.
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2) If B is flat over A, then λ is stable under any base change of A. In somewhat
greater detail, if A → A′ is a map of rings, B′, C ′, f ′, and g′ the obvious base
changes of B, C, f , and g, then, under the identification HomA′(C

′A′) = A′ ⊗A
HomA(C, A), we have λ(f ′, g′) = 1 ⊗ λ(f , g). This is because, if B is flat over A,
then f ′ and g′ are regular sequences.

Proposition 14.1.10. Let q ∈ A[T1, . . . , Tn] = A[T]. Suppose B is the A-
algebra B = A[T]q. For i = 1, . . . , n let γi = π(Ti) and

gi = Ti ⊗ 1C − 1B ⊗ γi.
Let Z = SpecC. Then λ = λ(f , g) ∈ HomA(C, A) is given by

λ(c) = res
Z

[
bdT1 ∧ · · · ∧ dTn

f1, . . . , fn

]
(c ∈ C)

where b ∈ B = A[T1, . . . , Tn] is any pre-image of c.

Proof. It is straightforward to see that the gi, as defined in the Proposition,
generate J = ker s, and form a regular B⊗AC-sequence. As before, let X = SpecB,
Y = SpecA, Z = SpecC, and let p : Z ×Y X → Z be the projection map. As we
did earlier, we need to distinguish between B ⊗A C and C ⊗A B, and so between
X×Y Z and Z×Y X, and p corresponds to the map C → C⊗AB given by c 7→ c⊗1.

For the proof of the theorem, it is simpler to regard the two copies of B in Dia-
gram (14.1.4), the one in the middle of the bottom row, and the one in the middle
of the left column, as two different copies of A[T]q, say A[X1, . . . , Xn]q(X1,...,Xn) =
A[X]q(X) and A[Y1, . . . , Yn]q(Y1,...,Yn) = A[Y]q(Y) respectively. Then B⊗AB can be
regarded as A[X, Y]q(X)q(Y). Moreover, B ⊗A C is then identified with C[Y]q(Y)

and C ⊗A B with C[X]q(X). Diagram (14.1.4) translates to

C

C // C[X]q(X)

π′′
1 //

s∨ --

C ⊗ C

m

;;vvvvvvvvvv

A[Y]q(Y)

π
2

OO

// A[X, Y]q(X)q(Y)

π′
2

OO

π′
1

// C[Y]q(Y)

π′′
2

OO
s

OO

A

OO

// A[X]q(X)

OO

π
1

// C

OO

Here π
1

is the map Xi 7→ γi, and π
2

is Yi 7→ γi. The maps π′
1

and π′′
1

are the base
changes of π

1
, and π′

2
, π′′

2
the base changes of π

2
. We point out that

π′′
1

(∑
i

ciX
i

)
=
∑
i

ci ⊗ γi

and

π′′
2

(∑
i

ciY
i

)
=
∑
i

γi ⊗ ci.

For any h ∈ B = A[T]q, the element h ⊗ 1B (resp. h ⊗ 1C) is identified with the
element h(Y) of A[X, Y]q(X)q(Y) = B⊗AB (resp. the element h(Y) of C[Y]q(Y) =
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B⊗AC), whereas 1B⊗h and 1C⊗h are identified with h(X) (regarded as elements
of A[X, Y]q(X)q(Y) and of C[X]q(X) respectively). Finally s(

∑
i ciY

i) =
∑
i ciγ

i

and s∨(
∑
i ciX

i) =
∑
i ciγ

i. It follows that

gi = Yi − γi, and g∨i = Xi − γi (i = 1, . . . n).

Now there exist hij(X,Y) ∈ A[X, Y] such that

fi(X)− fi(Y) =
∑
j

hij(X,Y)(Xj − Yj).

Then fi(Y) =
∑
j hij(γ,Y)(Yj − γj) and fi(X) =

∑
j hij(X,γ)(Xj − γj). Let

δ(X, Y) = det (hij(X,Y)).

If ∆ is defined as in (14.1.2), then

∆ = δ(γ, Y).

Note that

(∗) ∆ = π′′
2
(∆) = π′′

1
(δ(X, γ)).

On the other hand, since fi(X) =
∑
i,j hij(X,γ)(Xi − γi), according to Theo-

rem 3.5.5 we have

(∗∗) res
Z×Y Z, p

[
δ(X, γ)µ

f1(X), . . . , fn(X)

]
= res

Z

[
µ

g∨1 , . . . , g
∨
n

] (
µ ∈ ΩnC[X]/C

)
.

Let φ : C → A be defined by

φ(c) = res
Z

[
bdT1 ∧ · · · ∧ dTn

f1, . . . , fn

]
(c ∈ C)

where b ∈ B = A[T] is any element in π−1(c). Since dXi = d(Xi − γi), therefore
for x ∈ C ⊗A C and x̃ ∈ C[X] such that π′′

1
(x̃) = x, we have

(1C ⊗ φ)(x) = res
Z×Y Z,p

[
x̃ d(X1 − γ1) ∧ · · · ∧ d(Xn − γn)

f1(X), . . . , fn(X)

]
.

By (∗) and (∗∗) we get

(1C ⊗ φ)(∆) = res
Z

[
dg∨1 ∧ · · · ∧ dg∨n
g∨1 , . . . , g

∨
n

]
= 1.

Theorem 14.1.7 (a) then gives φ = λ. �

14.2. Traces of differential forms

Suppose we have a commutative diagram of ordinary schemes

(14.2.1)

X

h
��

f

��
Y

g // Z

with f and g smooth of relative dimension n and h a finite map (necessarily flat).

The composite h∗f
!OZ −→∼ h∗h

!g!OZ
Trh−−→ g!OZ gives a OY -map map (after ap-

plying Verdier’s isomorphism to f !OZ and g!OZ and applying H−n(−))

(14.2.2) trh : h∗ωf −→ ωg.
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A note of caution. We have used the symbol trp earlier for the trace map Rmp∗ωf →
OW for a smooth proper map p : V →W of relative dimension m. The context will
make the meaning of the symbol clear.

Proposition 14.2.3. Let W be a closed subscheme of Y , proper over Z, and let
W ′ = h−1(W ). Assume g (and hence f) is separated. Then the following diagram
commutes:

Rn
W ′f∗ωf

res
W ′

��

Rn
W g∗h∗ωf˜oo

via trh

��
OZ Rn

W g∗ωgres
W

oo

Proof. By Nagata’s compactification [N] we have an open immersion u : Y →
Y together with a proper map ḡ : Y → Z such that ḡ ◦u = g. By Zariski’s Main
Theorem the quasi-finite map u ◦h : X → Y can be completed to a finite map, i.e.,
we can find an open immersion v : X → X and a finite map h̄ : X → Y such that
u ◦h = h̄ ◦v. Moreover, we may assume X is scheme-theoretically dense in X so
that h̄−1(u(Y )) = v(X). Let f̄ = ḡ ◦ h̄. We have a composite

(†) h̄∗f̄
! −→∼ h̄∗h̄

!ḡ! Trh̄−−→ ḡ!.

Consider the commutative diagram

Rg∗RΓWωg[n] ˜ // Rḡ∗RΓu(W )ḡ
!OZ // Rḡ∗ḡ!OZ

Trḡ // OZ

Rg∗RΓWh∗ωf [n] ˜ //

trh

OO

˜
��

Rḡ∗RΓu(W )h̄∗f̄
!OZ //

(†)

OO

˜

��

Rḡ∗h̄∗f̄
!OZ

(†)

OO

Rg∗Rh∗RΓW ′ωf [n]˜

��

˜ // Rḡ∗Rh̄∗RΓv(W ′)f̄
!OZ˜

��

// Rḡ∗Rh̄∗f̄ !OZ˜

��
Rf∗RΓW ′ωf [n] ˜ // Rf̄∗RΓv(W ′)f̄

!OZ // Rf̄∗f̄ !OZ
Trf̄

// OZ

The rectangle on the right commutes by definition of (†) (especially of the isomor-
phism h̄!ḡ! −→∼ f̄ ! which drives (†)).

Applying H0(−) to the above diagram we get the asserted result. �

Proposition 14.2.4. Let f , g, h be as above, and suppose u : Z ′ → Z is a map
of ordinary schemes. Let

X ′
w //

h′

��
�

f ′

##

X

h

��
f

zz

Y ′
v //

g′

��
�

Y

g

��
Z ′

u
// Z
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be the corresponding base change diagram. Then v∗trh = trh′ .

Proof. By [EGA, IV3, (13.3.2)], Y can be covered by open subschemes U
such that U → Y is the composite of a quasi-finite map U → PnZ followed by the
structural map PnZ → Z. Since the question is local on Y , we replace Y by U if
necessary, and assume we have a quasi-finite map Y → PnZ . Using Zariski’s Main

Theorem we can find a finite map Y → PnZ such that Y is an open PnZ-subscheme

of Y .
Since h is finite, the composite X → Y ↪→ Y is quasi-finite, and another

application of Zariski’s Main Theorem tells us that X → Y factors as an open
immersion X ↪→ X followed by a finite map h̄ : X → Y . Replacing X by the
scheme theoretic closure of its open subscheme X if necessary, we may assume that
X is scheme theoretically dense in X. This forces X = h̄−1(Y ). We thus have a
cartesian diagram, with horizontal arrows being open immersions

X

h

��

� � //

�

X

h̄
��

Y �
� // Y

We write ḡ : Y → Z for the composite Y → PnZ → Z, and set f̄ = ḡ ◦ h̄. The

important point is that f̄ : X → Z and ḡ : Y → Z are proper over Z and the
fibres of f̄ and ḡ have dimension ≤ n. This means Hj(f̄ !OZ) = Hj(ḡ!OZ) = 0
for j < −n. It follows that if ω#

f̄
:= H−n(f̄ !OZ), and if tr#

f̄
: Rnf̄∗ω

#
f̄
→ OZ is the

map induced by Trf̄ (OZ) : Rf̄∗f̄
!OZ → OZ then (ω#

f̄
, tr#

f̄
) represents the functor

F 7→ HomZ(Rnf̄∗F , OZ) of quasi-coherent sheaves F on X (see Remark 3.2.5 for
this argument). Along these lines, if ω#

ḡ := H−n(ḡ!OZ), and tr#ḡ : Rnḡ∗ω
#
ḡ → OZ , the

map induced by Trḡ(OZ), then one can make a similar statement about (ω#
ḡ , tr

#
ḡ ).

Let X
′

= X ×Z Z ′, Y
′

= Y ×Z Z ′, and let f̄ ′, ḡ′, h̄′, ū, v̄ be the obvious
base changes of f , g, h, u, and v, respectively. Let tr#h : h∗ω

#
f → ω#

g be the obvious
analogue of trh, namely

(14.2.4.1) tr#h = H−n
(
h∗f

!OZ ←̃−− h∗h!g!OZ
Trh−−→ g!OZ

)
.

Similarly define tr#h′ , tr#
h̄

, and tr#
h̄′

. Since ḡ and f̄ are proper, tr#
h̄

: h̄∗ω
#
f̄
→ ω#

ḡ has the

following alternative description: It is the unique element of HomY (Rnḡ∗h̄∗ω
#
f̄
, OZ)

corresponding, via adjointness, to the composite

Rnḡ∗h̄∗ω
#
f̄ ←̃−− Rnf̄∗ω

#
f̄

tr#
f̄−−→ OZ .

Let θf̄u : w̄∗ω#
f̄
→ ω#

f̄ ′
and θḡu : v̄∗ω#

ḡ → ω#
ḡ′ be the base change isomorphisms de-

fined in [S2, pp. 738–739, Rmk. 2.3.2, especially (2.5)]. We claim that the following
diagram commutes:

(∗)

v̄∗h̄∗ω
#
f̄

v̄∗tr#
h̄

��

h̄′∗w̄
∗ω#
f̄

h̄′∗θ
f̄
u // h̄′∗ω

#
f̄ ′

tr#
h̄′

��
v̄∗ω#

ḡ
θḡu

// ω#
ḡ′ .
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Suppose (∗) commutes. Restricting (∗) to Y , and using the Verdier isomorphisms
for f , f̄ , g, and ḡ and [S2, p. 739, Theorem 2.3.3, especially (c)] (which states that
via these isomorphisms θfu and θgu are the identity maps) we get v∗trh = trh′ as we
wish. The commutativity of (∗) is equivalent to

(†) tr#ḡ′(R
nḡ′∗(tr

#
h̄′
◦ h̄′∗θ

f̄
u)) = tr#ḡ′(R

nḡ′∗(θ
ḡ
u ◦ v̄

∗tr#h̄))

The proof of (†) rests on the fact that the following diagram of functors commutes

(‡)

u∗Rnf̄ ˜ //

˜

��

u∗Rnḡ∗h̄∗

&&MMMMMMMMMMM

Rnḡ′∗v̄
∗h̄∗

qqqqqqqqqq

qqqqqqqqqq

Rnf̄ ′∗w̄
∗ ˜ // Rnḡ′∗h̄

′
∗w̄
∗

qqqqqqqqqq

qqqqqqqqqq

In greater detail, consider the following diagram:

u∗Rnf̄∗ω
#
f̄

u∗tr#f

��

u∗Rnf̄∗ω
#
f̄˜

��

˜ // u∗Rnḡ∗h̄∗ω
#
f̄

Rnf̄ ′∗w̄
∗ω#
f̄

θf̄u
��

˜ // Rnḡ′∗h̄
′
∗w̄
∗ω#
f̄

θf̄u
��

�

Rnḡ′∗v̄
∗h̄∗ω

#
f̄

tr#
h̄

��

u∗Rnḡ∗h̄∗ω
#
f̄

tr#
h̄

��

˜oo
Rnf̄ ′∗ω

#
f̄ ′

tr#
f̄′

��

˜ // Rnḡ′∗h̄
′
∗ω

#
f̄ ′

tr#
h̄′

��
Rnḡ′∗ω

#
ḡ′

tr#
ḡ′

��

Rnḡ′∗v̄
∗ω#
ḡ

θḡu

oo u∗Rnḡ∗ω
#
ḡ˜oo

tr#ḡ

��
u∗OZ OZ′ OZ′ u∗OZ

The outer border commutes because of our alternate description of tr#
h̄

. The

rectangle on the left commutes because of the definition of θf̄u. The rectangle on
the lower right commutes because of the definition of θḡu The remaining rectangle
bordering the bottom edge commutes because of the alternate description of tr#

h̄′
.

The rectangle on the top right is simply (‡) and so commutes. All other rectangles,
save �, commute for functorial reasons. Consider �. We have two possible routes
from its northeast vertex to OZ′ lying directly below its southwest vertex, namely,
south followed by west followed by south, and west followed by south all the way.
We have to show that the two routes give the same map. This follows from the
fact that all the subrectangles (except possibly �) and the outer border commute.
This establishes (†) and hence the theorem. �

We wish to understand (14.2.2) more explicitly. For that we need to work more
locally, with affine schemes, and often in a “punctual way”, i.e., by working with
completions of local rings at points. With this in mind, let us assume that we are
in the situation of diagram (14.2.1), with a small change in hypothesis, namely we



114 14. TRACES OF DIFFERENTIAL FORMS FOR FINITE MAPS

assume h is separated and quasi-finite, rather than finite. The maps f and g remain
smooth of relative dimension n.

X

h
��

f

��
Y

g // Z

We are interested in duality for h in terms of ωg and ωf “at a point x ∈ X”.
To that end we make the following further assumptions.

• Z = SpecA
• Y = SpecR and X = SpecS.

Let y ∈ Y assume h−1(y) consists of exactly one point x.

Let R′ = Ôy be the completion of the local ring OY,y, S′ = Ôx the completion
of OX,x, and set Y ′ = SpecR′, X ′ = SpecS′. Since h−1(y) = {x}, we have a
cartesian square

X ′

h′

��

v //

�

X

h

��
Y ′

u
// Y

with h′ finite, even though h need not be finite.
To lighten notation, write ωR = ωR/A, and ωS = ωS/A. Set ωR′ = ωR ⊗R R′,

and ωS′ = ωS ⊗S S′ = ωS ⊗R R′.
Since h is flat and Gorenstein of relative dimension 0, for any quasi-coherent

OY -module F we have Hk(h!F ) = 0 for k 6= 0, and so we identify h!F with
H0(h!F ). Similarly, we identify h′!G with H0(h′!G ) for every quasi-coherent OY ′ -

module G . For an R-module M , h!M is defined to be Γ(X, h!M̃). Similarly, for an

R′-module N , (h′)!N will denote Γ(X ′, (h′)!Ñ).
Let

(14.2.5) ς : h!ωR −→∼ ωS

denote the isomorphism obtained from h!g!OY −→∼ f !OY and the Verdier isomor-
phisms vg and vf . By (flat) base change, we have

(14.2.6) ς ′ : (h′)!ωR′ −→∼ ωS′ .

In particular we have a trace map (for h′ is finite)

(14.2.7) trS′ : ωS′ → ωR′

corresponding to

h′∗ω̃S′ ←̃−−−
(∗)R′

h′∗(h
′)!ω̃R′

Trh′−−−→ ω̃S

Our interest is in making trS′ explicit.We point out that to define it, it was
not necessary to assume that x is the only point of X lying over y. However, by
shrinking X around x, we can be in the situation we are in.
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Now suppose h : X → Y factors as in the following commutative diagram

X �
� i //

h   AAAAAAAA P

p

��
Y

with P = SpecE, p : P → Y smooth of relative dimension d, and i a closed immer-
sion. We have a commutative diagram with each square cartesian

(14.2.8)

X ′
v //

j

��
�

X

i

��
P ′

w //

p′

��
�

P

p

��
Y ′

u
// Y

with h = p ◦ i and h′ = p′ ◦ j.
Let E′ = E ⊗R R′, P ′ = SpecE′, π = g ◦p, and consistent with out notations

above, let ωE = ωE/A, and ωE′ = ωE ⊗R R′.
We remark that ωR′ and ωS′ are the e-th graded pieces of the differenital graded

algebras ∧•R′(Ω1
R/A ⊗R R

′) and ∧•S′(Ω1
S/A ⊗S S

′) = ∧•S′(Ω1
S/A ⊗R R

′) respectively.

Similarly, ωE′ is the (n+e)-th graded piece of ∧•E′(Ω1
E/A⊗EE

′) = ∧•E′(Ω1
E/A⊗RR

′)

Let
φ : ωR ⊗R ωE/R −→∼ ωE

be the isomorphism φ = Γ(Y, ϕ̄g, p), where ϕ̄g, p is the map defined in (12.2.1). In
other words φ(ν ⊗ µ) = µ ∧ p∗ν. Let

φ′ : ωR′ ⊗R′ ωE′/R′ −→∼ ωE′

be the base change of φ. In greater detail, we have ωE′/R′ = ωE/R ⊗R R′, and
therefore ωR′ ⊗R′ ωE′/R′ = (ωR ⊗R ωE/R)⊗R R′. Set φ′ = φ⊗ 1.

Next, let I = kerE � S, J = kerE′ � S′. Write N = (∧dSI/I2)∗ and N ′ =
(∧dS′J/J2)∗. Let

b : ωE ⊗E N −→∼ ωS

be the map given by (13.2.4). By base change, as in the definition of φ′, we have a
map b′ := b⊗ 1:

b′ : ωE′ ⊗E′ N ′ −→∼ ωS′ .

Let % : ωR⊗R ωE/R⊗EN → ωS and %′ : ωR′ ⊗R′ ωE′/R′ ⊗E′ N ′ → ωS′ be the maps

(14.2.9) % = b ◦ (φ⊗ 1N ) and %′ = b′ ◦ (φ′ ⊗ 1N ′) = %⊗ 1R′ .

Finally, let

(14.2.10) ψ : ωE/R ⊗E N −→∼ h!R and ψ′ : ωE′/R′ ⊗E′ N ′ −→∼ h′
!
(R′)

be the maps defined as in (13.2.8.3).

Proposition 14.2.11. In the above situation, assume I = ker (E � S) is gen-
erated by u = (u1, . . . , ud) and set fk = uk ⊗ 1 ∈ E′, so that f = (f1, . . . , fd)

generates J = ker (E′ � S′). Set N = N d
i (= Ñ) and N ′ = N d

j (= Ñ ′). Let
ω ∈ ωS′ .
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(i) The following diagram commutes:

(ωR′ ⊗R′ ωE′/R′)⊗S′ N ′
%′ // ωS′

ωR′ ⊗R′ (ωE′/R′ ⊗S′ N ′)

1⊗ψ′

˜

��
ωR′ ⊗R′ h′!(R′)

χ̃h′
// h′!(ωR′)

ς′

˜

OO

where χh′ is the transitivity map defined in (13.2.8.2).
(ii) If ω = s · (h′)∗(ν), where ν ∈ ωR′ and s ∈ S′, then

trS′(ω) = TrcS′/R′(s) · ν.

(iii) Let η ∈ ΩnE/A ⊗R R
′ be any element such that j∗η = ω. Then

trS′(ω) = ν · res
X′,p′

[
x · µ

f1, . . . , fd

]
where x ∈ E′, µ ∈ ωE′/R′ , and ν ∈ ωR′ are related via the formula

df1 ∧ · · · ∧ dfd ∧ η = x · µ ∧ p′∗ν.

(iv) Let µ, ν, η and x be as in (ii). Suppose E = R[T1, . . . , Td]q(T), where
q(T) ∈ R[T]. Let gi ∈ E′ ⊗R′ S′ be the elements gi = Ti ⊗ 1 − 1 ⊗ γi,
where the γi ∈ S′ is the images of Ti, i = 1, . . . , d, and let

λ : S′ → R′

be the map λ = λ(f , g) of Theorem 14.1.7. Then

trS′(ω) = λ(x|X′)ν.

Proof. We point out that u and f are necessarily quasi-regular. We first prove
(i). Consider the following diagram.

v∗(h∗ωg ⊗ i∗ωp ⊗N )
v∗(%)˜ //

v∗(1⊗ψ)'

))

�

v∗ωf

h′∗ ω̃R′ ⊗ j∗ωp′ ⊗N ′
%′̃

//

1⊗ψ′ ˜���

ω̃S′

�

h′∗ ω̃R′ ⊗ h′!OY ′

♦

χh′̃
// h′!ω̃R′

ς′

˜ OO

v∗(h∗ωg ⊗ h!OY )

˜

1⊗θhu

OO

v∗(χh )
˜ // v∗h!ωg

˜θhu
OO

v∗(ς) '

ii

The rectangle � on the top commutes by definition of %′. The sub-diagram on
the right, the one labelled �, squeezed between the curved arrow and the vertical
column, commutes by definition of ς ′. The rectangle labelled ♦ at the bottom
commutes by Proposition 5.2.10.
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We now show that the sub-diagram on the left, labelled�, squeezed between the
curved arrow and the vertical column on the left, commutes. First, the composite
of isomorphisms, with the middle arrow the base change isomorphism

v∗N [−d]
v∗η′i−−−→ v∗i!OP −→∼ j!OP ′

η′j
−1

−−−→ N ′[−d]

is the identity map on N ′[−d] by Remark 4.2.5. Next, the composite of isomor-
phisms

w∗ωp[d]
w∗vp−−−→ w∗p!OY −→∼ p′!OY ′

v−1

p′−−→ ωp′ [d]

is the identity map on ωp′ [d] [S2, p. 740, Prop. 2.3.5 (b)]. Finally, the transitiv-
ity property of base change proved in Proposition A.1.1 (ii) (see also [L4, p. 183,
Prop. 4.6.8]) tells us that the base change of the composite p ◦ i with respect to u
is compatible with the base change for p and i with respect to u and w : P ′ → P
respectively. Putting these together, we see that � also commutes.

The outer border commutes by Proposition 13.2.8.4, after using Theorem 13.2.6
to realise b as a concrete representation of the map aX/P

It follows that the rectangle in the middle also commutes. This proves (i).
Next note that the following diagram commutes, by definition of the various

isomorphisms involved.

ωR′ ⊗R′ h′!(R′)

1⊗TrS′/R′

��

χ̃h′
// h′!(R′)

TrS′/R′

��

ς̃′
// ωS′

trS′

��
ωR′ ωR′ ωR′

Let τ #
h′ = τ #

h′,p′,j : h′∗(j
∗ω#
p′ ⊗N ′) −→∼ OY ′ be the map (3.4.2). Define

τ
h′ : h′∗(j

∗ωp′ ⊗N ′) −→∼ OY ′

in the obvious way, namely by substituting ω#
p′ in the definition of τ #

h′ by ωp′ via
the Verdier isomorphism vp′ . Write τ

S′/R′ for the global sections of τ
h′ . From part

(i) and the above commutative diagram, we see that

(∗) trS′ ◦%
′ = 1⊗ τ

S′/R′ .

Now suppose µ ∈ ωE′/R′ and ν ∈ ωR′ , By Proposition 3.5.4 and (∗) we get

(†) trS′(ρ
′(ν ⊗ µ⊗ 1/f)) = res

X′,p′

[
µ

f1, . . . , fd

]
· ν

Now if ω = s · h′∗(ν), then by definition of %′, if x ∈ E′ is a lift of s, we have

%′(x · (ν ⊗ df1 ∧ · · · ∧ dfd ⊗ 1/f) = ω,

whence by (†)

trS′(ω) = res
X′,p′

[
x · df1 ∧ · · · ∧ dfd

f1, . . . , fd

]
· ν.

The right side is equal to TrcS′/R′(s) · ν by Theorem 14.1.8. This proves (ii). Part
(iii) is a re-statement of (†). Indeed

trS′(ω) = trS′(j
∗η) = trS′(b

′(df1 ∧ · · · ∧ dfd ∧ η ⊗ 1/f))

= trS′(%
′(x · (ν ⊗ µ⊗ 1/f)))

= ν · res
X′,p′

[
x · µ

f1, . . . , fd

]
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Part (iv) follows from (iii) and Proposition 14.1.10. �

Remark 14.2.12. We have already observed that it was not necessary to as-
sume h−1(y) consisted of exactly one point, namely x, in order to define trS′ .
In fact more can be be said. Suppose u : X → X is an open immersion of (or-
dinary) Y -schemes such that the structure map h̄ : X → Y is quasi-finite, and
h̄−1(y) = {x1, . . . , xm}, with x1 = x. In this case, the fibre dimension of f̄ = g ◦ h̄

is n. As before, set ω#
f̄

= H−n(f̄ !OZ). Now, X
′

= X ×Y Y ′ is finite over Y ,

since Y ′ is the spectrum of a complete local ring. Let h̄′ : X
′ → Y ′ be the base

change of h̄. Now X
′

= Spec
∏m
i=1 S

′
i, where S′i is the completion of the local ring

Si = OX,xi . Let S
′

=
∏
i S
′
i, and let X ′i = SpecS′i, so that X ′i is open and closed in

X
′
, and X

′
=
∐
iX
′
i. Let h′i : X

′
i → Y ′ be the restriction of h̄′ to X ′i. Note X ′1 = X ′,

S′1 = S′, and h′1 = h′. If ω#
S′i

= ω#
f̄ , xi
⊗SiS′i, and ω#

S
′ = ⊕iω#

S′i
(the direct sum thought

of as an S
′
- module, then, as in the argument used in (14.2.6), we have, analogous to

ς ′, isomorphisms H0(h′!i ωR′) −→∼ ω#
S′i

and H0((h̄′)!ωR′) −→∼ ω#

S
′ ,1 whence abstract

trace maps
tr#S′i : ω#

S′i
−→ ωR′ (i = 1, . . .m)

and
tr#
S
′ : ω#

S
′ −→ ωR′ .

Clearly tr#
S
′ =

∑
i tr#S′i

. The Verdier isomorphism vf : ωf −→∼ ω#
f base changes to

vS′ : ωS′ −→∼ ω#
S′ and it is clear that trS′ = tr#S′ ◦vS′ . Finally, if h̄ : X → Y is

finite, say X = SpecS, then we have a map tr#
h̄

: h̄∗ω
#
f̄
→ ω#

g defined in (14.2.4.1).

Consistent with the above notations, set ω#
S

= Γ(X, ω#
f̄
). Let tr#

S
: ω#

S
→ ωR be the

map Γ(Y, v−1
g ◦ tr#

h̄
). Then clearly

tr#
S
⊗R R′ = tr#

S
′ =

∑
k

tr#S′k
,

where tr#
S

is the global sections of tr#h defined in (14.2.4.1). In particular, if f̄ : X →
Z is smooth, then with trS = Γ(X, trf ) we have

(14.2.12.1) trS ⊗R R
′ =

∑
k

trS′k .

14.2.13. The Kunz-Lipman trace. Suppose, as we have for most of this
section, X = SpecS, Y = SpecR, and Z = SpecA, and as before suppose f : X →
Z and g : Y → Z are smooth of relative dimension n, f = g ◦h, and now assume
h is finite, and not merely separated and quasi-finite. In this case (and in more
general situations) we have a trace map

σS/R : ωS −→ ωR

or, in sheaf-theoretic terms,
σh : h∗ωf −→ ωg

due to Lipman and Kunz, defined in Kunz’s book [Ku, p. 254, 16.4]. The idea is
attributed by Kunz to Lipman (see footnote in loc.cit.)

The Kunz-Lipman trace σS/R can be understood punctually. In greater detail,
the Tate trace λ(f ,g) of Theorem 14.1.7 is denoted τxf in [Ku, p. 370, (F.20)] (and

1Regarding (h̄′)!ωR′ as a complex of S
′
-modules associated to (h̄′)!ω̃R′ etc.
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studied in some detail in F.18–F.28 of ibid). Now suppose y is a point in Y .
Fix x ∈ h−1(y) and pick an affine open subscheme U = SpecSU of X such that
h−1(y) ∩ U = {x}, and a presentation

R[T1, . . . , Td]q(T)/(u1, . . . , ud) = SU .

Such a U and presentation always exists. Let R′ be as before, the completion
of the local ring OY,y, and let S′ be the completion of the local ring OX,x. Let
E = R[T]q(T), and E′ = E ⊗R R′. Let f1, . . . , fd be the images of u1, . . . , ud in
E′. We continue to denote the image of the variables Tk in E′ as Tk. Let ωR,
ωR′ , ωSU , ωS′ , trS′ etc., be as before. Let γk ∈ S′ be the image of fk, and set
gk = Xk ⊗ 1− 1⊗ γk ∈ E′ ⊗R′ S′. Finally let

λ : S′ → R′

be the Tate trace λ(f ,g) of Theorem 14.1.7. Since ωS′ is a direct summand of
ωS ⊗R R′, the map σS/R restricts to a map

σS′ : ωS′ → R′.

For ω ∈ ωS′ and η ∈ ωE′ a pre-image of ω under the natural surjective map
ωE′ → ωS′ , suppose x ∈ E′, ν ∈ ωR′ are such that

df1 ∧ · · · ∧ dfd ∧ η = x · dT1 ∧ · · · ∧ dTd ∧ ν.

Using properties Tr 3) and Tr 4) of [Ku, pp. 245-246, § 16], proved in [ibid,
p. 254, Thm. 16.1], the definition of the Kunz-Kipman trace in [ibid, p. 254, 16.4]
gives

σS′ = λ(x̄) · ν,
where x̄ ∈ S′ is the image of x ∈ E′. This means, by the formula in Proposi-
tion 14.2.11 (iv),

σS′ = trS′ .

Once again by the above mentioned properties Tr 3) and Tr 4) of σS/R, and by

(14.2.12.1), this gives σ̂h,y = t̂rh,y, where (̂−) denote completion of an OY,y-module
with respect to the maximal ideal. Since y is arbitrary in Y , we have

(14.2.13.1) σh = trh.

Clearly, we don’t need X, Y and Z to be affine for the argument to go through.

Theorem 14.2.14. Let f : X → Z and g : Y → Z be smooth separated maps of
ordinary schemes of relative dimension n, and suppose f = g ◦h, where h : X → Y
is a finite map.

(i) Suppose Z = SpecA, Y = SpecR and X = SpecS. Let ω = s(h∗(ν))
where s ∈ S and ν ∈ ΩnR/A. Then

trh(ω) = TrcS/R(s) ν.

(ii) If σ : h∗ωf → ωg is the Kunz-Lipman trace then

σh = trh.

Proof. Part (ii) of Proposition 14.2.11 gives (i). Part (ii) is simply (14.2.13.1).
�
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14.3. Regular Differentials again

The fact that trh agrees with the Kunz-Lipman trace σh allows us to prove
Theorem 11.4.2 in a different way. Suppose f , g, h are as above, with the caveat
that we no longer assume that f is smooth, but assume f is of finite type, the
smooth locus of f , Xsm contains all the associated points of X. The map g remains
smooth, and h finite. Assume further that:

(i) X, Y and Z are excellent have no embedded points;
(ii) X = SpecS, Y = SpecR, and Z = SpecA;

(iii) R→ S is injective.

We use the notations of Chapter 11. Thus fK = H−n(f !) is as in §11.1, and
ωreg
X/Z is the sheaf of regular differential n-forms discussed in §11.4. Since we are

in the affine situation, we work with modules and algebras over A, R, and S, and
choose appropriate notations. To that end, let k(R) and k(S) be the total ring of
fractions of R and S respectively. Set ωR = Γ(X, ωg), ωk(S) = Γ(X, Ωnk(X)/k(Z)),

Ωk(R) = Γ(X, Ωnk(Y )/k(Z)).

Standard arguments show that there is an scheme theoretically dense open
subscheme U of Y , such that h−1(U) is in Xsm and is scheme theoretically dense in
X (e.g., U = Y rh(XrXsm)). We have the trace map trhU : (h|U )∗ωf |h−1U

→ ωg|U ,

where hU : h−1(U) → U is the restriction of h. By taking stalks at generic points
(we have no embedded points!) we get a map

trk(S) : ωk(S) −→ ωk(R).

We point out that ωR ⊂ ωk(R). The content of the next result is that ωS is a
“complementary module” in the sense of Kunz and Waldi [KW, § 4]. It is equivalent
to Theorem 11.4.2, via Theorem 14.2.14, but we give a direct proof along the lines
of the proof given of a related statement in [L2].

Theorem 14.3.1. Let ωS ⊂ ωk(S) be the image of the injective map ω#
S → ωk(S)

defined in (11.4.1). Then

ωS = {ν ∈ ωk(S) | trk(S)(sν) ∈ ωR,∀s ∈ S}.

Proof. The proof follows, mutatis mutandis, the one given in [L2, p. 34,
Lemma (2.2)]. We give it here, with the necessary changes, for completeness. We
have a natural isomorphism HomR(S, ωR) −→∼ ω#

S obtained by applying H−n to

h[ωg[n] −→∼ f !OZ , whence an isomorphism

ωS −→∼ HomR(S, ωR).

One checks (by using the open set U = Y r h(X r Xsm) as an intermediary if
necessary) that the following diagram commutes

HomR(S, ωR) �
� // Homk(R)(k(S), ωk(R))

ωS
� �

˜OO
ωk(S)

˜OO

where the isomorphism on the right is ν 7→ (x 7→ trk(S)(xν)), for ν ∈ ωk(S) and x ∈
k(S). The result follows since the image of HomR(S, ωR) in Homk(R)(k(S), ωk(R))
consists of k(R)-linear maps ψ : k(S)→ ωk(R) such that ψ(s) ∈ ωR for every s ∈ S.
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In other words, such ψ are characterised by the property that e(sψ) ∈ ωR for every
s ∈ S, where

e : Homk(R)(k(S), ωk(R))→ ωk(R)

is “evaluation at 1”. Since e corresponds to trk(S) under the upward arrow on the
right in the above diagram, we are done. �

The next statement is a re-statement of Theorem 11.4.2, but the point is that
it is also a consequence of Theorem 14.3.1.

Corollary 14.3.2. Let ωreg
S be the S-module whose associated quasi-coherent

sheaf is ωreg
X/Y . Then ωreg

S = ωS.

Proof. Let U = Y r h(X rXsm) and hU : h−1(U) → U the restriction of h.
From Theorem 14.2.14 (ii), trhU = σhU . The result follows from the characterisation
of ωS as a complementary module in Theorem 14.3.1 and the definition of regular
differentials in [HK1, p.58]. �

14.3.3. We would like draw out the differences between the approach in Chap-
ter 11 and that of this subsection. In the former, we treat the theory of regular dif-
ferential forms as a settled theory, and freely use the results in [HK1], [HK2], and
[HS] to arrive at a proof of Theorem 11.4.2 using our characterisation of the Verdier
isomorphism in terms of standard residues along sections. In the “settled theory”
mentioned above, ωreg

X/Z is defined via local quasi-normalisations, i.e. via quasi-finite

maps from open subschemes of X to AnZ , their compactifications by Zariski’s Main
Theorem and complementary modules [KW]. The theory of residues and traces
used there make no reference to Verdier’s isomorphism, and are developed ab initio
for the purpose at hand. In Chapter 11, we mapped our theory on to all of that.

In contrast, from the results in this subsection, if ωreg
X/Z is defined as the image

of the injective map fKOY → Ωnk(X)/k(Z) as in (11.4.1), then we show that every

time one has a finite dominant Z-map h : X → Y of schemes, such that Y → Z is
smooth, then ωreg

X/Z is necessarily the complementary module on the right side of

Theorem 14.3.1 (which can clearly be defined even when Y is not affine). Using
[EGA, IV3, (13.3.2)] and Zariski’s main theorem, as in the first two paragraphs
proof of Proposition 14.2.4, we see that locally we can always arrange matters so
that X is covered by affine open subschemes, each of which is finite over an affine
smooth Z-scheme (in fact an affine open subscheme of PnZ), and hence ωreg

X/Z has

a local description via complementary modules. This gives a different proof, than
that given in [KW], that these complementary modules glue, and do not depend on
the choice of the various finite maps of the sort just discussed. Finally our theory
of residues and traces ensures that all the important results in [HK1], [HK2], and
[HS] can be recovered.

Our approach (in this subsection) is closer in spirit to the approach to these
matters in [L2], though even here it is necessarily different, since we use, con-
sistently, Verdier’s isomorphism, and we work over an arbitrary (noetherian) base
rather than over a perfect field. It should be said that in [KW] and [Ku], the theory
is for general differential algebras, and that in [KW], generic complete intersection
algebras A→ S are considered.





CHAPTER 15

The Residue Symbol

15.1. The definition of the symbol

Let f : X → Y be a separated smooth map of relative dimension r, and let
t1, . . . , tr ∈ Γ(X, OX) be such that if I is the quasi-coherent ideal sheaf generated
by t = (t1, . . . , tr), then Z := Spec (OX/I ) is finite over Y . Let i : Z → X be the
closed immersion and h : Z → Y the finite map. In this case it is well-known that
h is flat and t is a regular OX,z-sequence for every z ∈ Z ([EGA, IV3, Théorème
(11.3.8)] or [M, p. 177, Corollary to Thm. 22.5]). In particular h∗OZ locally free
over OY .

In this situation, according to (3.4.2), we have a map

τ #
h = τ #

h,f,i : h∗i
∗ω#
f ⊗OZ N r

i −→ OY ,

allowing us to define

(15.1.1) τh = τh,f,i : h∗i
∗ωf ⊗OZ N r

i −→ OY

as the composite

h∗i
∗ωf ⊗OZ N r

i ˜−−−−−−→
via v̄

h∗i
∗ω#
f ⊗OZ N r

i

τ #
h−−−−−→ OY .

If t̄i ∈ Γ(ZI /I 2) is the section generated by the image of ti, then t̄1 ∧ · · · ∧ t̄i
is a generator of the free rank one OZ-module ∧rOZI /I 2. As before, let 1/t ∈
Γ(Z, N r

i ) = HomZ(I /I 2,OZ) be the dual generator. For ω ∈ Γ(X,ωf ) let
ω/t ∈ Γ(Z, i∗ωf ⊗OZ N r

i ) be the image of ω⊗1/t ∈ Γ(Z, i∗ωf )⊗Γ(Z, N r
i ). With

these notations, we folow [RD] and [C1] and define the residue symbol as

(15.1.2) ResX/Y

[
ω

t1, . . . , tr

]
:= Γ(Z, τh)(ω/t) ∈ Γ(Z, OZ).

In [RD, III, §9] a list of statements about the residue symbol are made without
proof. The statements (with minor corrections to the statements in [RD]) have been
proved by Conrad in [C1, A.2, Appendix A]. Since our approach to residues and
the residue symbol follows a different route (via Verdier’s isomorphism) we provide
independent proofs of these statements in §15.2 below. Here are the statements
(R1)–(R10), as in [C1], with modifications to take care of our conventions. In the
statements, ω, f : X → Y , Z, t1, . . . , tr are as above, except in (R4).

(R1). Let si =
∑
j uijtj where uij ∈ Γ(X,OX), 1 ≤ i, j ≤ r, and suppose the

closed subscheme of X cut out by the si’s is finite over Y . Then

ResX/Y

[
ω

t1, . . . , tr

]
= ResX/Y

[
det (uij)ω
s1, . . . , sr

]
123
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(R2). (Localisation) We give the version in [C1, p. 239]. Suppose g : X ′ → X
is separated and étale, Z ′ = g−1(Z), and the map g′ : Z ′ → Z is finite, where g′ is
induced from g. We have a commutative diagram of schemes

Z ′
i′ //

g′

��
�

X ′

g

��
Z

i //

h !!BBBBBBBB X

f

��
Y

where, as indicated in the diagram, the square on the top is cartesian. Assume that
the function on Z given by z 7→ rankOZ,zg

′
∗(OZ′)z extends to a locally constant

function rkZ′/Z in a Zariski open neighbourhood V of Z in X. Then, for every
ω ∈ Γ(X, ωf ), we have,

ResV/Y

[
ω · rkZ′/Z
t1, . . . , tr

]
= ResX/Y

[
ω′

t′1, . . . , t
′
r

]
,

where t′i = g∗(ti) ∈ Γ(X ′, OX′) and ω′ = g∗(ω) ∈ Γ(X ′, ωfg).

(R3). (Restriction) Suppose we have a commutative diagram of schemes

X �
� i //

f   AAAAAAAA P

π

��
Y

with f smooth and separated of relative dimension r, π smooth and separated of
relative dimension n = d+ r, i a closed immersion, with X cut out by s1, . . . , sd ∈
Γ(P, OP ), and suppose t′1, . . . , t

′
r ∈ Γ(P, OP ) are such that s1, . . . , sd, t

′
1, . . . , t

′
r cut

out a scheme Z which is finite over Y , and finally suppose tj is the restriction of t′j
to X for j = 1, . . . , r. Then for every ν ∈ Γ(P, ΩrP/Y ),

ResP/Y

[
ds1 ∧ · · · ∧ dsd ∧ ν
s1, . . . , sd, t

′
1, . . . , t

′
r

]
= ResX/Y

[
i∗ν

t1, . . . , tr

]
.

(R4). (Transitivity) Suppose we have a pair of separated maps X
f−→ Y

g−→ Z
are a pair of separated smooth maps, f of relative dimension e and g of relative
dimension d. Suppose s1, . . . , sd ∈ Γ(Y, OY ) cuts out a scheme W ′ in Y which is
finite over Z, and with s′j = f∗(sj), suppose we have t1, . . . , te ∈ Γ(X, OX) such
that s′1, . . . , s

′
d, t1, . . . , te cut out a scheme W in X which is finite over Z. For

µ ∈ Γ(OY , ωf ) and ν ∈ Γ(OX , ωg) we have:

ResY/Z

ResX/Y

[
µ

t1, . . . , te

]
ν

s1, . . . , sd

 = ResX/Z

[
µ ∧ f∗ν

t1, . . . , te, s
′
1, . . . , s

′
d

]
.

(R5). (Base Change) Formation of the residue symbol commutes with base
change.
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(R6). (Trace Formula) For any ϕ ∈ Γ(X, OX)

ResX/Y

[
ϕ · dt1 ∧ · · · ∧ dtr

t1, . . . , tr

]
= TrcZ/Y (ϕ|Z).

(R7). (Intersection Formula) For any collection of positive integers k1, . . . , kr
not all equal to 1,

ResX/Y

[
dt1 ∧ · · · ∧ dtr
tk1
1 , . . . , t

kr
r

]
= 0.

(R8). (Duality) (See [C1, p. 240, (R8)].) If ω|Z = 0, then

ResX/Y

[
ω

t1, . . . , tr

]
= 0.

Conversely, let {Yj} be an étale covering of Y such that Yj is affine, Zj = Z ×Y Yj
decomposes into a finite disjoint union of Zjk’s with each Zjk contained in an open
subscheme Xjk of Xj := X ×Y Yj , with Xjk ∩ Zjm = ∅ for m 6= k. Also assume
that Γ(Xjk, OXjk)→ Γ(Zjk, OZjk) is surjective1. If

ResXjk/Yj

[
fω

t1, . . . , tr

]
= 0

for all f ∈ Γ(Xjk, OXjk), then ω|Z = 0.

(R9). (Exterior Differentiation) For ν ∈ Γ(X, Ωr−1
X/Y ) and positive integers

k1, . . . , kr,

ResX/Y

[
dν

tk1
1 , . . . , t

kr
n

]
=

r∑
i=1

ki · ResX/Y

[
dti ∧ ν

tk1
1 , . . . , t

ki+1
i , . . . , tkrn

]
.

(R10). (Residue Formula) Let h : X ′ → X be a finite map, with X ′ smooth
over Y of relative dimension r. Let t′j = h∗(tj) ∈ Γ(X ′, OX′). Then

ResX′/Y

[
ν

t′1, . . . , t
′
r

]
= ResX/Y

[
trh(ν)
t1, . . . , tr

]
,

for every ν ∈ Γ(X ′, ωfh), where trh : h∗ωfh → ωf is the map in (14.2.2)2.

15.2. Proofs

For a quasi-coherent OX -module F , let

(15.2.1) ψ = ψ(F ) : h∗(i
∗F ⊗OZ (∧rOZI /I 2)∗) −−−−−→ Rr

Zf∗F

be defined by applying H0 to the composite

(15.2.2) h∗i
NF [r] −→∼ Rf∗i∗i

NF [r] −̃−→
ηi

Rf∗i∗i
[F [r] −→ Rf∗RΓZF [r].

1Such Yj ’s, Zjk’s, and Xjk’s always exist, using direct limit arguments.
2We point out that trh has an explicit description (in terms of the Kunz-Lipman trace) given

in Theorem 14.2.14 (ii).
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where ηi : i
N −→∼ i[ is the isomorphism in (C.2.11). (See (3.4.3) and (3.4.4).) Ac-

cording to Theorem 3.4.8, the following diagram commutes

(15.2.3)

h∗(i
∗ωf ⊗OZ (∧rOZI /I 2)∗)

ψ(ωf )

��

τ
h // OZ

Rr
Zf∗ωf

res
Z // OZ

A few things are worth pointing out. First, ResX/Y

[
ω

t1,...,tr

]
is linear in ω,

and since τh is a map of sheaves, the residue symbol is local over Y . Moreover,
according to Remark 3.4.9, if U is an open subscheme of X containing Z, then

(15.2.4) ResX/Y

[
ω

t1, . . . , tr

]
= ResU/Y

[
ω

t1, . . . , tr

]
.

From (15.2.3) we see easily that if Z is a disjoint union of Z1, . . . , Zm and Xi is
open in X with Xi ∩ Z = Zi, then as in [C1, p. 239, (A.1.5)], we have,

(15.2.5) ResX/Y

[
ω

t1, . . . , tr

]
=

m∑
i=1

ResXi/Y

[
ω

t1, . . . , tr

]
.

We also note that by Theorem 4.3.1, and [S2, p. 740, Thm. 2.3.5 (b)], the residue
symbol (15.1.2) is stable under arbitrary (noetherian) base change. This proves
(R5).

If Y = SpecA and there is an open affine subscheme U = SpecR of X contain-
ing Z, then by Proposition 3.5.4 and (15.2.4), we see that

(15.2.6) ResX/Y

[
ω

t1, . . . , tr

]
= res

Z

[
ω

t1, . . . , tr

]
.

Since the formation of the residue symbol is compatible with arbitrary noe-
therian base change, i.e., since (R5) is true, we can prove a number of things by
assuming Y is the spectrum of an artin local ring, or of a complete local ring.
In greater detail, many of the formulas we have to prove are of the form α = β
where α, β ∈ Γ(Y,OY ). It is clearly enough to prove that the germs αy and βy
are equal at every y ∈ Y . So suppose y ∈ Y and A = Oy, the local ring at y,
and m is the maximal ideal of A. To show αy = βy it is clearly enough to show
αy ⊗A A/mn = βy ⊗A A/mn are equal for every n ∈ N, and by (R5), to prove this
for a given positive integer n, it is enough to assume Y = SpecA/mn. Once we
are in this situation, using (15.2.4), (15.2.5), we are in a situation where (15.2.6)
applies. Note that we are in the situation where (15.2.6) applies even when pass to
the completion of A with respect to m. Occasionally, by a further faithful flat base
change on Y , we may assume Y is a strictly henselian local ring, or even a strictly
henselian artin local ring.

With this in mind, (R1) follows from Theorem 3.5.5, (R3) from Corollary 13.2.7,
(R4) from Theorem 13.1.1, (R6) from Theorem 14.1.8. For (R10), first note that
trh is compatible with arbitrary noetherian base change by Proposition 14.2.4. So
once again, the problem is stable under base change, and we may assume we are in
a situation where (15.2.6) applies. This gives us (R.10) via Proposition 14.2.3. We
have already seen that (R5) is true.

It remains to prove (R2), (R7), (R8) and (R9).
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For (R2), we may assume, as in the proof of (R2) in [C1], that Y is the spectrum
of a strictly henselian artin local ring. We are immediately reduced, via (15.2.5),
to the case where Z and Z ′ consist of a single component each, Z ′ = Z, and g is
the identity map. In this case the completion of X ′ along Z ′ is the same as the
completion of X along Z, whence, since res

Z
and res′

Z
are really only dependent

on the formal schemes, we are done.
To prove (R7) we assume without loss of generality that Y = SpecA, where

A is an artin local ring, that Z is supported at one point, say z0. By shrinking
X around Z (via (15.2.4)) if necessary, we may assume that the map π : X →
ArA = SpecA[T1, . . . , Tr] defined by t is a quasi-finite and that π−1(W ) = Z,
where W is the closed subscheme of ArA cut out by T1, . . . , Tr. By Zariski’s Main

Theorem, we have a finite map π̄ : X → ArA which is a compactification of π, in

the sense that there exists an open immersion u : X → X such that π̄ ◦u = π. Let
P = ArAr π̄(X rX). Then P is open in ArA, W ⊂ P , and π̄−1(P ) ⊂ X. Replacing
X by π̄−1(P ) if necessary, we may assume π : X → P is finite. Shrinking P around
W , we may assume P and X, are affine, say P = SpecD and X = SpecE. The map
π is flat by [M, p. 174, Thm. 22.3 (3′)], since Z is flat over Y , and TorD1 (A,E) = 0
(the latter by noting that K•(T)⊗DE = K•(t)). By (R10) and Theorem 14.2.14 (i)
we have

ResX/Y

[
dt1 ∧ · · · ∧ dtr
tk1
1 , . . . , t

kr
r

]
= ResP/Y

[
TrcZ/W (1) · dT1 ∧ · · · ∧ dTr

T k1
1 , . . . , T krr

]
= rkB/A · ResP/Y

[
dT1 ∧ · · · ∧ dTr
T k1

1 , . . . , T krr

]
where B = OZ,z0 . The last expression is zero if k1, . . . , kr are not all equal to 1,
since W → Y is an isomorphism. This proves (R7)

For (R8), one direction is obvious, namely if ω|Z = 0 then ResX/Y

[
ω

t1,...,tr

]
= 0,

for in this case i∗ω ⊗ 1/t = 0. For the “converse”, by faithful flat descent we
may assume j = 1, Y = Yj , i.e., we may assume Y = SpecA. Moreover, via
(15.2.4) and (15.2.5), we may replace X by Xij if necessary, and assume that
Γ(X, OX) → Γ(Z, OZ) is surjective. Since h : Z → Y is finite, Z is affine, say
Z = SpecB. Write ωB/A for Γ(Z, i∗ωf ⊗ N r

i ). The map τh induces a natural
isomorphism ωB/A −→∼ HomA(B, A), which for any ν ∈ Γ(X, ωf ), sends ν/t ∈
ωB/A to ϕν ∈ HomA(B,A) where

ϕν(g) = ResX/Y

[
g̃ · ν

t1, . . . , tr

]
(g ∈ B)

where g̃ ∈ Γ(X, OX) is any pre-image of g under the surjective map Γ(X,OX) →
Γ(Z, OZ). It is clear that under our hypotheses, ϕω = 0, whence the section
ω/t = 0. This means ω|Z = 0.

It remains to prove (R9)
Proof of (R9). As before, we reduce to the case where Y = SpecA, A an artin

local ring, X = SpecR and Zred = {z0}, where z0 is a closed point of X lying over
the closed point of Y . We may assume A has an algebraically closed residue field
[EGA, 0III, 10.3.1]. Recall from §C.5, especially (C.5.1), that for an R-module M ,
we have the notion of a stable Koszul complex K•∞(t, M). We need this notion for
arbitrary sheaves F of abelian groups on X (which need not even be OX -modules).
To that end, let Ui = {ti 6= 0} = SpecRti , i = 1, . . . , r, U = {Ui}, and for a sheaf of
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abelian groups F on X, and C•(U, F ) the ordered Čech complex associated with
U. Since Ȟ0(U, F ) = F (U), the natural restriction map F (X) → F (U) gives us
a complex K•∞(t, F ) defined as

0 −→ F (X) −→ C0(U, F ) −→ C1(U, F ) −→ . . . −→ Cr−1(U, F ) −→ 0

with K0
∞(t, F ) = F (X), Ki+1

∞ (t, F ) = Ci(U, F ) for i ≥ 0, the first map being
the composite

F (X) −→ F (U) −→ C0(U, F )

and the remaining maps the usual coboundary maps on Čech cohomology. If M is

an R-module, clearly K•∞(t, M̃) = K•∞(t, M). Note that K•∞(t, F ) is functorial
in F , as F varies over sheaves of abelian groups on X. In what follows, following
standard conventions, we write Ui1...ip := Ui1 ∩ · · · ∩ Uip for 1 ≤ i1 < · · · < ip ≤ r

Since H0(K•∞(t, F )) = ΓZ(X, F ), we have a functorial map of complexes

(15.2.7) ΓZ(X, F )[0] −→ K•∞(t, F )

which is one readily checks is a quasi-isomorphism when F is flasque. If G • is
a complex of flasque sheaves of abelian groups on X, and D(|X|) denotes the
derived category of sheaves of abelian groups on X, then (15.2.7) gives us a pair of
isomorphisms in D(|X|)

(15.2.8) RΓZ(X, G •) ˜−−−−−→ ΓZ(X, G •) ˜−−−−−→
(15.2.7)

Tot(C•(U, G •)).

The first isomorphism is from general principles (since flasque sheaves have no
higher cohomologies with support), and the second is from the fact that (15.2.7) is
a quasi-isomorphism on flasque sheaves.

Now suppose F is a sheaf of abelian groups on X and F → G • a flasque reso-
lution of F . Since RΓZ(XF ) −→∼ ΓZ(X, G •), (15.2.8) gives us an isomorphism

(15.2.9) RΓZ(XF ) −→∼ Tot(C•(U, G •)),

where the right side is the total complex of the double complex C•(U, G •)
By examining the “columns” of the double complex C•(U, G •) one obtains a

map of complexes

(15.2.10) K•∞(t, F ) −→ Tot(C•(U, G •)).

We therefore have a map in D(|X|), which is functorial in F varying over
sheaves of abelian groups,

(15.2.11) K•∞(t, F ) −→ RΓZ(X, F )

given by (15.2.11) = (15.2.9)
−1 ◦ (15.2.10).

If F is quasi-coherent then (15.2.10) is a quasi-isomorphism, since Ui1...ip and
X are affine, whence F (Ui1...ip)[0]→ G •(Ui1...ip) and F (X)[0]→ G •(X) are quasi-
isomorphisms. This means, (15.2.11) is an isomorphism when F is quasi-coherent .
In fact, in this case, by definition it agrees with (C.5.2).

Let dr−1
X/Y : Ωr−1

X/Y → ΩrX/Y be the standard exterior derivative map. Note that

dr−1
X/Y is not OX -linear. Nevertheless our discussion above gives us a commutative
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diagram:

(15.2.12)

K•∞(t,Ωr−1
X/Y )

˜(15.2.11)

��

dr−1
X/Y // K•∞(t,ΩrX/Y )˜

(15.2.11)

��
RΓZ(X, Ωr−1

X/Y )
dr−1
X/Y

// RΓZ(X, ΩrX/Y )

Using the generalized fraction notation in (C.5.3) and the fact that (15.2.11) is
described for quasi-coherent sheaves by (C.5.2), the commutativity of (15.2.12)
gives:

(15.2.13)

Hr
Z(dr−1

X/Y )

[
η

tk1
1 , . . . , t

kr
r

]
=

[
dη

tk1
1 , . . . , t

kr
r

]
−

r∑
j=1

kj

[
dtj ∧ η

tk1
1 , . . . , t

kj+1
j , . . . , tkrr

]
.

Thus (R9) is equivalent to:

(15.2.14) res
Z
◦Hr

Z(dr−1
X/Y ) = 0.

If I is the ideal of R generated by t, R∗ the completion of I in the I-adic topology,
I∗ = tR∗ = IR∗, X = Spf(R∗, I∗), then (15.2.14) is equivalent to

(15.2.15) trX /Y ◦Hr
I∗(d

r−1
X /Y ) = 0,

where dr−1
X /Y : Ωr−1

X /Y → ΩrX /Y is the exterior differentiation on the exterior algebra

of universally finite differential forms on X /Y .
Since the residue field of A is algebraically closed, the formal Y -scheme X is

isomorphic as a Y -scheme to Spf A[|T1, . . . , Tr|], where A[|T1, . . . , Tr|] is given the
T-adic topology. And using the equivalence of (15.2.14) and (15.2.15) the other
way, we are done if we prove (15.2.14) for R = A[T] and Z the scheme cut out by
T. In this case, η is a finite sum of (r − 1)-forms of the kind

ηj,a1,...,ar = T a1
1 . . . T arr · dT1 ∧ · · · ∧ d̂Tj ∧ · · · ∧ dTr,

where ai are non-negative integers. Since Z → Y is an isomorphism in this case,
res

Z
is the standard residue which we know explicitly, the right side of (15.2.13)

η = ηj,a1,...,ar and ti = Ti, is trivially seen to vanish.





APPENDIX A

Base change and completions

A.1. Basic properties of flat-base-change isomorphism for −#

We gather a few basic properties of the flat base-change map of (2.2.1). By

default, we work with complexes in D̃+
qc.

Consider a cartesian square s of noetherian formal schemes

V

g

��

v //

�

X

f

��
W

u
// Y

with f in G and u flat so that we have a flat-base-change isomorphism

β#s : ΛV v
∗f# −→∼ g#u∗

as in (2.2.1). If f (and hence g) is pseudoproper, then another description of β#s
is that it is the map adjoint to the composite of the following natural maps (cf.
[AJL2, Theorem 8.1, p. 86]).

Rg∗RΓ
′

V ΛV v
∗f# −→∼ Rg∗RΓ

′
V v
∗f# → Rg∗v

∗RΓ ′X f# −→∼ u∗Rf∗RΓ
′

X f#
Trf−−→ u∗

If f, g are formally étale, then we have natural isomorphisms f# −→∼ ΛX f∗ and
g# −→∼ ΛV g

∗ induced by the corresponding ones for (−)!, f ! −→∼ RΓ ′X f∗ and
g! −→∼ RΓ ′V g

∗ respectively. In this case, the base-change map β!
s for (−)! is in-

duced by the composite of the canonical isomorphisms

RΓ ′V v
∗f ! −→∼ RΓ ′V v

∗RΓ ′X f∗ −→∼ RΓ ′V v
∗f∗ −→∼ RΓ ′V g

∗u∗ −→∼ g!u∗.

Hence another description of β#s is that it is given by the composite of the following
isomorphisms

ΛV v
∗f# −→∼ ΛV v

∗ΛX f∗ −→∼ ΛV v
∗f∗ −→∼ ΛV g

∗u∗ −→∼ g#u∗.

In particular, if F ∈ D+
c (Y ), or if u is open or if V is an ordinary scheme, then

β#s(F ) is given by the natural composite

v∗f#F −→∼ v∗f∗F −→∼ g∗u∗F −→∼ g#u∗F .

Next we look at transitivity properties of β# vis-á-vis extension of the square s
horizontally or vertically. These are also proved by reducing to the corresponding
property for β! (see [Nay, Theorem 2.3.2(i)]).

Proposition A.1.1. Let the notations be as above.
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(i) Consider cartesian squares s1, s2 as follows

V2
v2 //

h s2

��

V1

g s1

��

v1 // X

f

��
W2 u2

// W1 u1

// Y

where f, g, h are in G and ui, vi are flat. Let u = u1u2 and v = v1v2 and
let s denote the composite cartesian diagram. Then the following diagram
of isomorphisms commutes.

ΛV2
v∗2v
∗
1f

#

��

// ΛV2
v∗2ΛV1

v∗1f
# via

β#
s1

// ΛV2
v∗2g

#u∗1
via

β#
s2

// h#u∗2u
∗
1

��
ΛV2v

∗f#
via β#

s

// h#u∗

(ii) Consider cartesian squares s1, s2 as follows

V2

g2 s2

��

w // X2

f2

��
V1

g1 s1

��

v // X1

f1

��
W

u
// Y

where fi, gi are in G and u, v, w are flat. Let f = f1f2 and g = g1g2 and
let s denote the composite cartesian diagram. Then the following diagram
of isomorphisms commutes.

ΛV2
w∗f#2f

#
1

��

via

β#
s2

// g#2v
∗f#1 // g#2ΛV1

v∗f#1
via

β#
s1

// g#2g
#
1u
∗

��
ΛV2

w∗f#
via β#

s

// g#u∗

Proof. (i). For convenience we shall consider the transposed version of the
diagram in question. Using the definitions f# = ΛX f !, g# = ΛV1g

!, h# = ΛV2h
!

and the isomorphisms in (1.3.1) we reduce to checking that the outer border of
the following diagram of isomorphisms commutes where to reduce clutter we have
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dropped the R’s.

ΛV2
v∗2v
∗
1ΛX f ! //

��

ΛV2
v∗ΛX f !

��
ΛV2

v∗2v
∗
1f

!

��

// ΛV2
ΓV2

v∗2v
∗
1f

! //

��

ΛV2
ΓV2

v∗f !

via β!
s

��

ΛV2
v∗2ΛV1

ΓV1
v∗1f

!

via β!
s1

��

// ΛV2
ΓV2

v∗2ΓV1
v∗1f

!

via β!
s1

��

�

ΛV2v
∗
2ΛV1g

!u∗1 // ΛV2ΓV2
v∗2g

!u∗1
via β!

s2

// ΛV2h
!u∗2u

∗
1

// ΛV2h
!u∗

The unlabelled arrows are obvious natural maps. The rectangle � commutes by
the transitivity of base-change for (−)!. Commutativity of the remaining parts is
obvious.

(ii). Once again we consider the transpose of the diagram under consideration.
Using the isomorphisms in (1.3.1) we reduce to checking that the outer border of
the following diagram of isomorphisms commutes.

ΛV2
w∗ΛX2

f !
2ΛX1

f !
1

��

// ΛV2
w∗ΛX2

f !
2f

!
1

//

��

ΛV2
w∗ΛX2

f !

��
ΛV2

ΓV2
w∗f !

2ΛX1
f !

1

via β!
s2

��

// ΛV2
ΓV2

w∗f !
2f

!
1

//

via β!
s2

��

ΛV2
ΓV2

w∗f !

via β!
s

��

ΛV2g
!
2v
∗ΛX1f

!
1

��

// ΛV2g
!
2v
∗f !

1

�
��

ΛV2g
!
2ΛV1Γ

′
V1
v∗f !

1

via β!
s1

��

// ΛV2g
!
2Γ
′

V1
v∗f !

1

via β!
s1

��

ΛV2g
!u∗

��
ΛV2

g!
2ΛV1

g!
1u
∗ // ΛV2

g!
2g

!
1u
∗ // ΛV2

g!u∗

The rectangle � commutes by transitivity of base-change for (−)! while the other
rectangles commute for obvious reasons. �

Completion maps, being pseudo-proper, formally étale, and flat, give rise to
additional compatibility issues. Now we consider some special situations involving
completion maps.

Let X be a formal scheme and I ⊂ OX an open coherent ideal. Let W := X̂
be the completion of X along I and κ : W → X the corresponding completion
map. Then there are canonical isomorphisms (see proof of [AJL3, Lemma 4.1],
and of [AJL2, Proposition 5.2.4])

(A.1.2) κ∗RΓ
′

W κ
∗ −→∼ κ∗κ

∗RΓI −→∼ RΓI κ∗κ
∗ ←−∼ RΓI .
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For the next two results regarding (−)# for completion maps, we will first need
to look at the corresponding results for (−)!. For that purpose we recall that
in [Nay], (−)! is obtained by gluing the pseudofunctor (−)× over pseudoproper
maps in G given by

f× = right adjoint to Rf∗, (f pseudoproper),

with the pseudofunctor (−)∗t over étale maps in G given by

f 7→ RΓ ′X f∗, (f : X → Y étale),

and this gluing utilizes, among other things, the étale base-change isomorphisms
associated to cartesian squares involving étale base change of a pseudoproper map
(see [Nay, Theorem 7.1.6, §7.2.7]).

Lemma A.1.3. For a completion map κ : W → X by an open coherent ideal
I ⊂ OX as above and for F ∈ D+

c (X ), the isomorphism κ∗F → κ#F of (2.1.3)
is also the map adjoint to the composite ψ given by

κ∗RΓ
′

W κ
∗ −→∼ RΓI → 1.

Sketch Proof. It suffices to prove that the corresponding property for κ!

holds, i.e., the canonical isomorphism φ = φκ : RΓ ′W κ
∗ −→∼ κ! is the map adjoint

to ψ. Indeed, as per the proof of [Nay, Theorem 7.1.6], the isomorphism φ equals
(β!)−1 where β! : 1∗κ! −→∼ 1!κ∗ = RΓ ′W κ

∗ is the base-change isomorphism associ-
ated to the cartesian square in the following diagram.

W
1 // W

1 //

1
��

W

κ

��
W

κ
// X

Therefore, φ = α1α
−1
2 for αi as given in the commutative diagram below, where α1

is the canonical map κ∗κ∗ → 1, (which is an isomorphism over D+
qct(W )) while α2

results from the fact that the trace Tr!
κ : κ∗κ

! → 1 factors through RΓ ′I → 1.

κ! κ∗κ∗κ
!

α̃1

oo
α̃2

//

κ∗Tr!
κ

&&
RΓ ′W κ

∗ // κ∗

The adjointness of φ and ψ amounts to proving that Tr!
κκ∗(φ) = ψ, which results

from the commutativity of the following.

κ∗κ
!

IIIIIIIII

IIIIIIIII
κ∗κ

∗κ∗κ
!˜κ∗α1

oo ˜κ∗α2

// κ∗RΓ ′W κ
∗ // κ∗κ∗

κ∗κ
!

Tr!
κ

//

1→κ∗κ∗

OO

RΓI

∼=

OO

// 1

OO

�
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Lemma A.1.4. Consider a cartesian diagram in G as follows

V

g

��

κ̄ //

�

X

f

��
W

κ
// Y

where κ, κ̄ are completion maps by open coherent ideal sheaves. Let F ∈ D+
c (Y ).

(i) The following diagram of obvious natural isomorphisms commutes.

κ̄∗f#F ˜
(2.2.2)

//

(2.1.3)

˜

��

g#κ∗F

(2.1.3)

˜
��

κ̄#f#F ˜ // g#κ#F

(ii) If f is flat then the following diagram of obvious natural isomorphisms
commutes.

g∗κ∗F ˜ //

(2.1.3)
˜

��

κ̄∗f∗F

(2.1.3)

˜

��
g∗κ#F

(2.2.2)
˜ // κ̄#f∗F

Sketch Proof. As a consequence of the gluing result in [Nay, Theorem
7.1.6], via the canonical isomorphisms φκ̄ : κ̄! −→∼ RΓ ′V κ̄

∗ and φκ : κ! −→∼ RΓ ′W κ
∗,

for the situation in (i), we have a commutative diagram of isomorphisms

RΓ ′V κ̄
∗f ! β!

//

��

g!RΓ ′W κ
∗

��
κ̄!f ! // g!κ!

reflecting the compatibility of β with the pseudofunctorial structure of (−)!, while
for the one in (ii), we have a commutative diagram of isomorphisms as follows,

RΓ ′V g
∗RΓ ′W κ

∗ //

��

RΓ ′V κ̄
∗f∗

��
RΓ ′V g

∗κ!

β!

// κ̄!f∗

reflecting the compatibility of β with the pseudofunctorial structure of (−)∗t over
étale maps. The result now follows by applying Λ’s appropriately in each diagram
and using the pre-pseudofunctorial properties of (−)#. �

A.2. Compatibility with completions

Let f : X → Y be a pseudo-proper map and let J be an ideal of definition of
X . Suppose I is an open coherent ideal in OY and κ : U → Y is the completion
of Y with respect to I . Let V = X ×Y U and κ′ : V → X , g : V → U the
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projection maps. Note that V is the completion of X with respect to the OX -ideal
I OX + J , and κ′ is the completion map. We thus have a cartesian square:

V

f ′

��

κ′ //

�

X

f

��
U

κ
// Y

By (A.1.2), we have κ∗RΓ
′

U κ
∗ −→∼ RΓI and κ′∗RΓ

′
V κ
′∗ −→∼ RΓI OX +J .

Proposition A.2.1. The following diagram commutes:

Rf∗κ
′
∗RΓ

′
V κ
′∗f#

γ̃
//˜

��

κ∗Rf
′
∗RΓ

′
V (f ′)#κ∗

κ∗Trf′

��

Rf∗RΓI OX +J f#˜
��

Rf∗RΓI OX
RΓ ′X f#˜
��

κ∗RΓ
′

U κ
∗˜

��
RΓI Rf∗RΓ

′
X f#

Trf

// RΓI

where γ is induced by applying the functor Rf∗κ
′
∗RΓ

′
V κ
′∗ to the natural isomorphism

κ′
∗
f# −→∼ f ′#κ∗ and the upward pointing arrow on the southwest corner is the

isomorphism of [AJL2, Proposition 5.2.8 (d)].

Proof. In the diagram of the proposition, let α : Rf∗κ
′
∗RΓ

′
V κ
′∗f# → RΓI be

the map obtained by composing maps along the route in the diagram which starts at
the northwest corner, travels south and then east. Let β : Rf∗κ

′
∗RΓ

′
V κ
′∗f# → RΓI

be the composition which starts in the easterly direction and then moves south.
Let ψ : RΓI → 1D(Y ) be the natural map. We have to show that α = β. This is
equivalent to showing

(A.2.2) ψ ◦α = ψ ◦β.

We now proceed to prove (A.2.2). In what follows we identify κ′
∗

with κ′# and κ∗

with κ#. Recall that the isomorphism κ′
∗

: f# −→∼ f ′#κ∗ mentioned in the theorem
can be interpreted in two ways, and the two interpretations agree: (a) as a base
change isomorphism, and (b) as the composite

(A.2.3) κ′
∗
f# = κ′#f# −→∼ (fκ′)# = (κf ′)# −→∼ f ′#κ# = f ′#κ∗.

We point out the trace map Trκ : κ∗RΓ
′

U κ
∗ → D(Y ) under the identification κ∗ = κ#

is the composite κ∗RΓ
′

U κ
∗ −→∼ RΓI → 1D(Y ). Similarly, Trκ′ : κ

′
∗RΓ

′
V κ
′∗ → RΓ ′X

is the composite κ′∗RΓ
′

V κ
′∗ −→∼ RΓI OX +J → Rf∗RΓJ = RΓ ′X .
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From the definition of the isomorphism in (A.2.3) it follows that the following
diagram commutes:

Rf∗κ
′
∗RΓ

′
V κ
′∗f# ˜

via (A.2.3)
//˜

��

κ∗Rf
′
∗RΓ

′
V (f ′)#κ∗

κ∗Trf′

��
Rf∗RΓI OX +J f#

��

κ∗RΓ
′

U κ
∗˜

��
Rf∗RΓJ f# RΓI

ψ

��
Rf∗RΓ

′
X f#

Trf

// 1D(Y )

Let θ : Rf∗κ
′
∗RΓ

′
V κ
′∗f# → 1D(Y ) be the map obtained from taking any route from

the top left corner to the bottom right corner in the above commutative diagram.
Note that θ = ψ ◦β. It is therefore enough to show that θ = ψ ◦α. Consider
the following diagram where the arrow in the top row and the second map in the
second row arise from the natural maps RΓI OX +J → RΓJ and RΓI OX

→ 1D(X )

respectively:

Rf∗RΓI OX +J f#˜

��

// Rf∗RΓI f
#

RΓI Rf∗RΓ
′

X f# ˜ //

RΓI (Trf )

��

Rf∗RΓI OX
RΓ ′X f# // Rf∗RΓ ′X f#

Trf

��
RΓI ψ

// 1D(Y )

We claim this diagram commutes. The sub-rectangle on the top clearly commutes.
According to [AJL2, Proposition 5.2.8 (d)], the composite of the two arrows in
the second row is the natural map arising from ψ : RΓI → 1D(Y ). It follows that
the rectangle at the bottom also commutes, whence the whole diagram commutes.
This proves that θ = ψ ◦α. Thus ψ ◦α = θ = ψ ◦β, establishing (A.2.2). �

A.3. Completions and compactifications

Suppose f : X → Y is a map of ordinary schemes in G and Z ↪→ X is a closed
subscheme such that Z → Y is proper. Let κ : X = X/Z → X be the formal

completion of X along Z and f̂ : X → Y the composition f̂ = f ◦κ. Then f̂
is pseudo-proper. The isomorphism κ∗ −→∼ κ# of (2.1.3) gives us an isomorphism

κ∗f# −→∼ f̂#, and hence an isomorphism α : Rf∗κ∗RΓ
′

X κ∗f# −→∼ Rf̂∗RΓ
′

X f̂#. On
the other hand we have β : Rf∗κ∗RΓ

′
X κ∗f# −→∼ Rf∗RΓZf

# induced by (A.1.2). We
thus have an isomorphism

(A.3.1) α ◦β−1 : Rf∗RΓZf
# −→∼ Rf̂∗RΓ

′
X f̂#.
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If u : X → X ′ is an open immersion of finite type Y -schemes, with g : X ′ → Y the
structure map, then the natural isomorphism

Rf∗RΓZf
# −→∼ Rf∗RΓZu

∗g# = Rg∗RΓu(Z)g
#

fits into a commutative diagram

(A.3.2)

Rf∗RΓZf
#

(A.3.1)

''OOOOOOOOOOO˜

��
Rg∗RΓu(Z)g

#

(A.3.1)
// Rf̂∗RΓ ′X f̂#

If f is proper, then the isomorphism κ#f# −→∼ f̂# is the one adjoint to the
composite

Rf∗κ∗RΓ
′

X κ#f#
Rf∗(Trκ)−−−−−−→ Rf∗f

# → 1

and so the isomorphism κ∗f# −→∼ f̂# is characterised by the commutativity of the
following diagram.

(A.3.3)

Rf∗RΓZf
#

natural

��

Rf∗κ∗RΓ
′

X κ∗f#
β̃
oo

α̃
// Rf̂∗RΓ ′X f̂#

Tr
f̂

��
Rf∗f

#

Trf

// 1

In general, when f is not necessarily proper, it is still separated (being in
G) and hence we do have a compactification of f , i.e., an open immersion of Y -
schemes u : X → X̄, such that the structure map f̄ : X̄ → Y is proper. We have a
commutative diagram:

(A.3.4)

X
κ //

f̂   AAAAAAAA X

f

��

� � u // X̄

f̄~~~~~~~~~~

Y

We then have the following lemma.

Lemma A.3.5. Under the assumptions and notation of (A.3.4), the following
diagram commutes:

Rf∗RΓZf
# ˜

(A.3.1)
//˜

��

Rf̂∗Γ
′

X f̂#

Tr
f̂

��
Rf̄∗RΓu(Z)f̄

# // Rf̄∗f̄#
Trf̄

// 1

In particular, the composite

Rf∗RΓZf
# −→∼ Rf̄∗RΓu(Z)f̄

# → Rf̄∗f̄
#

Trf̄−−→ 1

is independent of the compactification (u, f̄) of f .
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Proof. We expand the diagram to

Rf∗RΓZf
# ˜

(A.3.1)
//˜

��

Rf̂∗Γ
′

X f̂#
Tr
f̂ // 1

Rf̄∗RΓu(Z)f̄
# //

(A.3.1)˜
55lllllllllllllll

Rf̄∗f̄
#

Trf̄

77oooooooooooooo

The triangle on the left commutes by (A.3.2). The parallelogram is simply (A.3.3),
for α ◦β−1 = (A.3.1). �





APPENDIX B

Closed immersions and completions

B.1. The variance theory −[

Let i : Z →X be a closed immersion of noetherian formal schemes. We use ī
to denote the flat map of ringed spaces (Z ,OZ ) → (X , i∗OZ ). We define the
functor i[ : D(X )→ D(Z ) by

i[ := ī∗RH om•X (i∗OZ , −).

The functor i[ enjoys the following properties (see [AJL2, Examples 6.1.3(4)]).
1) i[(D+

qc(X )) ⊂ D+
qc(Z ) and i[(D+

c (X )) ⊂ D+
c (Z ). This follows from the

fact that i∗OZ is coherent OX -module.
2) There is a natural isomorphism i[RΓ ′X −→∼ RΓZ i

[ whose composition with

the natural map RΓZ i
[ → i[ is the natural map i[RΓ ′X → i[.

3) Using 2) we also obtain that i[(D+
qct(X )) ⊂ D+

qct(Z ). Hence we also deduce

that i[(D̃+
qc(X )) ⊂ D̃+

qc(Z ).
4) There is a canonical trace map on D(X ), namely

(B.1.1) Tr[i : i∗i
[ = RH om•X (i∗OZ , −) −→ 1,

which is given by “evaluation at 1”, and which induces a natural map of functors
from i[ : D̃+

qc(X ) → D̃+
qc(Z ) to the right adjoint i× of i∗ : D̃+

qc(Z ) → D̃+
qc(X ).

Moreover, this induced map i[ → i× is an isomorphism. Keeping in mind that
the values of (−)! range in D+

qct, we deduce that for any F ∈ D̃+
qc(X ), there is a

natural isomorphism

i[RΓ ′X F −→∼ RΓZ i
[F ˜−−−−→

via Tri
i!F

and hence for F ∈ D̃+
qc(X ), there is also a natural isomorphism

ΛZ i
[F −→∼ i#F

where the corresponding trace map Tri is the natural composite

i∗RΓ
′

Z ΛZ i
[ −→∼ i∗RΓ

′
Z i

[ → i∗i
[ Tr[i−−→ 1.

In particular, if F ∈ D+
c (X ), or if Z is an ordinary scheme, then we have a

canonical isomorphism

(B.1.2) i[F −→∼ i#F .

141
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B.2. Completion and −[

Suppose X is an ordinary scheme, I a coherent ideal sheaf on X, Z the closed
subscheme of X defined by I , and κ : X = X/Z → X the completion of X along
Z. We then have a commutative diagram with i and j closed immersions:

Z � � j //
p�

i ""DDDDDDDD X

κ

��
X

We define ī and j̄ as in B.1 above, and it follows that if F is a j∗OZ-module, then
ī∗κ∗F = j̄∗F . We also define i[, j[ as in B.1 and in what follows we will drop the
symbols i∗, j∗ occurring in the definition of i[, j[ respectively. Finally note that,
since Z is an ordinary scheme so that Γ ′Z is the identity functor, i# and j# are right
adjoint to i∗ and j∗ respectively.

The natural map

(B.2.1) RH om•X(OZ , −) −→ κ∗RH om•X (OZ , κ
∗−)

is an isomorphism, whence we have an isomorphism

(B.2.2) i[ −→∼ j[κ∗

given by

ī∗RH om•X(OZ , −) ˜−−−−−→
ī∗(B.2.1)

ī∗κ∗RH om•X (OZ , κ
∗−) = j̄∗RH om•X (OZ , κ

∗−).

The essential content of the following lemma is that (B.2.2) is, up to canonical
identifications, the inverse of the canonical isomorphism j#κ# −→∼ (κj)# = i#.

Lemma B.2.3. The following diagram commutes

j[κ∗ ˜
(B.1.2)

// j#κ∗ ˜
(2.1.3)

// j#κ#˜

��
i[

(B.2.2) ˜

OO

˜
(B.1.2)

// i#

where the unlabelled isomorphism j#κ# −→∼ i# is the canonical one.

Proof. Keeping in mind that the canonical maps j∗j
[ → 1 and j∗j

# → 1
factor through RΓ ′X → 1 and that the canonical map i∗i

[ → 1 factors through
RΓZ → 1 we see that the diagram of the lemma corresponds, via adjointness of i#

to i∗, to the outer border of the following commutative diagram of obvious natural
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maps.

i∗j
[κ∗

((RRRRRRRRRRRRR
// i∗j#κ∗

��

// i∗j#κ#

��
κ∗j∗j

[κ∗ // κ∗j∗j#κ∗

��

// κ∗j∗j#κ#

��
κ∗RH om•X (OZ , κ∗(−))

��

// κ∗RΓ ′X κ∗

��

// κ∗RΓ ′X κ#

��
i∗i

[

OO

RH om•X(OZ , −) // RΓZ // 1

�





APPENDIX C

Koszul complexes

Since our goal is to understand Verdier’s isomorphism explicitly, we have to
lay out our conventions for maps between complexes, especially the fundamental
local isomorphism which is at the heart of explicit formulas for residues, and hence
integrals (i.e., traces).

C.1. Our version of Koszul complexes

Let R be a noetherian ring. For t ∈ R, we write K•(t) for the homology complex

0 −→ K1(t) −→ K0(t) −→ 0

where K1(t) = K0(t) = R and the arrow between them is multiplication by t. For
a sequence of elements t = (t1, . . . , tr) in R, we set K•(t) to be the complex:

K•(t) = K•(t1)⊗R · · · ⊗R K•(tr).
For an R-module M and an integer i, we write Ki(t, M) = HomR(Ki(t, M)
and define ∂i : Ki(t, M) → Ki+1(t, M) to be the transpose of the differential
Ki+1(t) → Ki(t), without the intervention of any signs. Then K•(t, M) together
with ∂• is a cohomology complex, and this is what we will call the Koszul (coho-
mology) complex on M and t. We write K•(t) for K•(t, R). We refer the reader
to [C1, pp. 17–18] for a discussion of various versions of Koszul complexes and the
relationship between them. Here are three basic properties:

1) K•(t,M) is bounded by degrees 0 and r, with K0(t, M) = Kr(t,M) = M .
2) K•(t,M) = M ⊗R K•(t).
3) Ki(t,M) is the direct sum of

(
n
i

)
copies of M .

The reason we use this version is the relationship with a certain Čech complex
associated to an affine open cover of SpecRr Z, where Z is the closed subscheme
defined by the vanishing of the ti’s (see §C.5). The homology complex K•(t) is also
called a Koszul complex, and to distinguish it from K•(t), we will call it the Koszul
homology complex on t.

There is a well known way in which these Koszul complexes vary with respect
to t. Let I be the ideal generated by t. Let J be an ideal in R such that I ⊂ J ,
and such that J is generated by g = (g1, . . . , gr). Since I ⊂ J we have uij ∈ R such
that

ti =

r∑
j=1

uijgj (i = 1, . . . , r).

As is well-known, one has a map of homology Koszul complexes

U• : K•(t) −→ K•(g)

such that

– H0(U•) : R/I → R/J is the natural surjection.

145
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– R = K0(t)
U0−−→ K0(g) = R is the identity map on R.

– R = Kn(t)
Un−−→ Kn(g) = R is the map x 7→ det(uij) · x.

Taking transposes and tensoring with M we get a map on (cohomology) Koszul
complexes:

(C.1.1) U• = U•M : K•(g, M) −→ K•(t, M)

such that U0 is the identity map on M and

(C.1.2) Un : M →M

is the map m 7→ det(uij) ·m.

C.2. The Fundamental Local Isomorphism

With R as above, suppose t = (t1, . . . , tr) is an R-sequence, I the ideal gener-
ated by {t1, . . . , tr}, and A = R/I. Then

1) The ideal I is the image of the coboundary map from Kr−1(t) to Kr(t) = R,
and the resulting map of complexes K•(t)→ A[−r] is a quasi-isomorphism. Thus
we have an isomorphism in D(ModR):

(C.2.1) K•(t) −→∼ A[−r].

Since K•(t) is a (bounded) complex of free modules, for every complex M• we have
an isomorphism in D(ModR)

(C.2.2) M• ⊗R K•(t) −→∼ M•
L
⊗R(A[−r]) = M

• L
⊗A(A[−r])

where M
•

= M• ⊗R A.
2) For any R-module M , since M = K0(t, M), we have HomR(A, M) =

ker (K0(t, M)→ K1(t, M)) as HomR(A, M) identifies with the submodule of I-
torsion elements of M namely (0 :

M
I) in the usual way (i.e., by “evaluation at 1”).

We thus have a map of complexes HomR(A, M)[0] → K•(t, M) which is a quasi-
isomorphism if M is an injective R-module. It follows that, more generally, if M•

is a bounded-below complex, and M• → E• is an injective resolution with E•

bounded-below, then we have quasi-isomorphisms M• ⊗R K•(t) → E• ⊗R K•(t)
and HomR(A, E•)→ E• ⊗R K•(t) so that in D(ModR) we have an isomorphism

(C.2.3) M• ⊗R K•(t) −→∼ RHom•R(A, M•)

fitting into a commutative diagram in D(ModR) as follows.

M• ⊗R K•(t)˜

(C.2.3)

��

˜ // E• ⊗R K•(t)

RHom•R(A, M•) HomR(A, E•)

˜OO

In particular we have an isomorphism

ψt : M•
L
⊗R (A[−r]) −→∼ RHom•R(A, M•)

where ψt = (C.2.3) ◦ (C.2.2)
−1

.
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3) Let 1
t (or 1/t for typographical convenience) be the element of (∧rAI/I2)∗

defined in (3.5.3). Then (∧rAI/I2)∗ is a free A module of rank one, with 1
t as a

generator. One therefore has an isomorphism:

(C.2.4) λt : A −→∼ (∧rAI/I2)∗,

given by 1 7→ (−1)r1/t. The reason for the sign (−1)r will be clear later. We thus
get an isomorphism,

(C.2.5) ηR,A(M•) : M•
L
⊗R ((∧rAI/I2)∗[−r]) −→∼ RHom•R(A, M•)

with ηR,A = ψt ◦ (λt[−r])−1. The crucial property here is that ηR,A does not depend
on t, even though ψt and λt do.

The data above fits into the following commutative diagram

(C.2.6)

M•
L
⊗R (A[−r])˜

via λt
�� ψt

))SSSSSSSSSSSSSSSSS
M• ⊗R K•(t)˜

(C.2.2)
oo ˜

(C.2.3)

��

˜ // E• ⊗R K•(t)

M•
L
⊗R ((∧rAI/I2)∗[−r]) ˜ηR,A // RHom•R(A, M•) HomR(A, E•)

˜

OO

Let M be an R-module. Our version of the fundamental local isomorphism is the
isomorphism

(C.2.7) φR,A(M) : M ⊗R (∧rAI/I2)∗ −→∼ ExtrR(A, M)

given by

φR,A(M) = H0(ηR,A(M [r])).

Let us globalize this construction. Let X be a formal scheme, and I a coherent
ideal sheaf such that the resulting closed immersion i : Z ↪→ X is a regular
immersion of codimension r, i.e., it is given locally by a regular sequence of length r.
Let us write Ni for the normal bundle of Z in X , i.e. Ni = (I /I 2)∗ and set

(C.2.8) N r
i := ∧rNi = (∧rOZ

I /I 2)∗.

There is a natural isomorphism

N r
i = (∧rOZ

I /I 2)∗ −→∼ ī∗ E xtrOX
(OZ , OX ) = Hri[OX

obtained by locally gluing the isomorphisms coming from (C.2.7) in view of the
fact that ηR,A is independent of the choice of t. Since i[OX has homology only in
degree r as is obvious locally from (C.2.5), we obtain a natural isomorphism

(C.2.9) N r
i [−r] −→∼ i[OX = ī∗RH om•X (OZ , OX ).

Set

(C.2.10) iN := Li∗(−)
L
⊗OZ

(N r
i [−r]).

Then for F ∈ Dqc(X ) we have an isomorphism

(C.2.11) ηi(F ) : iNF −→∼ i[F
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given by the composite

(C.2.12)

iNF = Li∗(F )
L
⊗OZ

(N r
i [−r]) −→∼ Li∗F

L
⊗OZ

ī∗RH om•X (OZ , OX )

−→∼ ī∗(F
L
⊗OX

RH om•X (OZ , OX ))

−→∼ ī∗RH om•X (OZ , F ) = i[F

where the first isomorphism is given by (C.2.9) while the third one results from the
fact that i∗OZ is coherent and has finite tor dimension over OX .

For F ∈ D+
c (X ), let

(C.2.13) η′i(F ) : iNF −→∼ i#F

be the composite η′i = (B.1.2) ◦ηi.

Remark C.2.14. In the above, the isomorphism iNOX −→∼ i[OX in (C.2.9) is
what drives the isomorphism (C.2.11). In slightly greater detail, for F ∈ D+

c (X ),
we have (by definition of iN):

iNF = Li∗(F )⊗OZ
iN(OX ).

We also have an isomorphism (whose inverse is the composite of the last two maps
in (C.2.12))

Li∗(F )⊗OZ
i[(OX ) −→∼ i[(F ).

Applying iNOX −→∼ i[OX (from (C.2.9)) to the two isomorphisms above, we get
ηi(F ).

The isomorphism Li∗(F )⊗OZ
i[(OX ) −→∼ i[(F ) above is such that “evaluation

at 1” is respected. In greater detail if Tr[i : i∗i
[ → 1 is as in (B.1.1), then the

composite F ⊗OX
i∗i

[OX −→∼ i∗(Li
∗(F ) ⊗OZ

i[(OX )) −→∼ i∗i
[(F )

Tr[i−−→ (F ) is

equal to 1⊗ Tr[i(OX ). This means that if TrNi : i∗i
N → 1 is defined by the formula

TrNi = Tr[i ◦ i∗ηi,

then the following diagram commutes

(C.2.14.1)

i∗(Li
∗F ⊗OZ

iNOX ) i∗i
N

TrNi (F )

��

F ⊗OX
i∗i
NOX

1⊗TrNi (OX )

��

˜projection formula

OO

F ⊗OX
OX F

C.2.15. If X = X is an ordinary scheme, so that i# = i!, then the maps
ηi(F ) and η′i(F ) above can be extended to isomorphisms for F ∈ Dqc(X), without
any boundedness hypotheses on F . In greater detail, recall that a complex F
of OX -modules is called perfect if there exist a, b ∈ Z, a ≤ b, and locally F is
D(X)-isomorphic to a complex E of finite rank free OX -modules with En = 0 for
n /∈ [a, b]. The map i∗ takes perfect complexes to perfect complexes (locally use
appropriate Koszul complexes!). In other words i is a quasi-perfect map (see [L4,
p. 192, Definition 4.7.2]). According to a result of Neeman in [Ne1] and Bondal
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and van den Bergh in [BB], since i∗ takes perfect complexes to perfect complexes,
one has a unique isomorphism (with Z = Z )

Li∗(F )
L
⊗OZ i

!OX −→∼ i!F

such that Diagram (C.2.14.1) commutes with iN replaced by i!, TrNi by Tri, the
equality on the top row by i∗ of the isomorphism displayed above, and allowing F to
vary Dqc(X) rather than in D+

c (X). It is now clear that one can extend η′i to an iso-
morphism of functors on Dqc(X). As for ηi, see [C1, p. 53, (2.5.3)], keeping in mind
the differing sign conventions for K•(t) as well as the order of the tensor product.

In fact the isomorphism ī∗(F
L
⊗OX RH om•X(OZ , OX)) −→∼ ī∗RH om•X(OZ , F )

in (C.2.12) works for F ∈ Dqc(X) when X is an ordinary scheme.
In view of (C.2.14.1), in order to understand TrNi it is enough to understand

TrNi (OX). We give an explicit representation of TrNi when X = SpecR, Z = SpecA,
and the I = kerR� A is generated by a quasi-regular sequence t = (t1, . . . , tr)i,
i.e., the situation we have been with for most of this section. Let N = Γ(X, N r

i ).
In this case, the quasi-isomorphism of complexes of R-modules K•(t) → A[−r] in

(C.2.1), is the map defined by Kr(t) = R
natural−−−−→→ R/I = (A[−r])r.

Using the isomorphism A −→∼ N given by 1 7→ 1/t we get a quasi-isomorphism

ϕt : K•(t) −→ N [−r],
where ϕt is defined by ϕrt : Kr(t) = R → N = (N [−r])r, the arrow R → N being
1 7→ 1/t. For a complex of R-modules M•, let TrNA/R(M•) : M• ⊗R N [−r] → M•

and Tr[A/R(M•) : RHom•R(A,M•) → M• be the maps corresponding to TrNi (M̃•)

and Tr[i(M̃
•). By definition of (C.2.11), we have a commutative diagram in the

category D(ModR) with isomorphisms bordering the triangle on the right:

N [−r]

ηi ))SSSSSSSSSSSSSSS

TrNA/R(R)

��

K•(t)
ϕtoo

(C.2.3)

��
R RHom•R(A, R)

Tr[A/R(R)

oo

The composite Tr[A/R(R) ◦ (C.2.3) is the natural projection

πt : K•(t) −−→→ K0(t) = R

which is a map of complexes, since K•(t) has no negative terms. Thus

(C.2.15.1) TrNA/R(R) = πt ◦ϕ
−1
t .

C.3. Compatibility with completions

In view of the above, Lemma B.2.3 has a useful re-interpretation in the special
case where the two closed immersions of Z into X and X are regular immersions of
codimension r. In greater detail, suppose as in Section B.2, we have a commutative
diagram

Z
� � j //
p�

i ""DDDDDDDD X

κ

��
X
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with X an ordinary scheme, but with i, j regular closed immersions, X = X/Z the
completion of X along Z, κ the completion map, and let I and J = I OX be the
ideal sheaves for Z in X and X respectively. Now regarding I /I 2 and J /J 2

as invertible sheaves on Z, we have an obvious identification I /I 2 = J /J 2,
whence the identification jNκ∗ = iN. Then the following is an easy corollary to
Lemma B.2.3.

Lemma C.3.1. The following diagram commutes.

jNκ∗
η̃′j

// j#κ∗ ˜
(2.1.3)

// j#κ#˜
��

iN
η̃′i

// i#

where the unlabelled isomorphism j#κ# −→∼ i# is the canonical one.

C.4. Flat base change of −N and of −#

Suppose we have a cartesian diagram s of formal schemes

(C.4.1)

W ′

�κ

��

j // W

κ
0

��
X ′

i
// X

such that i is a regular immersion (i.e., given locally by the vanishing of a regular
sequence) and κ

0
is the completion of X with respect to a closed subscheme given

by a coherent ideal. By (C.2.13), for any F ∈ D+
c (X ) and G ∈ D+

c (W ) there are
natural isomorphisms

iNF −→∼ i#F , jNG −→∼ j#G .

Now, on one hand we have the flat base-change isomorphism

β#s : κ∗i# −→∼ j#κ∗
0

of (2.2.2) while on the other we have an isomorphism

(C.4.2) κ∗iN −→∼ jNκ∗
0

given by the composite

κ∗((Li∗(−)
L
⊗N r

i [−r]) −→∼ (Lj∗Lκ∗
0
(−))

L
⊗ κ∗N r

i [−r]

−→∼ (Lj∗κ∗
0
(−))

L
⊗N r

j [−r]
where the second isomorphism is the one that arises from the canonical isomorphism
κ∗N

i
−→∼ N

j
. Fortunately these two flat-base-change isomorphisms are compatible:

Proposition C.4.3. For the diagram s in (C.4.1), for any F ∈ D+
c (X ) the

following diagram commutes.

(C.4.3.1)

κ∗iNF˜

η′i
��

˜
(C.4.2)

// jNκ∗
0
F˜

η′j

��
κ∗i#F

β#
s

// j#κ∗
0
F
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Proof. As per the definition of η′ in (C.2.13), the diagram in (C.4.3.1) expands
as follows

κ∗iNF˜

ηi

��

˜
(C.4.2)

// jNκ∗
0
F˜

ηj

��
κ∗i[F

β[
//˜

(B.1.2)

��

j[κ∗
0
F˜

(B.1.2)

��
κ∗i#F

β#
s

// j#κ∗
0
F

where β[ is induced by the natural isomorphism

(C.4.4) κ∗
0
RH om•OX

(i∗OX ′ ,F ) −→∼ RH om•OW
(j∗OW ′ , κ

∗
0
F ).

It is straightforward to check that the top rectangle commutes. For the bottom
one, using the adjointness property of j#, it suffices to check that the outer border
of the following diagram commutes where, as before, Γ ′X = RΓ ′X etc..

j∗Γ
′

W ′κ
∗i[

i[∼=i#

��

**UUUUUUUUUUUUUUUUUUUUU
via β[ //

a1

��;;;;;;;;;;;;;;;;;;
j∗Γ

′
W j

[κ∗
0

��

j∗κ
∗i[

��

via β[

$$JJJJJJJJJ

κ∗
0
i∗Γ
′

X ′i
[

i[∼=i# �

��

// κ∗
0
i∗i

[

via Tr[i

��;;;;;;;;;;;;;;; (C.4.4)
// j∗j[κ∗0

via Tr[j

��
j∗Γ

′
W ′κ

∗i#
a2

// κ∗
0
i∗Γ
′

X ′i
#

via Tri

// κ∗
0

Here the maps ai are induced by the composite of natural maps

j∗RΓ
′

W ′κ
∗ → j∗κ

∗RΓ ′X ′ −→∼ κ∗
0
i∗Γ
′

X ′ .

The unlabelled maps are the obvious natural ones. The diagram � commutes by
definition of the map i[ → i# in (B.1.2). Commutativity of the remaining parts is
easy to check. �

C.5. Stable Koszul complexes and generalized fractions

Let R, I, A be as above, and let t = (t1, . . . , td) be generators for I. Note that,
for now, we are not requiring t to be a quasi-regular sequence. We now recall the
relationship between K•(t, M) and the local cohomology of M and relate the above
discussion to generalized fractions leading to the explicit formula in Lemma C.5.4
below. For an r-tuple of positive integers α = (α1, . . . , αr), let tα = (tα1

1 , . . . , tαrr ).
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Let

(C.5.1)
K•∞(t) :=lim−−→

α

K•(tα)

K•∞(t, M) :=lim−−→
α

K•(tα, M) = M ⊗R K•∞(t).

The complex K•∞(t, M) is called the stable Koszul complex of M associated to t and

it has a well known relationship with the Čech complex C• = C•(U, M̃) associated
with the open cover U = {{ti 6= 0} | i = 1, . . . , r} of the scheme U := SpecRrV (I).
The relationship is that Ci = Ki+1

∞ (t, M) for i ≥ 0 and in this range and the
coboundary maps Ci → Ci+1 and Ki+1

∞ (t, M) → Ki+2
∞ (t, M) are equal. We also

note that the natural mapKr(t, M)→ Kr
∞(t,M) = Cr−1, is the mapM →Mt1...tr

given by m 7→ m/t1 . . . tr.
We point out that there is an obvious commutative diagram

lim−−→
α

HomR(R/tα, M) // K0
∞(t, M)

ΓI(M) �
� // M

where the horizontal arrow in the top row is the one obtained by applying a direct
limit to the map of direct systems HomR(R/tα, M) → K0(tα, M) and the hori-
zontal arrow in the bottom row is the natural inclusion. If, as before, M → E•

is an injective resolution of M , we have HomR(R/tαR, E•) −→∼ E• ⊗R K•(tα)
whence an isomorphism

lim−−→
α

HomR(R/tαR, E•) −→∼ E• ⊗R K•∞(t).

We then we have a diagram of isomorphisms in D(ModR):

K•∞(t, M)˜

��

M• ⊗R K•∞(t)˜

��
RΓI(M) E• ⊗R K•∞(t)

ΓI(E
•) lim−−→

α

HomR(R/tαR, E•)

˜

OO

Since all solid arrows in this diagram are isomorphisms, we can fill the dotted arrow,
i.e., we have a unique isomorphism

(C.5.2) K•∞(t, M) −→∼ RΓI(M)

which fills the dotted arrow to make the diagram commute. Since Kj
∞(t, M) = 0

for j > r, we have a surjective map Mt1...tr = Kr
∞(t, M)→ Hr

I(M). The image of

m/tα1
1 . . . tαrr ∈Mt1...tr is denoted by the generalized fraction { m

t
α1
1 , ..., tαrr

}.
Now, standard excision arguments give us a map Hr−1(U, M̃)→ Hr

I (M) which

is an isomorphism when r ≥ 2 and surjective when r = 1. In the Čech complex C•,
we have Cj = 0 for j ≥ r. We thus have a composition of surjective maps

Mt1...tr = Cr−1 � Hr−1(U, M̃) −→∼ Hr−1(U, M̃)� Hr
I(M).
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The image of m
t
α1
1 ...tαrr

∈Mt1...tr is denoted by the generalized fraction [
m

t
α1
1 , ..., tαrr

].

The two generalized fractions are related by the formula

(C.5.3)

[
m

tα1
1 , . . . , tαrr

]
= (−1)r

{
m

tα1
1 , . . . , tαrr

}
(see [LNS, p.47, Lemma 4.1.1]).

Lemma C.5.4. Suppose the sequence t above is a quasi-regular sequence in R.
Let M be an R-module. Then the composite map (with φR,A(M) as in (C.2.7))

(C.5.4.1) M ⊗R (∧rAI/I2)∗ ˜−−−−−−→
φR,A(M)

ExtrR(A, M) −→ Hr
I(M)

is given by

m⊗ 1

t
7→
[

m
t1, . . . , tr

]
(m ∈M)

Where 1
t is as in (3.5.3).

Proof. For an arbitrary bounded complex M• consider the following commu-
tative diagram

(C.5.4.2)

M•
L
⊗R (A[−r])

˜
λt[−r]

��

M• ⊗R K•(t)˜oo //˜

��

M• ⊗R K•∞(t)˜

��
E• ⊗R K•(t) // E• ⊗R K•∞(t)

HomR(A, E•)

˜OO
// ΓI(E•)

˜OO

M•
L
⊗R ((∧rAI/I2)∗[−r]) ˜ηR,A // RHom•R(A, M•) // RΓI(M

•)

Set M• = M [r] in the above and apply the cohomology functor H0(−). We get a
commutative diagram

M ⊗R A

˜

λt

��

M/IM // Hr(M ⊗R K•∞(t))

˜

��
M ⊗R (∧rAI/I2)∗

φR,A(M)
˜ // ExtrR(A, M)

natural // Hr
I(M)

Let us write [x] for the image of x ∈ Mt1...tr = M ⊗R Kr
∞(t) in the module

Hr(M ⊗R K•∞(t)). Then chasing an element m ⊗ (1/t) ∈ M ⊗R (∧rAI/I2)∗ by

first going north (via λ−1
t ) and then east along the above rectangle, we arrive at

the element (−1)r[m/t1 . . . tr] ∈ Hr(M ⊗R K•∞(t)). The assertion follows from
(C.5.3). �
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C.6. Duality for composite for closed immersions

Let R be a noetherian ring, I ⊂ R an ideal, A = R/I and i : SpecA ↪→ SpecR
the closed immersion corresponding to the natural surjection R � R/I = A. Let
M• be a bounded below complex of A-modules. Consider the “evaluation at 1”
map:

ev
I

: RHom•R(A, M•) −→M•.

As is well-known (and easy to verify from the definitions) the following diagram
commutes

i∗i
[M̃•

(B.1.2)
˜ //

ev
I --

i∗i
!M̃•

Tri
��

M̃•

Now suppose L̄ ⊂ A is an ideal, and L ⊂ R the unique R-ideal such that L ⊃ I
and L/I = L̄. We then have the standard isomorphism

(C.6.1) RHom•A(B, RHom•R(A, M•)) −→∼ RHom•R(B, M•)

which, after replacing M• by a complex of injective modules if necessary, amounts
to the observation that elements in an R-module which are killed by I and also by
L̄ are the exactly elements which are killed by L. The following diagram clearly
commutes

RHom•A(B, RHom•R(A, M•)) ˜ //

ev
L̄

��

RHom•R(B, M•)

ev
L

��
RHom•R(A, M•)

ev
I

// M•

This means that the following diagram commutes (with j : SpecB → SpecA the
natural inclusion):

(C.6.2)

j[i[M̃• ˜
(C.6.1)

//˜

(B.1.2)

��

(ij)[M̃•˜

(B.1.2)

��
j!i!M̃• ˜

natural
// (ij)!M̃•

Suppose I is generated by t = (t1, . . . , td), L̄ is generated by ū = (ū1, . . . , ūe),
and ui ∈ L are lifts of ūi for i = 1, . . . , e. Set u = (u1, . . . , ue). Suppose (t, u) is
a quasi-regular sequence in R (so that ū is quasi-regular in A). The map

(C.6.3) et : M• ⊗R K•(t) −→M•

corresponding to ev
I

under the isomorphism M• ⊗ K•(t) −→∼ RHom•R(A, M•)
(cf. (C.2.3))) is the map which in degree n is

(C.6.4) (M• ⊗R K•(t))n =
⊕
p+q=n

Mp ⊗R Kq(t)
projection−−−−−−→Mn ⊗R K0(t) = Mn.
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(Note that the map et is defined even if t is not quasi-regular, so that in particular
eu makes sense.) The following diagram clearly commutes

M• ⊗R K•(t)⊗R K•(u)

eu

��

M• ⊗R K•(t,u)

e(t,u)

��
M• ⊗R K•(t)

eu

// M•

An obvious re-interpretation of this, in our case, is that the following diagram
commutes (we are implicitly using the fact that if N is an A-module, then eu = eū

on N ⊗R K•(u) = N ⊗A K•(ū)):

(C.6.5)

M• ⊗R K•(t,u) ˜
(C.2.3)

// RHom•R(B, M•)

M• ⊗R K•(t)⊗R K•(u)˜

(C.2.3)

��
RHom•R(A, M•)⊗R K•(u)

RHom•R(A, M•)⊗A K•(ū) ˜
(C.2.3)

// RHom•A(B, RHom•R(A, M•))

˜

(C.6.1)

OO

Setting n = d+ e we have an isomorphism of rank one free A-modules

α : (∧dRI/I2)∗ ⊗R (∧eAL̄/L̄2)∗ −→∼ (∧nAL/L2)∗

given by 1/t⊗ 1/ū 7→ 1/(t,u).
The role of the hyptheses on the Tor(−, •) functors in the statement of Propo-

sition C.6.6 below is the following: Suppose S is a ring, P , Q S-modules such that

TorSi (P, Q) = 0 for i 6= 0. Then P
L
⊗SQ is canonically isomorphic to P ⊗SQ and we

treat this as an identity, i.e., in this case we write P
L
⊗SQ = P ⊗SQ. In particular if

J is an S-ideal generated by a quasi-regular sequence, and TorSi (P, S/J) = 0, then

we have P
L
⊗S (∧mS/JJ/J

2)∗ = P ⊗S (∧mS/JJ/J
2)∗ = (P ⊗S S/J)⊗S/J (∧mS/JJ/J

2)∗.

In other words, if G = P̃ , the quasi-coherent sheaf on W = SpecS corresponding
to P , and u : Z = SpecS/J ↪→W the natural closed immersion, we have

uNG [m] = Lu∗G [m]⊗OZ (N m[−m)]

= Lu∗G ⊗OZ (N m[−m])[m]

= (Lu∗G ⊗OZ N m)[0]

= (u∗G ⊗OZ N m
u )[0].

Proposition C.6.6. Let R, A, B, I, L, L̄, t, u, i, j, be as above with (t,u)

being a quasi-regular sequence in R. Let M be an R-module, F = M̃ , the quasi-
coherent OSpecR-module corresponding to M . Suppose we have TorRi (M,A) =
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TorRi (M,B) = TorAi (M/IM,B) = 0 for i 6= 0. Then the following diagram com-
mutes

(j∗i∗(F )⊗N n
ij )[0] (ij)N(F [n])

η̃′ij

// (ij)!(F [n])

(j∗i∗(F )⊗ j∗N d
i ⊗N e

j )[0]

viaα

˜ OO
jN(iN(F [d])[e])˜

via η′j and η′i
��

j!(i!(F [d])[e]) ˜ // j!i!(F [n])

˜
OO

Proof. For any noetherian ring S and S-ideal J generated by a quasi-regular
sequence v = (v1, . . . , vm), and every S-module P , we have, with S = S/J , a map
of complexes

wS,v = wS,v,P : P [m]⊗S K•(v)→ P ⊗S ∧m
S

(J/J2)∗[0]

defined on 0-cochains by

x 7→ (−1)mx⊗ 1/v, x ∈ P = (P [m]⊗S K•(v))0.

Since P [m]⊗SK•(v) is a complex which is zero in positive degrees and the complex
P ⊗S ∧m

S
(J/J2)∗[0] is concentrated in degree 0, the above recipe defines wS,v.

Moreover, if ToriS(P, S) = 0 for j 6= 0, then in D(ModS) the image of the map wS,v
under the localization functor is the composite

P [m]⊗S K•(v) −→∼ P [m]
L
⊗S S[−m] −→∼ P [m]

L
⊗S (∧m

S
(J/J2)∗[−m])

= P [m]⊗S (∧m
S

(J/J2)∗[−m])

= P ⊗S (∧m
S

(J/J2)∗)[0]

where the first arrow is (C.2.1) and the second arrow 1⊗ λv[−m]. In other words
the following diagram in D(ModS), consisting of isomorphisms, commutes :

P [m]⊗S K•(v)

wS,v˜
yyttttttttttttttttttttt

(C.2.3)˜
$$IIIIIIIIIIIIIIIIIII

P ⊗S (∧m
S

(J/J2)∗)[0]
ηS,S̃

// RHomS(S, P [m])

(see (C.2.5) for the definition of ηS,S). In view of these observations, as well the

commutativity of (C.6.2) and (C.6.5), we are done if we show that the following
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diagram commutes where for convenience we use N to denote ∧dA(I/I2)∗.

M [n]⊗R K•(t,u)
wR,(t,u) // M ⊗R (∧nBL/L2)∗[0]

(M [d]⊗R K•(t))[e]⊗R K•(u)

wR,t

˜

��
(M ⊗R N)[e]⊗A K•(ū)

wA,ū
// M ⊗R N ⊗A (∧eBL̄/L̄2)∗[0]

(1⊗α)[0]

˜

OO

Indeed, we only have to check on 0-cochains as we argued earlier. Let m ∈M be an
element. Regard it as a 0-cochain of the complex on the northwest corner. Its image
in M ⊗R (∧dAI/I2)∗ ⊗A (∧eBL̄/L̄2)∗ in the southeast corner under the composite
wA, ū ◦wR, t is (−1)nm ⊗ 1/t ⊗ 1/ū, and its image in M ⊗R (∧nBL/L2)∗ in the
northeast corner (via wR,(t,u)) is (−1)nm⊗ 1/(t,u). This proves our assertion. �

C.7. Another look at the composition of closed immersions

This is a slightly different but related exploration of duality for compositions of
closed immersions. So, as before, suppose R is a noetherian ring, I, J ideals in R,
I ⊂ J , I (resp. J) generated by a regular sequence {t1, . . . , tr} (resp. {g1, . . . , gr}).
Note that the number of t’s equals the number of g’s.

In this set-up, let ti =
∑
j uijgj , A = R/I, B = R/J = A/J , where J = JA.

Let i : SpecA ↪→ SpecR, j : SpecB ↪→ SpecR, and h : SpecB ↪→ SpecA be the
closed immersions corresponding respectively to the surjections R � A, R � B,
and A� B. Then i ◦h = j. We have a composite

φ!
h : h∗j

! −→∼ h∗h
!i!

Trh−−→ i!.

Using (C.6.2) and (C.2.13) (the latter for i and j), this corresponds to a map

φNh : h∗j
N → iN.

In particular, for an R-module M , Hn(φNh (M)) gives us a map

(C.7.1) φh : M ⊗R (∧rBJ/J2)∗ −→M ⊗R (∧rAI/I2)∗.

From the definition of U•(M) in (C.1.1), it is straightforward that for an R-module
M , the following diagram commutes.

RHom•R(A, M)

(C.2.3)

��

RHom•R(B, M)

(C.2.3)

��

oo

M ⊗R K•(t) M ⊗R K•(g)
U•

oo

commutes. The unlabelled arrow is the one arising from the map A � B. Un-
winding all the definitions, we see that φh(m⊗ 1/g) = det(uij)m⊗ 1/t. Moreover
if Hr

J(M) → Hr
I(M) is the natural map arising from the inclusion ΓJ ↪→ ΓI , the

element [ m
g1,...,gr ] maps to [ det(uij)m

t1,...,tr
].

These are well-known results (for example, see [HK1, §3, pp.71–72] or [L2,
Chap. III, §7, pp.59–60]). We record them for completeness. It should be pointed
out that (ii) and (iii) in Theorem C.7.2 do not need g or t to be regular sequences.
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Theorem C.7.2. Let R, I, J , t, g and uij be as above.

(i) Let φh : M ⊗ (∧rBJ/J2)∗ →M ⊗ (∧rAI/I2)∗ be as in (C.7.1). Then

φh

(
m⊗ 1

g

)
= det(uij)m⊗

1

t
.

(ii) If ψ : Hr
J(M) → Hr

I(M) is the natural map arising from the inclusion
ΓJ ↪→ ΓI , then

ψ

([
m

g1, . . . , gr

])
=

[
det(uij)m
t1, . . . , tr

]
(iii) If

√
I =
√
J , so that Hr

I(M) = Hr
J(M), then[

m
g1, . . . , gr

]
=

[
det(uij)m
t1, . . . , tr

]
Proof. Part (i) has been established. We elaborate a bit on (ii) and (ii). Let

Z = SpecA and W = SpecB. The natural maps i∗i
[ → RΓZ and j∗j

[ → RΓW fit
into a commutative diagram, as the reader can readily verify:

j∗j
[

��

˜ // i∗h∗h[i[
via Tr[h

##GGGGGGGGG

i∗i
[

Tr[izzvvvvvvvvv

RΓW
� � // RΓZ

Here Tr[i is the map in (B.1.1). Parts (ii) and (iii) then follow from (i). �
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