LECTURES 9 AND 10

Dates of Lectures: September 10 and 12, 2019
For any ring $A, \operatorname{Max}(A)$ is the collection of maximal ideals of $A . A^{*}$ is the multiplicative group of units of A.

As before $\mathbf{N}=\{0,1,2, \ldots, m, \ldots\}$. Rings mean commutative rings with 1 .
The symbol \geqslant is for flagging a cautionary comment or a tricky argument. It occurs in the margins and is Knuth's version of Bourbaki's "dangerous bend symbol".

1. B-rings

For this section K is a non-archimedean field, not necessarily complete and $k=$ \widetilde{K}, i.e., $k=\mathscr{O}_{K} / \mathfrak{m}_{K}$. Moreover (again, only for this section) we do allow the absolute value on K to be trivial.

We fix a subring A of K.
1.1. We set

$$
\partial A=\{a \in A| | a \mid=1\}
$$

Note that $\partial \mathscr{O}_{K}=\mathscr{O}_{K}^{*}$. However it is not always true that $\partial A=A^{*}$.
Definitions 1.1.1. Let $A^{*}, \partial A$ etc., be as above.
(1) A is said to be bounded if $A \subset \mathscr{O}_{K}$. Equivalently, A is bounded if $|x| \leq 1$ for every $x \in A$.
(2) A is called a B-ring if A is bounded and $A^{*}=\partial A$.
(3) A B-subring of a B-ring is a subring which is also a B-ring.
1.1.2. The intersections of B-subrings of a B-ring is also a B-ring. It therefore makes sense to talk about the smallest B-subring containing a subset of K, provided there is at least one B-subring containing it.

Proposition 1.1.3. If $A \subset \mathscr{O}_{K}$ then the localisation $A_{\partial A}$ is the smallest B-ring containing A. In this case A and ∂A have the same value semi-group, i.e. $|A|=$ $\left|A_{\partial A}\right|$.
Proof. This is obvious.
1.1.4. For our ring A, set

$$
\check{A}=A \cap \mathfrak{m}_{K}
$$

In other words $\check{A}=\{x \in A| | x \mid<1\}$.
If A is a B-ring we prefer the notation \mathfrak{m}_{A} for \check{A}. Thus

$$
\mathfrak{m}_{A}=A \cap \mathfrak{m}_{K}
$$

when A is a B-ring.
Suppose A is a B-ring. Then it is clear that \mathfrak{m}_{A} is a maximal ideal and in fact the unique maximal ideal of A. Thus $\left(A, \mathfrak{m}_{A}\right)$ is a local ring. We set

$$
\widetilde{A}=A / \mathfrak{m}_{A}
$$

and for $x \in A, \tilde{x} \in \widetilde{A}$ is defined to be the image of x under the canonical surjection $A \rightarrow \widetilde{A}$. The notation \check{A} is also used for \mathfrak{m}_{A}, but we will not use it now. It is a useful notation when A is not a B-ring, for in that case, elements of absolute value less than 1 do not form a unique maximal ideal.
Proposition 1.1.5. If A is a B-ring, then its completion \widehat{A} is a B-ring in \widehat{K}.
Cautionary Remark: The ring \widehat{A} above is the completion of A as a normed space, and not necessarily as a local ring. In other words \widehat{A} need not equal $\lim _{\underset{n}{n}} A / \mathfrak{m}_{A}^{n}$. If A is noetherian then $A=\underset{\lim _{n}}{ } A / \mathfrak{m}_{A}^{n}$. There is a natural surjective map

$$
\widehat{A} \longrightarrow \varliminf_{\gtrless_{n}} A / \mathfrak{m}_{A}^{n}
$$

whose kernel is $\cap_{n}\left(\mathfrak{m}_{A}^{n} \widehat{A}\right)$. If A is noetherian then $\cap_{n} \mathfrak{m}_{A}^{n}=(0)$. An example to remember is this: If $A=\mathscr{O}_{K}$, and K is algebraically closed, then $\mathfrak{m}_{A}=\mathfrak{m}_{A}^{2}$, since every element of K has a square root in K, and if the element is in $A=\mathscr{O}_{K}$, then its square root is also in \mathscr{O}_{K}. It is then straightforward to see that ${\underset{\zeta}{\sum_{n}}} A / \mathfrak{m}_{A}^{n}=$ $\mathscr{O}_{K} / \mathfrak{m}_{K}=\widetilde{K}$, which is not \widehat{A}, unless $|\cdot|$ is trivial.
Proof. Let $x \in \partial \widehat{A}$. Since A is dense in \widehat{A}, we can find $a \in A$ such that $|a-x|<1$. Then $|a|=1$ and hence is a unit in A, for A is a B-ring. Set $z=a^{-1}(a-x)$. Since $\left|a^{-1}\right|=1$, this means $|z|<1$, whence $1-z$ is a unit in \widehat{A}, with inverse $\sum_{n} z^{n}$. Now $x=a(1-z)$, and hence x is a unit in \widehat{A}.
Lemma 1.1.6. Let A be a B-ring and y an element of \mathscr{O}_{K}. Then there exists a polynomial $g \in A[\zeta]$ with $g(y) \in \mathfrak{m}_{K}$ such that the following is true: Each $f \in A[\zeta]$ with $f(y) \in \mathfrak{m}_{K}$ admits a $A[\zeta]$-decomposition

$$
f=q g+r
$$

where all the coefficients of r are in \mathfrak{m}_{A}.
Proof. The residue field \widetilde{K} is an extension of \widetilde{A}.
If \tilde{y} is transcendental over \widetilde{A}, then any $f \in A[\zeta]$ satisfying $f(y) \in \mathfrak{m}_{K}$ must have all its coefficients in \mathfrak{m}_{A}, for

$$
\tilde{f}(\tilde{y})=\widetilde{f(y)}=0
$$

forcing all the coefficients of \tilde{f} to be zero since \tilde{y} is transcendental over \tilde{A}. So in this case we may take $g=q=0$ and $r=f$.

If on the other hand \tilde{y} is algebraic over \widetilde{A}, then let $\tilde{g} \in \widetilde{A}[\zeta]$ be the minimal polynomial of \tilde{y} over \widetilde{A}, and let $g \in A[\zeta]$ be a monic lift of \tilde{g}. Then clearly $g(y) \in$ \mathfrak{m}_{K}. Moreover if $f \in A[\zeta]$ is such that $f(y) \in \mathfrak{m}_{K}$, then by Euclidean division we have $g, r \in A[\zeta]$ such that

$$
f=q g+r
$$

with $\operatorname{deg} r<\operatorname{deg} g$. Clearly $\tilde{r}(\tilde{y})=0$, and since \tilde{g} is the minimal polynomial of \tilde{y} and since $\operatorname{deg} \tilde{r}<\operatorname{deg} \tilde{g}$, we must have $\tilde{r}=0$. It follows that the coefficients of r are in \mathfrak{m}_{A}.

2. Bald rings

Once again, we don't assume K is complete in what follows. To avoid annoying trivialities we assume that $|\cdot|$ is non-trivial.
2.1. Bald rings are a way to handle non-noetherian rings which occur in the subject, for example \mathscr{O}_{K} when K is algebraically closed.
Definition 2.1.1. A is called bald if

$$
\sup \{|x||x \in A,|x|<1\}<1
$$

2
Proposition 2.1.2. Let $A \subset \mathscr{O}_{K}$ and suppose A is bald. Let $M \subset \check{A}$ be such that

$$
\sup _{y \in M}|y|<1
$$

Then $S=A[M]$ is bald. More precisely, if \widehat{S} is the (norm) completion of S then

$$
\sup _{\widehat{S} \cap \mathfrak{m}_{\widehat{K}}}|z| \leq \max \left\{\sup _{a \in \mathscr{A}}|a|, \sup _{y \in M}|y|\right\} .
$$

Proof. Let $z \in \widehat{S} \cap \mathfrak{m}_{\widehat{K}}$, say

$$
z=a_{0}+z^{\prime}
$$

with $a_{0} \in A$ and

$$
z^{\prime}=\sum_{\nu_{1}+\cdots+\nu_{n}>0} a_{\nu_{1} \ldots \nu_{n}} y_{1}^{\nu_{1}} \ldots y_{n}^{\nu_{n}}, \quad y_{i} \in M
$$

We have (using the fact that in the expansion of z^{\prime}, the case $\nu_{1}=\nu_{2}=\cdots=\nu_{n}=0$ is excluded),

$$
\begin{aligned}
\left|z^{\prime}\right| & \leq \max \left|a_{\nu_{1} \ldots \nu_{n}}\right|\left|y_{1}^{\nu_{1}} \ldots y_{n}^{\nu_{n}}\right| \\
& \leq \max \left|y_{1}^{\nu_{1}} \ldots y_{n}^{\nu_{n}}\right| \quad\left(\text { since } a_{\boldsymbol{\nu}} \in \mathscr{O}_{K}\right) \\
& \leq \sup _{y \in M}|y| \\
& <1
\end{aligned}
$$

It follows that $\left|a_{0}\right|<1$. Hence

$$
|z| \leq \max \left\{\sup _{a \in \check{A}}|a|, \sup _{y \in M}|y|\right\}
$$

Proposition 2.1.3. If $A \subset \mathscr{O}_{K}$ is bald and $y \in \mathscr{O}_{K}$, then $A[y]$ is bald.
Proof. Since $A_{\partial A}$ is a B-ring and the value semi-groups of A and $A_{\partial A}$ are the same (see Proposition 1.1.3), therefore we may assume A is a B-ring. Let

$$
\varepsilon:=\sup _{x \in \mathfrak{m}_{A}}|x|
$$

Let $g \in A[\zeta]$ be as in Lemma 1.1.6 for the element y. Let

$$
\varepsilon^{\prime}=\max \{\varepsilon,|g(y)|\}
$$

Then $\varepsilon^{\prime}<1$. It is enough to show that if $z \in A[y]$ and $|z| \neq 1$, then $|z|<\varepsilon^{\prime}$. Pick such an element z. Note that $z \in A[y] \cap \mathfrak{m}_{K}$. Write $z=f(y)$, where $f \in A[\zeta]$. By our choice of g, we have $f=q g+r$ with q and r in $A[\zeta]$, and such that the
coefficients of r are in \mathfrak{m}_{A}. By definition of ε, all coefficients of r have value $\leq \varepsilon$. We therefore have

$$
\begin{aligned}
|f(y)| & \leq \max \{|q(y)||g(y)|,|r(y)|\} \\
& \leq \max \{|g(y)|,|r(y)|\} \\
& \leq \max \{|g(y)|, \varepsilon\} \\
& =\varepsilon^{\prime}
\end{aligned}
$$

Theorem 2.1.4. Let K be complete and $M \subset \mathscr{O}_{K}$ a subset such that $M \cap \partial \mathscr{O}_{K}$ is finite and such that

$$
\sup _{y \in M \cap \mathfrak{m}_{K}}|y|<1
$$

Then the smallest complete $B-\operatorname{ring} R$ in K such that $M \subset R \subset \mathscr{O}_{K}$ is bald.
Proof. Let S be the smallest ring containing 1. Then $S=\mathbf{Z}$ or $S=\boldsymbol{Z} / p \mathbf{Z}$ for some prime number p. In the latter case the valuation on S is trivial and S is bald. In case $S=\mathbf{Z}$ then either the valuation on S is trivial or else it is equivalent to the p-adic valuation. In either case it is bald. So in every case S is bald. Hence $S[M]$ is bald from by Proposition 2.1.2 and Proposition 2.1.3. By localising if necessary, we have a bald B-ring containing M. By Proposition 2.1.2, baldness is not destroyed by completing. Thus the collection of bald complete B-subrings of $\mathscr{O}_{\widehat{K}}$ containing M is non-empty. We are done by intersecting over this non-empty collection.

We immediately have:
Corollary 2.1.5. Let $\left\{y_{\nu}\right\}$ be a sequence in \mathscr{O}_{K} such that $\lim _{\nu \rightarrow \infty} y_{\nu}=0$. Then the smallest complete B-subring of K containing all the $y_{\nu}, \nu \in \mathbf{N}$, is bald.

3. Miscellaneous results for T_{n}

3.1. Algebraic closure and completion. Here is the basic theorem which shows that \mathbf{C}_{p}, the completion of $\overline{\mathbf{Q}}_{p}$, is algebraically closed.

Theorem 3.1.1. If K is algebraically closed then its completion \widehat{K} is also algebraically closed.

Proof. It is typographically more convenient in this proof to use K^{\prime} for \widehat{K} and we will do so. Let $\alpha \in \overline{K^{\prime}}$. Let $L=K^{\prime}[\alpha]$. Let

$$
g=\zeta^{r}+c_{1} \zeta^{r-1}+\cdots+c_{r} \in K^{\prime}[\zeta]
$$

be the minimal polynomial of α over K^{\prime}. For $n \in \mathbf{N}$ pick a monic polynomial $g_{n} \in K[\zeta]$ of degree r such that $\left\|g_{n}-g\right\| \leq 2^{-n}$. This is always possible since K is dense in K^{\prime} and by the definition of $\|\cdot\|$. Fix $n \in \mathbf{N}$. Since K is algebraically closed, we have

$$
g_{n}=\prod_{\alpha^{\prime} \text { root of } g_{n}}\left(X-\alpha^{\prime}\right)
$$

where each root $\alpha^{\prime} \in K$ of g_{n} occurs as often as its multiplicity. This gives

$$
\prod_{\alpha^{\prime} \text { root of } g_{n}}\left|\alpha-\alpha^{\prime}\right|=\left|g_{n}(\alpha)\right|=\left|g_{n}(\alpha)-g(\alpha)\right| \leq 2^{-n}
$$

It follows that at least one root of g_{n}, call it α_{n}, is such that

$$
\left|\alpha_{n}-\alpha\right| \leq 2^{-n / r}
$$

Clearly $\alpha_{n} \rightarrow \alpha$ as $n \rightarrow \infty$. Each $\alpha_{n} \in K$, and since K^{\prime} is the completion of K, therefore $\alpha \in K^{\prime}$. Thus K^{\prime} is algebraically closed.
3.2. T_{n} is a regular ring. We return to a familiar situation, namely the case where K is complete, and to avoid annoying trivialities, the valuation on K is non-trivial.

Proposition 3.2.1. Let K be complete. Let $\mathfrak{m} \in \operatorname{Max}\left(T_{n}\right)$ and set $\mathfrak{n}=\mathfrak{m} \cap$ $K\left[\zeta_{1}, \ldots, \zeta_{n}\right]$. Then
(a) $\mathfrak{m}=\mathfrak{n} T_{n}$;
(b) The natural map

$$
K[\boldsymbol{\zeta}] / \mathfrak{n} \longrightarrow T_{n} / \mathfrak{m}
$$

induced by the inclusion $K[\boldsymbol{\zeta}] \subset T_{n}$ is an isomorphim.
Proof. Recall that given $\boldsymbol{a}=\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{B}^{n}(\bar{K})$ we have the "evaluation map"

$$
\varphi_{\boldsymbol{a}}: T_{n} \longrightarrow K\left(a_{1}, \ldots, a_{n}\right)
$$

given by $f \mapsto f(\boldsymbol{a})$. By [Lecture 7, Theorem 1.3.1], we know there exists $\boldsymbol{a} \in \mathbb{B}^{n}(\bar{K})$ such that

$$
\mathfrak{m}=\operatorname{ker} \varphi_{\boldsymbol{a}}
$$

It follows that

$$
\mathfrak{n}=\{g \in K[\boldsymbol{\zeta}] \mid g(\boldsymbol{a})=0\}
$$

Part (b) follows from the following commutative diagram, since the downward arrows are isomorphisms.

For (a) consider the commutative diagram with all the arrows the obvious ones.

The ideal \mathfrak{n} is closed in $K[\boldsymbol{\zeta}]$ since $\mathfrak{n}=\mathfrak{m} \cap K[\boldsymbol{\zeta}]$ and \mathfrak{m} is closed in T_{n}. The surjective downward arrow on the left is continuous with the residue norm on $K[\boldsymbol{\zeta}] / \mathfrak{n}$ which is the same as the residue norm on T_{n} / \mathfrak{m} from T_{n} via the identification of $K[\boldsymbol{\zeta}] / \mathfrak{n}$ with T_{n} / \mathfrak{m}. The composite $K[\boldsymbol{\zeta}] \subset T_{n} \rightarrow T_{n} /\left(\mathfrak{n} T_{n}\right)$ is also continuous. Since $K[\boldsymbol{\zeta}] / \mathfrak{n}$ is finite dimensional over K, the map labelled i is continuous from a well-known result (see [Lecture 11, Corollary 1.1.8]). Since $K[\boldsymbol{\zeta}] / \mathfrak{n}$ is a field, i is an inclusion. Now $K[\boldsymbol{\zeta}]$ is dense in T_{n}, and hence $i(K[\boldsymbol{\zeta}] / \mathfrak{n})$ is dense in $T_{n} /\left(\mathfrak{n} T_{n}\right)$. However $i(K[\boldsymbol{\zeta}] / \mathfrak{n})$ is complete under every K-norm (see [Lecture 11, Theorem 1.1.7]). Hence $i(K[\boldsymbol{\zeta}] / \mathfrak{n})=T_{n} /\left(\mathfrak{n} T_{n}\right)$. Thus i is an isomorphism, whence $T_{n} /\left(\mathfrak{n} T_{n}\right)$ is a field, i.e. $\mathfrak{n} T_{n}$ is a maximal ideal. Since $\mathfrak{m} \supset \mathfrak{n} T_{n}$, it follows that $\mathfrak{m}=\mathfrak{n} T_{n}$.

Corollary 3.2.2. There exist n polynomials, $p_{i} \in K\left[\zeta_{1}, \ldots, \zeta_{i}\right] \subset K\left[\zeta_{1}, \ldots, \zeta_{n}\right]$, with p_{i} monic in x_{i} such that
(a) $\mathfrak{m}=\left(p_{1}, \ldots, p_{n}\right) T_{n}$ and $\mathfrak{n}=\left(p_{1}, \ldots, p_{n}\right) K[\boldsymbol{\zeta}]$.
(b) If $\boldsymbol{a} \in \mathbb{B}^{n}(\bar{K})$ is an element such that $\mathfrak{m}=\operatorname{ker} \varphi_{\boldsymbol{a}}$, then

$$
K\left[\zeta_{1}, \ldots, \zeta_{i}\right] /\left(\left(p_{1}, \ldots, p_{i}\right) K\left[\zeta_{1}, \ldots, \zeta_{i}\right]\right) \cong K\left(a_{1}, \ldots, a_{i}\right) \quad(i=1, \ldots, n)
$$

Proof. It is well known and easy to show that $p_{i} \in K\left[\zeta_{1}, \ldots, \zeta_{i}\right]$ exist such that $\mathfrak{n}=\left(p_{1}, \ldots, p_{n}\right) K[\boldsymbol{\zeta}]$ and (b) is satisfied. Use Proposition 3.2.1 to reduce to this case.

Theorem 3.2.3. Let K be complete. Then $\left(T_{n}\right)_{\mathfrak{m}}$ is a regular local ring of Krull dimension n for every $\mathfrak{m} \in \operatorname{Max}\left(T_{n}\right)$. In particular T_{n} is a regular ring, i.e. $\left(T_{n}\right)_{\mathfrak{p}}$ is a regular local ring for every prime ideal \mathfrak{p} of T_{n}.

Proof. Let $\mathfrak{m} \in \operatorname{Max}\left(T_{n}\right)$ and $\mathfrak{n}=K[\boldsymbol{\zeta}] \cap \mathfrak{m}$. Pick p_{1}, \ldots, p_{n} as in Corollary 3.2.2. Let $\mathfrak{p}_{i}=\left(p_{1}, \ldots, p_{i}\right) K[\boldsymbol{\zeta}]$ and $\mathfrak{q}_{i}=\left(p_{1}, \ldots, p_{i}\right) T_{n}$. One checks that

$$
T_{n} / \mathfrak{q}_{i} \xrightarrow{\sim} K\left(a_{1}, \ldots, a_{i}\right)\left\langle\zeta_{i+1}, \ldots, \zeta_{n}\right\rangle
$$

Thus \mathfrak{q}_{i} is a prime ideal for each i. This means $\operatorname{ht}(\mathfrak{m}) \geq n$. On the other hand $\operatorname{dim} T_{n}=n$ and so $h t(\mathfrak{m}) \leq n$. Thus ht $(\mathfrak{m})=n$, i.e. $\operatorname{dim}\left(T_{n}\right)_{\mathfrak{m}}=n$. Since $\mathfrak{m}\left(T_{n}\right)_{\mathfrak{m}}$ is generated by n elements, $\left(T_{n}\right)_{\mathfrak{m}}$ is regular.

Remark 3.2.4. In the event $|\cdot|$ is trivial, then $T_{n}=K[\boldsymbol{\zeta}]$, and Proposition 3.2.1, Corollary 3.2.2 and Theorem 3.2.3 are obviously true.

