LECTURES 9 AND 10

Dates of Lectures: September 10 and 12, 2019

For any ring A, Max(A) is the collection of maximal ideals of A. A^* is the multiplicative group of units of A.

As before $\mathbf{N} = \{0, 1, 2, \dots, m, \dots\}$. Rings mean commutative rings with 1.

The symbol P is for flagging a cautionary comment or a tricky argument. It occurs in the margins and is Knuth's version of Bourbaki's "dangerous bend symbol".

1. B-rings

For this section K is a non-archimedean field, not necessarily complete and $k = \tilde{K}$, i.e., $k = \mathscr{O}_K/\mathfrak{m}_K$. Moreover (again, only for this section) we do allow the absolute value on K to be trivial.

We fix a subring A of K.

1.1. We set

$$\partial A = \Big\{ a \in A \, \Big| \, |a| = 1 \Big\}.$$

Note that $\partial \mathcal{O}_K = \mathcal{O}_K^*$. However it is not always true that $\partial A = A^*$.

Definitions 1.1.1. Let A^* , ∂A etc., be as above.

- (1) A is said to be bounded if $A \subset \mathcal{O}_K$. Equivalently, A is bounded if $|x| \leq 1$ for every $x \in A$.
- (2) A is called a *B*-ring if A is bounded and $A^* = \partial A$.
- (3) A *B*-subring of a *B*-ring is a subring which is also a *B*-ring.

1.1.2. The intersections of *B*-subrings of a *B*-ring is also a *B*-ring. It therefore makes sense to talk about the smallest *B*-subring containing a subset of K, provided there is at least one *B*-subring containing it.

Proposition 1.1.3. If $A \subset \mathcal{O}_K$ then the localisation $A_{\partial A}$ is the smallest B-ring containing A. In this case A and ∂A have the same value semi-group, i.e. $|A| = |A_{\partial A}|$.

Proof. This is obvious.

1.1.4. For our ring A, set

$$\check{A} = A \cap \mathfrak{m}_K.$$

In other words $\mathring{A} = \{x \in A \mid |x| < 1\}.$

If A is a B-ring we prefer the notation \mathfrak{m}_A for \check{A} . Thus

 $\mathfrak{m}_A = A \cap \mathfrak{m}_K$

when A is a B-ring.

Suppose A is a B-ring. Then it is clear that \mathfrak{m}_A is a maximal ideal and in fact the unique maximal ideal of A. Thus (A, \mathfrak{m}_A) is a local ring. We set

$$A = A/\mathfrak{m}_A$$

and for $x \in A$, $\tilde{x} \in \tilde{A}$ is defined to be the image of x under the canonical surjection $A \twoheadrightarrow \tilde{A}$. The notation \check{A} is also used for \mathfrak{m}_A , but we will not use it now. It is a useful notation when A is not a B-ring, for in that case, elements of absolute value less than 1 do not form a unique maximal ideal.

Proposition 1.1.5. If A is a B-ring, then its completion \widehat{A} is a B-ring in \widehat{K} .

Cautionary Remark: The ring \widehat{A} above is the completion of A as a normed space, and not necessarily as a local ring. In other words \widehat{A} need not equal $\lim_{n \to \infty} A/\mathfrak{m}_A^n$. If A is noetherian then $A = \lim_{n \to \infty} A/\mathfrak{m}_A^n$. There is a natural surjective map

$$\widehat{A} \longrightarrow \lim_{\stackrel{\longleftarrow}{\longleftarrow} n} A/\mathfrak{m}^n_A$$

whose kernel is $\cap_n(\mathfrak{m}_A^n \widehat{A})$. If A is noetherian then $\cap_n \mathfrak{m}_A^n = (0)$. An example to remember is this: If $A = \mathscr{O}_K$, and K is algebraically closed, then $\mathfrak{m}_A = \mathfrak{m}_A^2$, since every element of K has a square root in K, and if the element is in $A = \mathscr{O}_K$, then its square root is also in \mathscr{O}_K . It is then straightforward to see that $\lim_{n \to \infty} A/\mathfrak{m}_A^n = \mathscr{O}_K/\mathfrak{m}_K = \widetilde{K}$, which is not \widehat{A} , unless $|\cdot|$ is trivial.

Proof. Let $x \in \partial \widehat{A}$. Since A is dense in \widehat{A} , we can find $a \in A$ such that |a - x| < 1. Then |a| = 1 and hence is a unit in A, for A is a B-ring. Set $z = a^{-1}(a - x)$. Since $|a^{-1}| = 1$, this means |z| < 1, whence 1 - z is a unit in \widehat{A} , with inverse $\sum_n z^n$. Now x = a(1 - z), and hence x is a unit in \widehat{A} .

Lemma 1.1.6. Let A be a B-ring and y an element of \mathcal{O}_K . Then there exists a polynomial $g \in A[\zeta]$ with $g(y) \in \mathfrak{m}_K$ such that the following is true: Each $f \in A[\zeta]$ with $f(y) \in \mathfrak{m}_K$ admits a $A[\zeta]$ -decomposition

$$f = qg + r$$

where all the coefficients of r are in \mathfrak{m}_A .

Proof. The residue field \widetilde{K} is an extension of \widetilde{A} .

If \tilde{y} is transcendental over A, then any $f \in A[\zeta]$ satisfying $f(y) \in \mathfrak{m}_K$ must have all its coefficients in \mathfrak{m}_A , for

$$\tilde{f}(\tilde{y}) = f(y) = 0$$

forcing all the coefficients of \tilde{f} to be zero since \tilde{y} is transcendental over \tilde{A} . So in this case we may take g = q = 0 and r = f.

If on the other hand \tilde{y} is algebraic over A, then let $\tilde{g} \in A[\zeta]$ be the minimal polynomial of \tilde{y} over \tilde{A} , and let $g \in A[\zeta]$ be a monic lift of \tilde{g} . Then clearly $g(y) \in \mathfrak{m}_K$. Moreover if $f \in A[\zeta]$ is such that $f(y) \in \mathfrak{m}_K$, then by Euclidean division we have $g, r \in A[\zeta]$ such that

$$f = qg + r$$

with deg $r < \deg g$. Clearly $\tilde{r}(\tilde{y}) = 0$, and since \tilde{g} is the minimal polynomial of \tilde{y} and since deg $\tilde{r} < \deg \tilde{g}$, we must have $\tilde{r} = 0$. It follows that the coefficients of r are in \mathfrak{m}_A .

2. Bald rings

Once again, we don't assume K is complete in what follows. To avoid annoying trivialities we assume that $|\cdot|$ is non-trivial.

2.1. Bald rings are a way to handle non-noetherian rings which occur in the subject, for example \mathcal{O}_K when K is algebraically closed.

Definition 2.1.1. A is called *bald* if

$$\sup \Big\{ |x| \, \Big| \, x \in A, \, |x| < 1 \Big\} < 1.$$

Remark: We are not assuming A is bounded, i.e. we are not assuming $A \subset \mathcal{O}_K$.

Proposition 2.1.2. Let $A \subset \mathcal{O}_K$ and suppose A is bald. Let $M \subset \mathring{A}$ be such that

$$\sup_{y \in M} |y| < 1.$$

Then S = A[M] is bald. More precisely, if \widehat{S} is the (norm) completion of S then

$$\sup_{\widehat{S}\cap\mathfrak{m}_{\widehat{K}}}|z|\leq \max\biggl\{\sup_{a\in \check{A}}|a|,\sup_{y\in M}|y|\biggr\}.$$

Proof. Let $z \in \widehat{S} \cap \mathfrak{m}_{\widehat{K}}$, say

$$z = a_0 + z'$$

with $a_0 \in A$ and

$$z' = \sum_{\nu_1 + \dots + \nu_n > 0} a_{\nu_1 \dots \nu_n} y_1^{\nu_1} \dots y_n^{\nu_n}, \qquad y_i \in M.$$

We have (using the fact that in the expansion of z', the case $\nu_1 = \nu_2 = \cdots = \nu_n = 0$ is excluded),

$$\begin{aligned} |z'| &\leq \max|a_{\nu_1\dots\nu_n}||y_1^{\nu_1}\dots y_n^{\nu_n}| \\ &\leq \max|y_1^{\nu_1}\dots y_n^{\nu_n}| \quad (\text{since } a_{\boldsymbol{\nu}} \in \mathscr{O}_K) \\ &\leq \sup_{y \in M} |y| \\ &< 1. \end{aligned}$$

It follows that $|a_0| < 1$. Hence

$$|z| \le \max \left\{ \sup_{a \in \check{A}} |a|, \sup_{y \in M} |y|
ight\}.$$

Proposition 2.1.3. If $A \subset \mathcal{O}_K$ is bald and $y \in \mathcal{O}_K$, then A[y] is bald.

Proof. Since $A_{\partial A}$ is a *B*-ring and the value semi-groups of *A* and $A_{\partial A}$ are the same (see Proposition 1.1.3), therefore we may assume *A* is a *B*-ring. Let

$$\varepsilon := \sup_{x \in \mathfrak{m}_A} |x|.$$

Let $g \in A[\zeta]$ be as in Lemma 1.1.6 for the element y. Let

$$\varepsilon' = \max\{\varepsilon, |g(y)|\}.$$

Then $\varepsilon' < 1$. It is enough to show that if $z \in A[y]$ and $|z| \neq 1$, then $|z| < \varepsilon'$. Pick such an element z. Note that $z \in A[y] \cap \mathfrak{m}_K$. Write z = f(y), where $f \in A[\zeta]$. By our choice of g, we have f = qg + r with q and r in $A[\zeta]$, and such that the coefficients of r are in \mathfrak{m}_A . By definition of ε , all coefficients of r have value $\leq \varepsilon$. We therefore have

$$\begin{aligned} |f(y)| &\leq \max\{|q(y)||g(y)|, |r(y)|\} \\ &\leq \max\{|g(y)|, |r(y)|\} \\ &\leq \max\{|g(y)|, \varepsilon\} \\ &= \varepsilon' \end{aligned}$$

Theorem 2.1.4. Let K be complete and $M \subset \mathcal{O}_K$ a subset such that $M \cap \partial \mathcal{O}_K$ is finite and such that

$$\sup_{y\in M\cap\mathfrak{m}_K}|y|<1.$$

Then the smallest complete B-ring R in K such that $M \subset R \subset \mathcal{O}_K$ is bald.

Proof. Let S be the smallest ring containing 1. Then $S = \mathbb{Z}$ or $S = \mathbb{Z}/p\mathbb{Z}$ for some prime number p. In the latter case the valuation on S is trivial and S is bald. In case $S = \mathbb{Z}$ then either the valuation on S is trivial or else it is equivalent to the p-adic valuation. In either case it is bald. So in every case S is bald. Hence S[M] is bald from by Proposition 2.1.2 and Proposition 2.1.3. By localising if necessary, we have a bald B-ring containing M. By Proposition 2.1.2, baldness is not destroyed by completing. Thus the collection of bald complete B-subrings of $\mathscr{O}_{\widehat{K}}$ containing M is non-empty. We are done by intersecting over this non-empty collection. \Box We immediately have:

Corollary 2.1.5. Let $\{y_{\nu}\}$ be a sequence in \mathcal{O}_{K} such that $\lim_{\nu \to \infty} y_{\nu} = 0$. Then the smallest complete B-subring of K containing all the $y_{\nu}, \nu \in \mathbf{N}$, is bald.

3. Miscellaneous results for T_n

3.1. Algebraic closure and completion. Here is the basic theorem which shows that C_p , the completion of \overline{Q}_p , is algebraically closed.

Theorem 3.1.1. If K is algebraically closed then its completion \widehat{K} is also algebraically closed.

Proof. It is typographically more convenient in this proof to use K' for \widehat{K} and we will do so. Let $\alpha \in \overline{K'}$. Let $L = K'[\alpha]$. Let

$$g = \zeta^r + c_1 \zeta^{r-1} + \dots + c_r \in K'[\zeta]$$

be the minimal polynomial of α over K'. For $n \in \mathbf{N}$ pick a monic polynomial $g_n \in K[\zeta]$ of degree r such that $||g_n - g|| \leq 2^{-n}$. This is always possible since K is dense in K' and by the definition of $|| \cdot ||$. Fix $n \in \mathbf{N}$. Since K is algebraically closed, we have

$$g_n = \prod_{\alpha' \text{ root of } g_n} (X - \alpha'),$$

where each root $\alpha' \in K$ of g_n occurs as often as its multiplicity. This gives

$$\prod_{\alpha' \text{ root of } g_n} |\alpha - \alpha'| = |g_n(\alpha)| = |g_n(\alpha) - g(\alpha)| \le 2^{-n}$$

It follows that at least one root of g_n , call it α_n , is such that

$$|\alpha_n - \alpha| \le 2^{-n/r}.$$

Clearly $\alpha_n \to \alpha$ as $n \to \infty$. Each $\alpha_n \in K$, and since K' is the completion of K, therefore $\alpha \in K'$. Thus K' is algebraically closed.

3.2. T_n is a regular ring. We return to a familiar situation, namely the case where K is complete, and to avoid annoying trivialities, the valuation on K is non-trivial.

Proposition 3.2.1. Let K be complete. Let $\mathfrak{m} \in Max(T_n)$ and set $\mathfrak{n} = \mathfrak{m} \cap K[\zeta_1, \ldots, \zeta_n]$. Then

(a) $\mathfrak{m} = \mathfrak{n}T_n$;

(b) The natural map

$$K[\boldsymbol{\zeta}]/\mathfrak{n} \longrightarrow T_n/\mathfrak{m}$$

induced by the inclusion $K[\boldsymbol{\zeta}] \subset T_n$ is an isomorphim.

1

Proof. Recall that given $\boldsymbol{a} = (a_1, \ldots, a_n) \in \mathbb{B}^n(\overline{K})$ we have the "evaluation map"

$$\varphi_{\boldsymbol{a}}: T_n \longrightarrow K(a_1, \ldots, a_n)$$

given by $f \mapsto f(\boldsymbol{a})$. By [Lecture 7, Theorem 1.3.1], we know there exists $\boldsymbol{a} \in \mathbb{B}^n(\overline{K})$ such that

$$\mathfrak{m} = \ker \varphi_{\boldsymbol{a}}.$$

It follows that

$$\mathbf{n} = \Big\{ g \in K[\boldsymbol{\zeta}] \ \Big| \ g(\boldsymbol{a}) = 0 \Big\}.$$

Part (b) follows from the following commutative diagram, since the downward arrows are isomorphisms.

For (a) consider the commutative diagram with all the arrows the obvious ones.

The ideal \mathfrak{n} is closed in $K[\boldsymbol{\zeta}]$ since $\mathfrak{n} = \mathfrak{m} \cap K[\boldsymbol{\zeta}]$ and \mathfrak{m} is closed in T_n . The surjective downward arrow on the left is continuous with the residue norm on $K[\boldsymbol{\zeta}]/\mathfrak{n}$ which is the same as the residue norm on T_n/\mathfrak{m} from T_n via the identification of $K[\boldsymbol{\zeta}]/\mathfrak{n}$ with T_n/\mathfrak{m} . The composite $K[\boldsymbol{\zeta}] \subset T_n \twoheadrightarrow T_n/(\mathfrak{n}T_n)$ is also continuous. Since $K[\boldsymbol{\zeta}]/\mathfrak{n}$ is finite dimensional over K, the map labelled i is continuous from a well-known result (see [Lecture 11, Corollary 1.1.8]). Since $K[\boldsymbol{\zeta}]/\mathfrak{n}$ is a field, i is an inclusion. Now $K[\boldsymbol{\zeta}]$ is dense in T_n , and hence $i(K[\boldsymbol{\zeta}]/\mathfrak{n})$ is dense in $T_n/(\mathfrak{n}T_n)$. However $i(K[\boldsymbol{\zeta}]/\mathfrak{n})$ is complete under every K-norm (see [Lecture 11, Theorem 1.1.7]). Hence $i(K[\boldsymbol{\zeta}]/\mathfrak{n}) = T_n/(\mathfrak{n}T_n)$. Thus i is an isomorphism, whence $T_n/(\mathfrak{n}T_n)$ is a field, i.e. $\mathfrak{n}T_n$ is a maximal ideal. Since $\mathfrak{m} \supset \mathfrak{n}T_n$, it follows that $\mathfrak{m} = \mathfrak{n}T_n$. **Corollary 3.2.2.** There exist n polynomials, $p_i \in K[\zeta_1, \ldots, \zeta_i] \subset K[\zeta_1, \ldots, \zeta_n]$, with p_i monic in x_i such that

- (a) $\mathfrak{m} = (p_1, \dots, p_n)T_n$ and $\mathfrak{n} = (p_1, \dots, p_n)K[\boldsymbol{\zeta}]$. (b) If $\boldsymbol{a} \in \mathbb{B}^n(\overline{K})$ is an element such that $\mathfrak{m} = \ker \varphi_{\boldsymbol{a}}$, then

 $K[\zeta_1,\ldots,\zeta_i]/((p_1,\ldots,p_i)K[\zeta_1,\ldots,\zeta_i]) \cong K(a_1,\ldots,a_i)$ $(i=1,\ldots,n).$

Proof. It is well known and easy to show that $p_i \in K[\zeta_1, \ldots, \zeta_i]$ exist such that $\mathfrak{n} = (p_1, \ldots, p_n) K[\boldsymbol{\zeta}]$ and (b) is satisfied. Use Proposition 3.2.1 to reduce to this case.

Theorem 3.2.3. Let K be complete. Then $(T_n)_{\mathfrak{m}}$ is a regular local ring of Krull dimension n for every $\mathfrak{m} \in Max(T_n)$. In particular T_n is a regular ring, i.e. $(T_n)_{\mathfrak{p}}$ is a regular local ring for every prime ideal \mathfrak{p} of T_n .

Proof. Let $\mathfrak{m} \in Max(T_n)$ and $\mathfrak{n} = K[\boldsymbol{\zeta}] \cap \mathfrak{m}$. Pick p_1, \ldots, p_n as in Corollary 3.2.2. Let $\mathfrak{p}_i = (p_1, \ldots, p_i) K[\boldsymbol{\zeta}]$ and $\mathfrak{q}_i = (p_1, \ldots, p_i) T_n$. One checks that

$$T_n/\mathfrak{q}_i \xrightarrow{\sim} K(a_1,\ldots,a_i)\langle \zeta_{i+1},\ldots,\zeta_n\rangle.$$

Thus \mathfrak{q}_i is a prime ideal for each *i*. This means $ht(\mathfrak{m}) \geq n$. On the other hand $\dim T_n = n$ and so $\operatorname{ht}(\mathfrak{m}) \leq n$. Thus $\operatorname{ht}(\mathfrak{m}) = n$, i.e. $\dim (T_n)_{\mathfrak{m}} = n$. Since $\mathfrak{m}(T_n)_{\mathfrak{m}}$ is generated by n elements, $(T_n)_{\mathfrak{m}}$ is regular.

Remark 3.2.4. In the event $|\cdot|$ is trivial, then $T_n = K[\boldsymbol{\zeta}]$, and Proposition 3.2.1, Corollary 3.2.2 and Theorem 3.2.3 are obviously true.