
LECTURE 8

Date of Lecture: September 5, 2019

As usual, K is a complete non-archimedean field whose absolute value is non-

trivial and k = K̃, i.e., k = OK/mK .
T ∗n is the group of units in Tn.
For any ring A, Max(A) is the collection of maximal ideal of A.
As before N = {0, 1, 2, . . . ,m, . . . }. Rings mean commutative rings with 1.
The symbol � is for flagging a cautionary comment or a tricky argument. It

occurs in the margins and is Knuth’s version of Bourbaki’s “dangerous bend sym-
bol”.

1. Some basic results

1.1. These results could have been stated and proved earlier.

Lemma 1.1.1. T ∗n is open in Tn.

Proof. Let f ∈ T ∗n and let r = ‖f‖. Note that r > 0. By Theorem 1.1.2 of Lecture 5
we know that |f(0)| = r and ‖f − f(0)‖ < r. It follows (again by [Lecture 5,
Theorem 1.1.2]) that if g ∈ Tn is such that ‖g‖ < r, then f + g ∈ T ∗n . We have
shown that f +Br ⊂ T ∗n where Br = {x ∈ Tn | ‖x‖ < r}. �

Lemma 1.1.2. Let f ∈ Tn. If ‖f‖ = 1 then there exists c ∈ K, |c| = 1 such that
f + c is not a unit.

Proof. If |f(0)| = 1, take c = −f(0). If |f(0)| < 1, then take c = 1. In either case
f is a non unit by Theorem 1.1.2 in Lecture 5. �

Lemma 1.1.3. The Jacobson radical of Tn is zero. In other words⋂
Max(Tn)

m = 0.

Proof. Suppose we have a non-zero element f in every maximal ideal of Tn. Without
loss of generality, we may assume ‖f‖ = 1. Then we have c ∈ K, |c| = 1 such that
f + c is a non-unit, and hence f + c ∈ m for some m ∈ Max(Tn). Since f ∈ m this
forces c to lie in m contradicting the fact that c is a unit in K and hence in Tn. �

2. Other results

2.1. Tn/a is Jacobson. For a ring A, let j(A) denote its Jacobson radical. In
other words,

j(A) =
⋂

Max(A)

m.

A ring A is said to be Jacobson if every prime ideal is the intersection of the
maximal ideals containing it. Equivalently, A is Jacobson if the radical

√
a of any

ideal a is the intersection of maximal ideals. Clearly A is Jacobson if and only if
j(A/p) =

√
(0) for every prime ideal p of A.
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Theorem 2.1.1. Let a be an ideal in Tn. Then Tn/a is Jacobson.

Proof. Let p be prime ideal in A = Tn/a. We have to show that j(A/p) = 0. We
may as well replace A by A/p and show that j(A) = (0). Then A = Tn/q where
q is a prime ideal of Tn. By Noether normalisation we have a finite injective ring
homomorphism Td ↪→ Tn/q. Let n ∈ Max(Td) and κ = Td/n. Since every fibre
of SpecA → SpecTd is non-empty (the map is finite and dominant, and hence
surjective in the set-theoretic sense), therefore nA 6= A, i.e., A/(nA) 6= 0. Now
A/(nA) = A ⊗Td κ is finite over κ, and since κ is a field, this means A/(nA) is
zero-dimensional. It follows that every prime ideal of A/(nA) is maximal. Each of
these corresponds to a maximal ideal of A containing nA, whence every one of them
contracts to n. Thus there exists at least one m ∈ Max(A) such that m ∩ Td = n.
From this it is easy to see that j(A) ∩ Td = j(Td), whence from Lemma 1.1.3, we
get

(∗) j(A) ∩ Td = (0).

We have to show that j(A) = (0). Suppose it is not. Say 0 6= x ∈ j(A). Let r be
the minimum degree of any integral relation for x. In other words r is the minimum
positive integer such that we have an integral relation

xr + b1x
r−1 + · · ·+ br−1x+ br = 0

with b1, . . . , br ∈ Td. Then br ∈ j(A) ∩ Td. Using (∗), this means br = 0 violating
the minimality of r. �

2.2. All ideals in Tn are closed. Recall that every maximal ideal m in Tn is
closed (see [Lecture 7, Remark 1.3.2]). We will show that all (proper) ideals in Tn
are closed. Let a ⊂ Tn be an ideal. Note that by convention in commutative algebra
this means that a 6= Tn. Since T ∗n is open by Lemma 1.1.1, the closure a′ of a in Tn
is also an ideal, i.e. a′ 6= Tn. Since Tn is noetherian, we can find a finite number of
elements f1, . . . , fm ∈ a′ such that a′ = 〈f1, . . . , fm〉. We have a surjective map

T⊕mn
π−−−→→ a′

given by (g1, . . . , gm) 7−→
∑m
i=1 figi. Now T⊕mn is a K-Banach space with ‖g‖ =

max1≤i≤m ‖gi‖ where g = (g1, · · · , gm). Let M := maxi ‖fi‖. Then

‖π(g)‖ =
∥∥∥∑

i

gifi

∥∥∥ ≤ max
1≤i≤m

‖gi‖‖fi‖ ≤M‖g‖.

It follows that π is continuous. Let B1 be the unit ball in Tn centred at 0. Then Bm1
is open in T⊕mn . Since π is continuous and surjective, the Open Mapping Theorem
tells us that

U := π(B⊕m1 ) =

m∑
i=1

fiB1

is open in a′. Since a is dense in a′, if f ∈ a′ there exists g ∈ a such that f ∈ g+U .
Hence

a′ = a + U = a +

m∑
i=1

fiB1.

We therefore have elements h1, . . . , hm ∈ a, and φij ∈ B1, 1 ≤, i, j ≤ m such that

fi = hi +

m∑
j=1

φijfj , 1 ≤ i ≤ m.
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If f and h are the m× 1 column vectors determined by fi and hi, then

f = h + Φf

where Φ = (φij). This means that

(1− Φ)f = h.

Now φij ∈ B1, i.e. ‖φij‖ < 1 for every (i, j). Thus det(1 − Φ) = 1 + u where
‖u‖ < 1, i.e. det(1− Φ) is a unit in Tn. This means 1− Φ is invertible and

f = (1− Φ)−1h

whence f1, . . . , fm ∈ a. Thus a = a′. We have thus proven:

Theorem 2.2.1. All ideals in Tn are closed.

3. General remarks about the norm on Tn and norms on Tn/a

3.1. Orbits of Aut(K/K). Recall that given a point x ∈ Bn(K), say x =
(x1, . . . , xn), the evaluation map ϕx : Tn → K, f 7→ f(x) takes K(x1, . . . , xn),
by the completeness of K(x1, . . . , xn), and in fact (since xi = ϕx(ζi)), the im-
age of ϕx is K(x1, . . . , xn). Then mx := kerϕx is a maximal ideal of Tn. We
showed in Theorem 1.3.1 of Lecture 7 that the map Bn(K) → Max(Tn) given by
f 7→ mx, is surjective. The proof showed that if m ∈ Max(Tn), then the points
x in Bn(Tn) such that m = mx are all obtained in the following way. Choose
an embedding η : Tn/m ↪→ K. Such an embedding exists since Tn/m is a finite
extension of K by Noether normalisation. Let ϕη : Tn → K be the composite

Tn � Tn/m
η−→ K. Set xηi = ϕη(ζi), i = 1, . . . , n, and xη = (xη1 , . . . , x

η
n). Then

m = mxη . Each embedding η therefore gives us a point in the fibre of m under
the map Bn(K) → Max(Tn) and every point in the fibre is so obtained. Since the
number of embeddings η : Tn/m ↪→ K is fnite, the fibres are finite. There is an
obvious re-interpretation, namely:

The Galois group Aut(K/K) acts on Bn(K) in an obvious way, since it acts on
K in a norm preserving way, and the fibres of Bn(K)→ Max(Tn) are precisely the
orbits of this action.

One consequence of this observation is this: If mx = my for two points x and

y in Bn(K), then |f(x)| = |f(y)| for every f ∈ Tn. Indeed, f(x) and f(y) are
conjugates in K and hence their absolute values are the same.

3.2. Intrinsic definition of ‖f‖. We now change notations, and try to remove
references to Bn(K) in our definition of ‖ ‖ on Tn. We denote elements of Max(Tn)
by symbols of the form x and regard it as a point in a space of interest (namely
Max(Tn)). If we wish to remember such an element’s role as a maximal ideal in
Tn we write mx for it. We write K(x) for the residue field Tn/mx. As has been
observed a number of times now, K(x) is a finite extension of K and hence has
a unique absolute value on it extending the one on K. For f ∈ Tn, we write
f(x) for its image in K(x). From the maximum modulus principle (see [Lecture 4,
Theorem 3.2.1]) and the observations in Subsection 3.1 above, we see that

(3.2.1) ‖f‖ = max
x∈Max(Tn)

|f(x)| (f ∈ Tn).

The formula (3.2.1) is intrinsic and does not need ζ1, . . . , ζn and hence is invariant
under K-algebra automorphisms of Tn. Thus all K-algebra automorphisms of Tn
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are continuous and norm preserving. In particular, it gives another explanation
of why the map σα of Subsection 2.2 of Lecture 5 is a K-Banach algebra norm
preserving automophism (see Lemma 2.2.1 of Lecture 5).

Moreover, since every ideal a of Tn is closed, the K-algebra A = Tn/a has a
residue norm (See problem 4 of HW 3) on it which makes it a K-Banach space. This
norm is in fact a K-algebra norm but need not be multiplicative (i.e. ‖fg‖ ≤ ‖f‖‖g‖
and the two sides are not necessarily equal for f, g ∈ A). Some things to keep in
mind.

• If a is not a radical ideal then we have non-zero nilpotents in A = Tn/a.
Let ‖ ‖ be the residue norm on A. If f 6= 0 is a nilpotent in A, say f j = 0
for some j > 0, then ‖f‖j > 0 = ‖f j‖. Similarly, if A has zero divisors, say
fg = 0 with neither f nor g equal to zero, then ‖f‖‖g‖ > 0 = ‖fg‖. Hence
in this case we cannot expect relations of the form ‖fg‖ = ‖f‖‖g‖ to hold.

• If A is isomorphic to Tn/a and to Tm/b, then residue norm on A from these
two quotients is not necessarily the same. However, the two residue norms
on A are equivalent.

• If one defines ‖ ‖ on A = Tn/a by the formula in (3.2.1), replacing Tn in
the formula with A, then this may not define a K-norm. Indeed if A is
non-reduced, then every non-zero nilpotent f in A must have ‖f‖ = 0. In
fact the ‖ ‖ so defined is power multiplicative, i.e., ‖fn‖ = ‖f‖n for n ∈ N,

which means ‖f‖ = 0 for any f ∈
√

(0). However if A is reduced than the
formula in (3.2.1) (with Tn replaced by A) does provide a norm on A. In
this case this intrinsic norm is equivalent to the various residue norms on
A from different presentations.
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