LECTURE 8

Date of Lecture: September 5, 2019

As usual, K is a complete non-archimedean field whose absolute value is non-
trivial and k = K, i.e., k = O /my.

T is the group of units in 7,.

For any ring A, Max(A) is the collection of maximal ideal of A.

As before N = {0,1,2,...,m,...}. Rings mean commutative rings with 1.

The symbol g% is for flagging a cautionary comment or a tricky argument. It
occurs in the margins and is Knuth’s version of Bourbaki’s “dangerous bend sym-
bol”.

1. Some basic results
1.1. These results could have been stated and proved earlier.
Lemma 1.1.1. T} is open in T),.

Proof. Let f € Ty and let r = || f||. Note that » > 0. By Theorem 1.1.2 of Lecture 5
we know that |f(0)] = r and ||f — f(0)] < r. It follows (again by [Lecture5,
Theorem 1.1.2]) that if g € T, is such that ||g|| < r, then f+ g € T,;. We have
shown that f + B, C T)f where B, ={z € T, | ||z|| <r}. O

Lemma 1.1.2. Let f € T,,. If ||f|| = 1 then there exists ¢ € K, |c| =1 such that
f+cis not a unit.

Proof. If |f(0)| = 1, take ¢ = — f(0). If |f(0)| < 1, then take ¢ = 1. In either case
f is a non unit by Theorem 1.1.2 in Lecture 5. (]

Lemma 1.1.3. The Jacobson radical of T), is zero. In other words

ﬂ m=0.

Max(T,,)

Proof. Suppose we have a non-zero element f in every maximal ideal of T;,. Without
loss of generality, we may assume ||f|| = 1. Then we have ¢ € K, |c| = 1 such that
f + ¢ is a non-unit, and hence f + ¢ € m for some m € Max(T},). Since f € m this
forces c to lie in m contradicting the fact that c is a unit in K and hence in 7;,. 0O

2. Other results

2.1. T,,/a is Jacobson. For a ring A, let j(A) denote its Jacobson radical. In
other words,
= ] m

Max(A)
A ring A is said to be Jacobson if every prime ideal is the intersection of the
maximal ideals containing it. Equivalently, A is Jacobson if the radical v/a of any
ideal a is the intersection of maximal ideals. Clearly A is Jacobson if and only if
J(A/p) = \/7 for every prime ideal p of A.
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Theorem 2.1.1. Let a be an ideal in T,,. Then T, /a is Jacobson.

Proof. Let p be prime ideal in A = T, /a. We have to show that j(A/p) = 0. We
may as well replace A by A/p and show that j(A) = (0). Then A = T,,/q where
q is a prime ideal of T;,. By Noether normalisation we have a finite injective ring
homomorphism T, < T,,/q. Let n € Max(Ty) and x = T4/n. Since every fibre
of Spec A — SpecT, is non-empty (the map is finite and dominant, and hence
surjective in the set-theoretic sense), therefore nA # A, ie., A/(nA) # 0. Now
A/(nA) = A ®rq, K is finite over k, and since x is a field, this means A/(nA) is
zero-dimensional. It follows that every prime ideal of A/(nA) is maximal. Each of
these corresponds to a maximal ideal of A containing nA, whence every one of them
contracts to n. Thus there exists at least one m € Max(A) such that m N Ty = n.
From this it is easy to see that j(A) N Ty = j(Ty), whence from Lemma 1.1.3, we
get

(%) J(A) N Ty = (0).

We have to show that j(A) = (0). Suppose it is not. Say 0 # x € j(A). Let r be
the minimum degree of any integral relation for z. In other words r is the minimum
positive integer such that we have an integral relation

2"+ b b+ b, =0

with by,...,b. € Ty. Then b, € j(A) NTy. Using (x), this means b, = 0 violating
the minimality of 7. O

2.2. All ideals in T,, are closed. Recall that every maximal ideal m in T, is
closed (see [Lecture 7, Remark 1.3.2]). We will show that all (proper) ideals in T},
are closed. Let a C T;, be an ideal. Note that by convention in commutative algebra
this means that a # T,,. Since T.* is open by Lemma 1.1.1, the closure a’ of a in T},
is also an ideal, i.e. a’ # T;,. Since T,, is noetherian, we can find a finite number of
elements f1,..., fm € o/ such that o’ = (f1,..., fn). We have a surjective map

T9m T o
n
given by (g1,...,9m) — Yieq figi. Now T'P™ is a K-Banach space with ||g| =
maxi<i<m ||g:|| where g = (g1, -+, gm). Let M := max; || f;||. Then

(@)l = || 9::

It follows that 7 is continuous. Let B; be the unit ball in 7;, centred at 0. Then B{”
is open in TP™. Since 7 is continuous and surjective, the Open Mapping Theorem
tells us that

< ; il < .
< max g1l < Mg

U=n(Bf™) =Y fiB
i=1

is open in a’. Since a is dense in @, if f € a’ there exists g € a such that f € g+ U.
Hence
m
a = a+U:a+ZfiBl.
i=1
We therefore have elements hq, ...,y € a, and ¢;; € By, 1 <,7,5 < m such that

fi=hi+Y ¢l 1<i<m.
i=1
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If f and h are the m x 1 column vectors determined by f; and h;, then
f=h+of

where ® = (¢;;). This means that
(1-®)f =h.

Now ¢;; € By, ie. ||¢i;]| < 1 for every (¢,7). Thus det(l — ®) = 1 4+ u where
|lul| < 1,i.e. det(1l — ®) is a unit in T;,. This means 1 — ® is invertible and

f=0-o)'h

whence f1,..., fm € a. Thus a = a’. We have thus proven:
Theorem 2.2.1. All ideals in T, are closed.

3. General remarks about the norm on 7,, and norms on T,,/a

3.1. Orbits of Aut(K/K). Recall that given a point z € B"(K), say =
(x1,...,2,), the evaluation map ¢z: T, — K, f + f(x) takes K(x1,...,2,),
by the completeness of K(x1,...,2,), and in fact (since z; = ©z((;)), the im-
age of ¢, is K(x1,...,2,). Then my := kerp, is a maximal ideal of T,,. We
showed in Theorem 1.3.1 of Lecture7 that the map B"(K) — Max(T},) given by
f = my, is surjective. The proof showed that if m € Max(7},), then the points
z in B"(T,,) such that m = m, are all obtained in the following way. Choose
an embedding 7: T,,/m — K. Such an embedding exists since T, /m is a finite
extension of K by Noether normalisation. Let ¢": T, — K be the composite
T, - T,/m 5 K. Set ! = ¢"(¢;), i = 1,...,n, and " = (z7,...,27). Then
m = mgn. Each embedding 7 therefore gives us a point in the fibre of m under
the map B"(K) — Max(T},) and every point in the fibre is so obtained. Since the
number of embeddings 7: T,,/m — K is fnite, the fibres are finite. There is an
obvious re-interpretation, namely:

The Galois group Aut(K/K) acts on B"(K) in an obvious way, since it acts on
K in a norm preserving way, and the fibres of B"(K) — Max(T},) are precisely the
orbits of this action.

One consequence of this observation is this: If m; = my for two points « and

y in B"(K), then |f(x)| = |f(y)| for every f € T;,. Indeed, f(x) and f(y) are
conjugates in K and hence their absolute values are the same.

3.2. Intrinsic definition of ||f|. We now change notations, and try to remove
references to B"(K) in our definition of || || on T;,. We denote elements of Max(T},)
by symbols of the form @ and regard it as a point in a space of interest (namely
Max(T,)). If we wish to remember such an element’s role as a maximal ideal in
T, we write my, for it. We write K (x) for the residue field T;,/m,. As has been
observed a number of times now, K(x) is a finite extension of K and hence has
a unique absolute value on it extending the one on K. For f € T,, we write
f () for its image in K (x). From the maximum modulus principle (see [Lecture 4,
Theorem 3.2.1]) and the observations in Subsection 3.1 above, we see that

3.2.1 - T €T
(32.) £ = _max If@]  (feTi)
The formula (3.2.1) is intrinsic and does not need (i, ..., {, and hence is invariant

under K-algebra automorphisms of T;,. Thus all K-algebra automorphisms of T,
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are continuous and norm preserving. In particular, it gives another explanation
of why the map o, of Subsection 2.2 of Lecture5 is a K-Banach algebra norm
preserving automophism (see Lemma 2.2.1 of Lecture 5).

Moreover, since every ideal a of T, is closed, the K-algebra A = T, /a has a
residue norm (See problem 4 of HW 3) on it which makes it a K-Banach space. This
norm is in fact a K-algebra norm but need not be multiplicative (i.e. || fg| < [|f]lllgll
and the two sides are not necessarily equal for f,g € A). Some things to keep in
mind.

e If a is not a radical ideal then we have non-zero nilpotents in A = T,,/a.
Let || || be the residue norm on A. If f # 0 is a nilpotent in A, say f/ =0
for some j > 0, then || f|/ > 0 = ||f7]]. Similarly, if A has zero divisors, say
fg = 0 with neither f nor g equal to zero, then || f||||lg|l > 0 = || fg||- Hence
in this case we cannot expect relations of the form || fg|| = ||f|l|lg|l to hold.

e If A is isomorphic to T}, /a and to Ty, /b, then residue norm on A from these
two quotients is not necessarily the same. However, the two residue norms
on A are equivalent.

o If one defines || || on A = T,,/a by the formula in (3.2.1), replacing T, in
the formula with A, then this may not define a K-norm. Indeed if A is
non-reduced, then every non-zero nilpotent f in A must have ||f|| = 0. In
fact the || || so defined is power multiplicative, i.e., || f™| = ||f||"* for n € N,
which means || f|| = 0 for any f € 1/(0). However if A is reduced than the
formula in (3.2.1) (with T}, replaced by A) does provide a norm on A. In
this case this intrinsic norm is equivalent to the various residue norms on
A from different presentations.



