LECTURES 9 AND 10

Dates of Lectures: September 10 and 12, 2019

For any ring A, Max(A) is the collection of maximal ideals of A. A* is the
multiplicative group of units of A.

As before N = {0,1,2,...,m,...}. Rings mean commutative rings with 1.

The symbol @ is for flagging a cautionary comment or a tricky argument. It
occurs in the margins and is Knuth’s version of Bourbaki’s “dangerous bend sym-
bol”.

1. B-rings

For this section K is a non-archimedean field, not necessarily complete and k =
I?, ie, k = Ok /mg. Moreover (again, only for this section) we do allow the
absolute value on K to be trivial.

We fix a subring A of K.

1.1. We set
8A:{a€A‘|a|:1}.

Note that 00k = 0},. However it is not always true that 0A = A*.

Definitions 1.1.1. Let A*, A etc., be as above.

(1) A is said to be bounded if A C Ok. Equivalently, A is bounded if |z| < 1
for every z € A.

(2) A is called a B-ring if A is bounded and A* = 0A.

(3) A B-subring of a B-ring is a subring which is also a B-ring.

1.1.2. The intersections of B-subrings of a B-ring is also a B-ring. It therefore
makes sense to talk about the smallest B-subring containing a subset of K, provided
there is at least one B-subring containing it.

Proposition 1.1.3. If A C Ok then the localisation Apa is the smallest B-ring
containing A. In this case A and OA have the same value semi-group, i.e. |A| =
|Agal.
Proof. This is obvious. O
1.1.4. For our ring A, set
A=ANmg.
In other words A = {z € A| |z| < 1}.
If A is a B-ring we prefer the notation m,4 for A. Thus
my=ANmg
when A is a B-ring.
Suppose A is a B-ring. Then it is clear that m,4 is a maximal ideal and in fact
the unique maximal ideal of A. Thus (A, m4) is a local ring. We set
g = A/ ma
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and forz € A, 7 € A is defined to be the image of z under the canonical surjection
A — A. The notation A is also used for m4, but we will not use it now. It is a
useful notation when A is not a B-ring, for in that case, elements of absolute value
less than 1 do not form a unique maximal ideal.

Proposition 1.1.5. If A is a B-ring, then its completion Aisa B-ring in K.

Cautionary Remark: The ring A above is the completion of A as a normed space,
and not necessarily as a local ring. In other words A need not equal 1& A/m’7 . If

A is noetherian then A = lim A/m’. There is a natural surjective map

A—» lim A/m’}
whose kernel is ﬁn(m’}‘g). If A is noetherian then N,m’; = (0). An example to
remember is this: If A = Ok, and K is algebraically closed, then m4 = m%, since
every element of K has a square root in K, and if the element is in A = Ok, then
its square root is also in 0. It is then straightforward to see that (hﬂ Ajm7 =

Ok /mg = K, which is not A, unless |-| is trivial.

Proof. Let z € OA. Since A is dense in A, we can find a € A such that la —z| < 1.
Then |a| = 1 and hence is a unit in A, for A is a B-ring. Set z = a~!(a — ). Since
la=!| = 1, this means |z| < 1, whence 1— z is a unit in A, with inverse >, 2" Now
2 =a(l— z), and hence  is a unit in A. O

Lemma 1.1.6. Let A be a B-ring and y an element of Ok . Then there ezists a
polynomial g € A[C] with g(y) € mg such that the following is true: Each f € A[(]
with f(y) € mg admits a A[(]-decomposition

f=aqg+r

where all the coefficients of r are in my.

Proof. The residue field K is an extension of A.

If § is transcendental over A, then any f € A[(] satisfying f(y) € mg must have

all its coefficients in m 4, for -

@) =fy)=0
forcing all the coefficients of f to be zero since g is transcendental over A. Soin
this case we may take g = ¢ =0 and r = f.

If on the other hand § is algebraic over A, then let § € A[C] be the minimal
polynomial of § over A, and let g € A[¢] be a monic lift of §. Then clearly g(y) €
mpg. Moreover if f € A[(] is such that f(y) € mg, then by Euclidean division we
have g,r € A[(] such that

f=ag+r
with degr < degg. Clearly 7(§) = 0, and since § is the minimal polynomial of §
and since deg7 < deg g, we must have ¥ = 0. It follows that the coefficients of r
are in my. O

2. Bald rings

Once again, we don’t assume K is complete in what follows. To avoid annoying
trivialities we assume that |-| is non-trivial.
2
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2.1. Bald rings are a way to handle non-noetherian rings which occur in the subject,
for example Ok when K is algebraically closed.

Definition 2.1.1. A is called bald if
bup{\xw x €A, |x| < 1} < 1.

Remark: We are not assuming A is bounded, i.e. we are not assuming A C Ok.

Proposition 2.1.2. Let A C Ok and suppose A is bald. Let M C A be such that

sup |y| < 1.
yeM

Then S = A[M] is bald. More precisely, if S is the (norm) completion of S then

sup |z| < max{ suplal, sup [y| p.
§ﬂmg acA yeEM

Proof. Let z € SN mz, say

z=uag+ 7
with ag € A and
Y= > oy, g€ M.
Vit >0
We have (using the fact that in the expansion of 2/, the case vy =vo =--- =1, =0

is excluded),
¢ < maxlay, b, [[y1* - vy ]
< max|y;*...yr*| (since ap € Ok)

< sup |y
yeM

<1

It follows that |ag| < 1. Hence

|z| < maxq sup|al, sup |y| ;.
acA  yeM

Proposition 2.1.3. If A C Ok is bald and y € Ok, then Aly] is bald.

Proof. Since Aga is a B-ring and the value semi-groups of A and Ay, are the same
(see Proposition 1.1.3), therefore we may assume A is a B-ring. Let

g:= sup |z|.
reEmy

Let g € A[¢] be as in Lemma 1.1.6 for the element y. Let

¢’ = max{e, |g(y)}.

Then ¢’ < 1. It is enough to show that if z € Afy] and |z| # 1, then |z] < &’. Pick

such an element z. Note that z € AJy] N mg. Write z = f(y), where f € A[(].

By our choice of g, we have f = gg + r with ¢ and r in A[{], and such that the
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coefficients of r are in m4. By definition of €, all coefficients of r have value < ¢.
We therefore have

|f(y)] < max{|qg(y)llg()], Ir(y)[}
< max{|g(y)],r(y)|}
< max{|g(y)],e}

:EI

O

Theorem 2.1.4. Let K be complete and M C Ok a subset such that M N OOk is
finite and such that

sup |y| < 1.
yeMNmg

Then the smallest complete B-ring R in K such that M C R C Ok is bald.

Proof. Let S be the smallest ring containing 1. Then S = Z or S = Z/pZ for some
prime number p. In the latter case the valuation on S is trivial and S is bald. In
case S = Z then either the valuation on S is trivial or else it is equivalent to the
p-adic valuation. In either case it is bald. So in every case S is bald. Hence S[M] is
bald from by Proposition 2.1.2 and Proposition 2.1.3. By localising if necessary, we
have a bald B-ring containing M. By Proposition 2.1.2, baldness is not destroyed
by completing. Thus the collection of bald complete B-subrings of &z containing
M is non-empty. We are done by intersecting over this non-empty collection.  [J
We immediately have:

Corollary 2.1.5. Let {y,} be a sequence in Ok such that lim, oy, = 0. Then
the smallest complete B-subring of K containing all the y,, v € N, is bald.

3. Miscellaneous results for T,

3.1. Algebraic closure and completion. Here is the basic theorem which shows
that C,, the completion of Q,, is algebraically closed.

Theorem 3.1.1. If K is algebraically closed then its completion K is also alge-
braically closed.

Proof. Tt is typographically more convenient in this proof to use K " for K and we
will do so. Let « € K'. Let L = K'[a]. Let

g=C+al" '+ 4 € K'(]

be the minimal polynomial of a over K’. For n € N pick a monic polynomial
gn € K[C] of degree r such that ||g, — g|| < 27™. This is always possible since K
is dense in K’ and by the definition of ||-||. Fix n € N. Since K is algebraically
closed, we have

gn = H (X - a/)v

o’ root of gy

where each root o’ € K of g, occurs as often as its multiplicity. This gives

[T la—al=lgu(@)l = lgn(a) - gla)| < 27"

a’ root of g,
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It follows that at least one root of g,, call it «,,, is such that
lay, —al < 2/,

Clearly o, — a as n — oco. Each a,, € K, and since K’ is the completion of K,
therefore a € K'. Thus K’ is algebraically closed. O

3.2. T, is a regular ring. We return to a familiar situation, namely the case
where K is complete, and to avoid annoying trivialities, the valuation on K is
non-trivial.

Proposition 3.2.1. Let K be complete. Let m € Max(T,) and set n = m N
K[C1,...,Ca]. Then
(a) m=nT,;
(b) The natural map
K[¢]/n — T,,/m

induced by the inclusion K[¢] C T, is an isomorphim.

Proof. Recall that given a = (as,...,a,) € B"(K) we have the “evaluation map”
Ya: T — K(ay,...,ap)

given by f + f(a). By [Lecture 7, Theorem 1.3.1], we know there exists a € B"(K)
such that
m = ker @gq.
It follows that
n={ge K[| g(a) = 0}.
Part (b) follows from the following commutative diagram, since the downward ar-
rows are isomorphisms.

K[¢/n ———T,/m

%lz glvia o

K(a) =————=K(a)
For (a) consider the commutative diagram with all the arrows the obvious ones.
K[C] C dense Tn
K[¢l/n —— T,/ (nT;,)

The ideal n is closed in K[¢] since n = mNK|[¢] and m is closed in T},. The surjective
downward arrow on the left is continuous with the residue norm on KI[¢]/n which
is the same as the residue norm on 7, /m from 7,, via the identification of K[{]/n
with T3, /m. The composite K[¢] C T}, — T,/ (nT},) is also continuous. Since K[{]/n
is finite dimensional over K, the map labelled i is continuous from a well-known
result (see [Lecture 11, Corollary 1.1.8]). Since K[{]/n is a field, ¢ is an inclusion.
Now K|[(] is dense in T, and hence i(K[{]/n) is dense in T,,/(nT},). However
i(K[¢]/n) is complete under every K-norm (see [Lecture 11, Theorem 1.1.7]). Hence
i(K[¢]/n) = T,,/(nT},). Thus ¢ is an isomorphism, whence T,,/(nT},) is a field, i.e.
nT, is a maximal ideal. Since m D nT,, it follows that m = nT,,. [l
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Corollary 3.2.2. There exist n polynomials, p; € K|[(1,...,¢] C K[(y---,Cal,
with p; monic in x; such that

(a) m=(p1,...,pn)Tn and n = (p1,...,pn)KI[C].

(b) If a € B"(K) is an element such that m = ker ¢q, then
K[Cr, - G/ ((prs - p) K Gy, Gl = K(ay, o a0) - (i=1,0.0,m).

Proof. Tt is well known and easy to show that p; € K|[(i,...,(] exist such that
n = (p1,...,pn)K][C] and (b) is satisfied. Use Proposition 3.2.1 to reduce to this
case. (I

Theorem 3.2.3. Let K be complete. Then (T,)m is a regular local ring of Krull
dimension n for every m € Max(T,). In particular T, is o reqular ring, i.e. (Ty),
is a regular local Ting for every prime ideal p of T,,.

Proof. Let m € Max(T;,) and n = K[¢] Nm. Pick py,...,p, as in Corollary 3.2.2.
Let pi = (pl, R JH)K[C] and q; = (pl, R 7pz)Tn One checks that

Tn/ai = K(a1,...,a:){Cit1s- -, Cn)-
Thus q; is a prime ideal for each 7. This means ht(m) > n. On the other hand
dim 7T}, = n and so ht(m) < n. Thus ht(m) = n, i.e. dim (T},) = n. Since m(T})m
is generated by n elements, (T}, )n is regular. O

Remark 3.2.4. In the event || is trivial, then 7T,, = K], and Proposition 3.2.1,
Corollary 3.2.2 and Theorem 3.2.3 are obviously true.



