LECTURE 7

Date of Lecture: September 3, 2019

As usual, K is a complete non-archimedean field and $k = \widetilde{K}$, i.e., $k = \mathcal{O}_K / \mathfrak{m}_K$. T_n^* is the group of units in T_n .

For any ring A, Max(A) is the collection of maximal ideal of A.

As before $\mathbf{N} = \{0, 1, 2, \dots, m, \dots\}$. Rings mean commutative rings with 1.

The symbol P is for flagging a cautionary comment or a tricky argument. It occurs in the margins and is Knuth's version of Bourbaki's "dangerous bend symbol".

A Weierstrass polynomial in T_n is an element $w \in T_{n-1}[\zeta_n]$ which is monic and ||w|| = 1. A Weierstrass polynomial w is clearly ζ_n -distinguished of order equal to deg (w). The Weierstrass Preparation Theorem says that any ζ_n -distinguished element $g \in T_n$ is of the form g = ew where e is a unit in T_n , and w is Weierstrass polynomial. Moreover, the representation g = ew is unique.

1. Consequences of the Weierstrass theorems

1.1. A basic lemma. We begin with the following important lemma.

Lemma 1.1.1. Let f be a non-zero element in T_n . Then there is a finite monomorphism

$$T_{n-1} \hookrightarrow T_n/(f).$$

Proof. By Lemma 2.2.2 of Lecture 5, we have a norm preserving K-automorphism $\sigma: T_n \to T_n$ such that $g = \sigma(f)$ is ζ_n distinguished, say of order s. Then

$$T_n/(f) \xrightarrow{\sim} T_n/(g).$$

By the Weierstrass Division Theorem, if $h \in T_n$, there is a unique polynomial $r_h \in T_{n-1}[\zeta_n]$, deg $(r_h) < s$ such that $h \equiv r_h \pmod{g}$. It follows that the natural composition of maps of rings $T_{n-1} \hookrightarrow T_n \twoheadrightarrow T_n/(g)$ is a finite map and as a T_{n-1} -module $T_n/(g)$ is free of rank s. For clarity, if $r_h = \sum_{i=0}^{s-1} g_i \zeta_n^i$, with $g_i \in T_{n-1}$, then the T_{n-1} -module isomorphism $T_n/(g) \xrightarrow{\sim} T_{n-1}^{\oplus s}$ is $h+(g) \mapsto (g_0, g_1, \ldots, g_{s-1})$. Since $T_n/(g) \xrightarrow{\sim} T_n/(f)$, we are done.

Remark 1.1.2. The monomorphism $T_{n-1} \hookrightarrow T_n/(f)$ is not (necessarily) the composite of the standard inclusion $T_{n-1} \subset T_n$ followed by the canonical map $T_n \to T_n/(f)$ but is instead the composite $T_{n-1} \subset T_n \longrightarrow T_n \to T_n/(f)$ where the inclusion on the left is the standard one, the surjective map on the right the canonical one, and the automorphism on T_n the inverse of an automorphism which sends f to a ζ_n -distinguished element via Lemma 2.2.2 of Lecture 5. If f is already ζ_n -distinguished then one can take this automorphism to be the identity map.

1.2. First properties of T_n . In this sub-section we show that T_n is a noetherian UFD of Krull dimension n. In particular it is normal. We also show that there is a natural surjective $\mathbb{B}^n(\overline{K}) \to \operatorname{Max}(T_n)$.

Theorem 1.2.1. T_n is noetherian with finite Krull dimension. Its Krull dimension is n.

Proof. We will first prove that T_n is noetherian. Now, $T_0 = K$ is noetherian. Assume n > 0 and T_{n-1} is noetherian. Let I be a anon-zero ideal in T_n . Pick $0 \neq f \in I$ and let \overline{I} be its image in $T_n/(f)$. By Lemma 1.1.1, we have a finite monomorphism of rings $T_{n-1} \hookrightarrow T_n/(f)$. Since T_{n-1} is noetherian by our induction hypothesis, $T_n/(f)$ is a noetherian T_{n-1} module, and therefore so is \overline{I} . If $g_1 + (f), \ldots, g_m + (f)$ are generators of \overline{I} as a T_{n-1} -module, then they are generators of \overline{I} as a $T_n/(f)$ ideal. It follows that I is generated by g_1, \ldots, g_m and f. Thus T_n is noetherian.

For a ring A, let dim A denote its Krull dimension, which could well be ∞ . Note that dim $T_0 = 0$. Let n > 1 and assume that dim $T_{n-1} = n - 1$. Suppose

$$(0) \subsetneq \mathfrak{p}_1 \subsetneq \ldots \subsetneq \mathfrak{p}_m$$

is an increasing chain of prime ideals in T_n with $m \in \mathbf{N}$. We claim that $m \leq n$. Indeed let $0 \neq f \in \mathfrak{p}_1$ and for $i = 0, \ldots, m-1$ set $\mathfrak{q}_i = \mathfrak{p}_{i+1}$. Then

$$\mathfrak{q}_0 \subsetneq \mathfrak{q}_1 \subsetneq \ldots \subsetneq \mathfrak{q}_{m-1}$$

is an increasing chain of prime ideals in $T_n/(f)$ of length m-1. Since we have a finite monomorphism $T_{n-1} \hookrightarrow T_n/(f)$, and $\dim T_{n-1} = n-1$, the Krull dimension of $T_n/(f)$ is also n-1. It follows that $m-1 \le n-1$, i.e. $m \le n$. Thus $\dim T_n \le n$. The existence of the chain of primes ideals $(0) \subsetneq (\zeta_1) \subsetneq \ldots \subsetneq (\zeta_n)$ shows that $\dim T_n = n$.

Theorem 1.2.2. T_n is a UFD and hence is normal.

Remark: If A is a UFD then it must be normal. Indeed, let Q = Q(A) be its field of fractions and suppose $x \in Q$ is integral over A, say

$$x^{r} + a_{r-1}x^{r-1} + a_{r-2}x^{r-2} + \dots + a_{1}x + a_{0} = 0$$

with r > 0. Write $x = \alpha/\beta$ with $\alpha, \beta \in A, \beta \neq 0$, and $(\alpha, \beta) = 1$. Clearing denominators in the above integral relation, we get

$$\alpha^{r} = -(a_{r-1}\alpha^{r-1}\beta + a_{r-2}\alpha^{r-2}\beta^{2} + \dots + a_{1}\alpha\beta^{r-1} + a_{0}\beta^{r}).$$

In other words $\alpha^r = \beta a$ for some $a \in A$. Since $(\alpha, \beta) = 1$ this forces β to be a unit in A. Thus $x = \alpha/\beta \in A$.

Proof of Theorem. By way of induction, we assume T_{n-1} is a UFD. By Gauss's lemma, so is $T_{n-1}[\zeta_n]$

Let $f \in T_n$. We have to factor f into irreducible factors. By Lemma 2.2.2 of Lecture 5 we may assume f is ζ_n -distinguished, in fact a Weierstrass poynomial. Thus $f \in T_{n-1}[\zeta_n]$, is monic, and ||f|| = 1. Using the fact that $T_{n-1}[\zeta_n]$ is a UFD, we can write $f = \pi_1 \dots \pi_m$ where $\pi_i \in T_{n-1}[\zeta_n]$ are prime in $T_{n-1}[\zeta_n]$. Since fis monic, we can re-arrange matters (by multiplying each π_i by a unit from T_{n-1}) so that each π_i is monic. It follows that $||\pi_i|| \ge 1$ for each i. Since ||f|| = 1, we have $||\pi_i|| = 1$ for each i. Thus each π_i is a Weierstrass polynomial, whence ζ_n -distingushed. It remains to show that each π_i is prime in T_n , in other words to show that $T_n/(\pi_i)$ is an integral domain. To see this note that the canonical map

$$T_{n-1}[\zeta_n]/(\pi_i) \longrightarrow T_n/(\pi_i),$$

induced by the inclusion $T_{n-1}[\zeta_n] \subset T_n$, is an isomorphism. Indeed, if $s = \deg_{\zeta_n}(\pi_i)$, then both sides are free T_{n-1} -modules of rank s freely generated by the residue classes of $\zeta_n, \ldots, \zeta_n^{s-1}$, the left side because of Euclid Division and the right because of Weierstrass Division. The ring $T_{n-1}[\zeta_n]/(\pi_i)$ is an integral domain since π_i is prime in $T_{n-1}[\zeta_n]$.

Remark 1.2.3. In fact T_n is a regular ring. We will see this later in the course (hopefully).

Theorem 1.2.4. (Noether normalisation) Let \mathfrak{a} be an ideal of T_n and $d = \dim T_n/\mathfrak{a}$. Then there exists a K-algebra finite monomorphism $T_d \hookrightarrow T_n/\mathfrak{a}$.

Proof. The theorem is clearly true for n = 0. Let n > 0 and suppose the theorem is true for T_{n-1} . If $\mathfrak{a} = 0$ then the statement is clearly true with d = n. So suppose we have a non-zero element f in \mathfrak{a} . By Lemma 1.1.1 we have a finite injective ring homomorphism $T_{n-1} \hookrightarrow T_n/(f)$. Let \mathfrak{a}_1 be the kernel of the composite $T_{n-1} \hookrightarrow T_n/(f) \twoheadrightarrow T_n/\mathfrak{a}$. The following commutative diagram might help:

The twoheaded arrows of the form \rightarrow denote (as always) surjective maps. These are the two southeast pointing arrows in the above diagram. A word of caution: the northeast pointing monomorphism on the left is *not* (necessarily) the composite $T_{n-1} \subset T_n \twoheadrightarrow T_n/(f)$ where the inclusion on the left is the standard one. See Remark 1.1.2 for clarification.

Since composite of the northeast pointing arrow from T_{n-1} followed by the southeast arrow from $T_n/(f)$ is finite, so is the composite of the southeast followed by the northeast pointing arrow in the lower half of the diagram. The inclusion $T_{n-1}/\mathfrak{a}_1 \hookrightarrow T_n/\mathfrak{a}$ is therefore a finite monomorphism of K-algebras.¹ By our induction hypothesis, the theorem is true for T_{n-1} , whence we have a finite monomorphism $T_d \hookrightarrow T_{n-1}/\mathfrak{a}_1$. Composing, we get a finite monomorphism

$$T_d \hookrightarrow T_n/\mathfrak{a}$$

It is clear (from the various going up and going down theorems) that $\dim T_n/\mathfrak{a} = d$.

We then have the following important corollary

Corollary 1.2.5. Let \mathfrak{m} be a maximal ideal of T_n . Then the field extension

 $K \to T_n/\mathfrak{m}$

(given by the composite $K \subset T_n \twoheadrightarrow T_n/\mathfrak{m}$) is finite.

Proof. Since the Krull dimension of T_n/\mathfrak{m} is zero, and since $T_0 = K$, we are done by Noether normalisation.

¹Indeed any generating set for T_n/\mathfrak{a} as a T_{n-1} -module is also a generating set for T_n/\mathfrak{a} as a T_{n-1}/\mathfrak{a}_1 -module since the map $T_{n-1} \twoheadrightarrow T_{n-1}/\mathfrak{a}_1$ is surjective.

1.3. The maximal spectrum of T_n . Let $\boldsymbol{x} = (x_1, \ldots, x_n) \in \mathbb{B}^n(\overline{K})$ and let

$$\mathfrak{m}_{\boldsymbol{x}} = \{ f \in \mathbb{B}^n(\overline{K}) \ | \ f(\boldsymbol{x}) = 0 \}$$

If $f = \sum_{\nu} c_{\nu} \zeta^{\nu} \in T_n$, then $f(\boldsymbol{x}) = \sum_{\nu} c_{\nu} \boldsymbol{x}^{\nu}$ lies in $K(x_1, \ldots, x_n)$ since $K(x_1, \ldots, x_n)$ is complete. This gives us the evaluation map at \boldsymbol{x}

$$\varphi_{\boldsymbol{x}} \colon T_n \longrightarrow K(x_1, \dots, x_n), \qquad f \longmapsto f(\boldsymbol{x}).$$

Clearly

$$\mathfrak{m}_{\boldsymbol{x}} = \ker \varphi_{\boldsymbol{x}}.$$

Clearly $\mathfrak{m}_{\boldsymbol{x}} \in \operatorname{Max}(T_n)$ since $T_n/\mathfrak{m}_{\boldsymbol{x}} \cong K(x_1,\ldots,x_n)$.

Theorem 1.3.1. The map

$$\mathbb{B}^n(\overline{K}) \longrightarrow \operatorname{Max}(T_n), \qquad \boldsymbol{x} \longmapsto \mathfrak{m}_{\boldsymbol{x}}$$

is surjective.

Proof. Let $\mathfrak{m} \in Max(T_n)$. Let $L = T_n/\mathfrak{m}$. By Corollary 1.2.5, L is a finite extension of K and hence there is an embedding $L \hookrightarrow \overline{K}$. Let

 $\varphi \colon T_n \to \overline{K}$

be the induced map, i.e., φ is the composite $T_n \twoheadrightarrow L \hookrightarrow \overline{K}$. We claim that

$$(*) \qquad \qquad |\varphi(f)| \le \|f\| \qquad (f \in T_n)$$

This will prove that φ is continuous. Moreover, setting $x_i = \varphi(\zeta_i), i = 1, ..., n$, the inequality (*) shows that $|x_i| \leq ||\zeta_i|| = 1$, and hence that $\boldsymbol{x} = (x_1, ..., x_n) \in \mathbb{B}^n(\overline{K})$. Since φ is continuous (assuming (*)), $\varphi = \varphi_{\boldsymbol{x}}$, and so ker $\varphi = \ker \varphi_{\boldsymbol{x}}$, i.e. $\mathfrak{m} = \mathfrak{m}_{\boldsymbol{x}}$.

It remains to prove (*). Suppose (*) is not true. There is an $f \in T_n$ such that $|\varphi(f)| > ||f||$. This means $f \neq 0$, and we may assume ||f|| = 1. Let $\alpha = \varphi(f)$. Note that

 $|\alpha| > 1.$

Let

$$\theta = X^{r} + c_1 X^{r-1} + \dots + c_{r-1} X + c_r \in K[X]$$

be the minimal polynomial of α over K, and $\alpha_1, \ldots, \alpha_r$ the roots of θ in \overline{K} . Since K is not necessarily separable, the roots are not necessarily distinct. Since the fields $K(\alpha_i)$ are canonically isomorphic to each other, and since the extensions of the norm from K to $K[X]/(\theta)$ is unique, we have

$$|\alpha_i| = |\alpha| \qquad (i = 1, \dots, r).$$

Now,

$$\theta = \prod_{i=1}^{\prime} (X - \alpha_i).$$

Thus $c_r = (-1)^r \alpha_1 \dots \alpha_r$. It follows that

$$|c_r| = |\alpha|^r > 1$$

Since $c_i = (-1)^i \sigma_i(\alpha_1, \ldots, \alpha_r)$, $i = 1, \ldots, r$, where σ_i is the *i*th elementary symmetric polynomial in r variables, we have

(**)
$$|c_i| \le |\alpha|^i < |\alpha|^r = |c_r| \quad (1 \le i < r).$$

We have used the fact that $|\alpha| > 1$ in establishing (**). Thus we have

$$\theta(f) := c_r + c_{r-1}f + \dots + c_1f^{r-1} + f^r = c_r\left(1 + \sum_{i=1}^r b_{r-i}f^r\right)$$

where $b_0 = c_r^{-1}$ and $b_i = c_i c_r^{-1}$ for $i = 1, \dots, r-1$. Setting

$$g = -\sum_{i=1}^{r} b_{r-i} f^i,$$

we see via (**) that ||g|| < 1. Thus 1 - g is a unit in T_n with inverse $\sum_{m \in \mathbb{N}} g^m$. This means $\theta(f) = c_r(1 - g)$ is a unit in T_n , and hence $\varphi(\theta(f))$ is a unit in \overline{K} . However,

$$\varphi(\theta(f))=\theta(\varphi(f))=\theta(\alpha)=0,$$

giving a contradiction. Thus $|\varphi(f)| \leq ||f||$ for every $f \in T_n$.

Remark 1.3.2. Since φ_x is continuous therefore \mathfrak{m}_x is closed in T_n . And by the theorem, this means every maximal ideal of T_n is closed. In fact every ideal in T_n is closed as we will see in a future (next?) lecture.