LECTURE 7

Date of Lecture: September 3, 2019

As usual, K is a complete non-archimedean field and k = IN(, ie, k= 0Ok/mg.

T is the group of units in 7,.

For any ring A, Max(A) is the collection of maximal ideal of A.

As before N = {0,1,2,...,m,...}. Rings mean commutative rings with 1.

The symbol g% is for flagging a cautionary comment or a tricky argument. It
occurs in the margins and is Knuth’s version of Bourbaki’s “dangerous bend sym-
bol”.

A Weierstrass polynomial in T, is an element w € T,,_1[(,] which is monic and
lw]| = 1. A Weierstrass polynomial w is clearly (,-distinguished of order equal
to deg (w). The Weierstrass Preparation Theorem says that any (,-distinguished
element g € T;, is of the form g = ew where e is a unit in T},, and w is Weierstrass
polynomial. Moreover, the representation g = ew is unique.

1. Consequences of the Weierstrass theorems
1.1. A basic lemma. We begin with the following important lemma.

Lemma 1.1.1. Let f be a non-zero element in T,,. Then there is a finite monomor-
phism
Too1—=Tn/(f)-

Proof. By Lemma 2.2.2 of Lecture 5, we have a norm preserving K-automorphism
o: T, — T, such that g = o(f) is (, distinguished, say of order s. Then

T./(f) = Tn/(9)-

By the Weierstrass Division Theorem, if h € T,,, there is a unique polynomial
rh € Tn-1[Cn], deg (rp) < s such that h = ry (mod g). It follows that the natural
composition of maps of rings T,,_1 — T,, = T,,/(g) is a finite map and as a T;,_1-
module T, /(g) is free of rank s. For clarity, if r, = Zf;& gk, with g; € Ty,_1,
then the T}, ;-module isomorphism T}, /(g) = T.2% is h+(g) + (9o, g1, - -+, gs—1)-
Since T,,/(g9) = T,,/(f), we are done. O

Remark 1.1.2. The monomorphism 7,1 < T,/(f) is not (necessarily) the
composite of the standard inclusion 7,,_; C T, followed by the canonical map
T, — T,/(f) but is instead the composite T,,_1 C T,, = T,, — T,,/(f) where
the inclusion on the left is the standard one, the surjective map on the right the
canonical one, and the automorphism on T;, the inverse of an automorphism which
sends f to a (,-distinguished element via Lemma 2.2.2 of Lecture 5. If f is already
(n-distinguished then one can take this automorphism to be the identity map.

1.2. First properties of T;,. In this sub-section we show that T}, is a noetherian
UFD of Krull dimension n. In particular it is normal. We also show that there is

a natural surjective B"(K) — Max(T,,).
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Theorem 1.2.1. T;, is noetherian with finite Krull dimension. Its Krull dimension
8 n.

Proof. We will first prove that 7, is noetherian. Now, Ty = K is noetherian.
Assume n > 0 and T,_; is noetherian. Let I be a anon-zero ideal in T,,. Pick
0 # f € I and let I be its image in 7,,/(f). By Lemma 1.1.1, we have a finite
monomorphism of rings T,,—1 < T}, /(f). Since T;,_1 is noetherian by our induction
hypothesis, T}, /(f) is a noetherian T,,_; module, and therefore so is I. If g; +
(f),---,gm + (f) are generators of I as a Tj,_1-module, then they are generators of
I as aT,/(f) ideal. It follows that I is generated by g1, ..., gm and f. Thus T, is
noetherian.

For a ring A, let dim A denote its Krull dimension, which could well be co. Note
that dim 7Ty = 0. Let n > 1 and assume that dim7;,,_; = n — 1. Suppose

0SSP S . Chm

is an increasing chain of prime ideals in T}, with m € N. We claim that m < n.
Indeed let 0 # f € p; and for ¢ =0,...,m — 1 set q; = p;+1. Then

QoSS S ma

is an increasing chain of prime ideals in T}, /(f) of length m — 1. Since we have a
finite monomorphism T,,_1 — T,,/(f), and dimT;,_y = n — 1, the Krull dimension
of T,,/(f) is also n — 1. Tt follows that m — 1 < n—1, i.e. m < n. Thus dimT,, < n.
The existence of the chain of primes ideals (0) € (¢1) € ... € (¢,) shows that

=

dim7T,, = n. O
Theorem 1.2.2. T, is a UFD and hence is normal.

Remark: If A is a UFD then it must be normal. Indeed, let Q = Q(A) be its field
of fractions and suppose x € @Q is integral over A, say

2" H a1 Hap 0" 2+ daz+ag=0

with » > 0. Write z = «/8 with o, € A, 8 # 0, and (o,3) = 1. Clearing
denominators in the above integral relation, we get

o = *(ar—lofilﬂ + ar—QO/‘izﬂz + -+ alaﬂril + aOBT)'

In other words a” = fa for some a € A. Since (a, §) = 1 this forces 5 to be a unit
in A. Thus z = o/ € A.

Proof of Theorem. By way of induction, we assume 7,1 is a UFD. By Gauss’s
lemma, so is Ty,—1[(x)

Let f € T,,. We have to factor f into irreducible factors. By Lemma 2.2.2 of
Lecture5 we may assume [ is (,-distinguished, in fact a Weierstrass poynomial.
Thus f € T,,—1[Cs], is monic, and || f|| = 1. Using the fact that T,,_1[(,] is a UFD,
we can write f = my...m, where m; € T,,_1[(,] are prime in T),_1[(,]. Since f
is monic, we can re-arrange matters (by multiplying each 7; by a unit from T,,_1)
so that each m; is monic. It follows that ||m;|] > 1 for each i. Since ||f| = 1,
we have ||m;|| = 1 for each i. Thus each m; is a Weierstrass polynomial, whence
(n-distingushed. It remains to show that each m; is prime in 7T;,, in other words to
show that T,,/(m;) is an integral domain. To see this note that the canonical map

Tna[Cal/(mi) — T/ (mi),
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induced by the inclusion 75,1 [(,] C T5,, is an isomorphism. Indeed, if s = deg, (m;),
then both sides are free T,,_;-modules of rank s freely generated by the residue

classes of (p, ..., (371, the left side because of Euclid Division and the right because
of Weierstrass Division. The ring T;,—1[(,]/(m;) is an integral domain since m; is
prime in Ty, —1[Cy]- O

Remark 1.2.3. In fact T, is a regular ring. We will see this later in the course
(hopefully).

Theorem 1.2.4. (Noether normalisation) Let a be an ideal of T,, and d = dim T, /a.
Then there exists a K-algebra finite monomorphism Tq — T, /a.

Proof. The theorem is clearly true for n = 0. Let n > 0 and suppose the theorem
is true for T,_1. If a = 0 then the statement is clearly true with d = n. So
suppose we have a non-zero element f in a. By Lemma 1.1.1 we have a finite
injective ring homomorphsim 7,1 < T,,/(f). Let a; be the kernel of the composite
Tn—1—=T,/(f) = T,/a. The following commutative diagram might help:

T/
T, /
\

Trn-1/m

The twoheaded arrows of the form — denote (as always) surjective maps. These
are the two southeast pointing arrows in the above diagram. A word of caution:
the northeast pointing monomorphism on the left is not (necessarily) the composite
Tn-1 C T, - T,/(f) where the inclusion on the left is the standard one. See
Remark 1.1.2 for clarification.

Since composite of the northeast pointing arrow from 7,,_; followed by the
southeast arrow from T,,/(f) is finite, so is the composite of the southeast fol-
lowed by the northeast pointing arrow in the lower half of the diagram. The in-
clusion T},_1/a; = Ty /a is therefore a finite monomorphism of K-algebras.! By
our induction hypothesis, the theorem is true for T, _;, whence we have a finite
monomorphsim Ty < T),,_1/a;. Composing, we get a finite monomorphism

Ty — Tn/a.

It is clear (from the various going up and going down theorems) that dim 7}, /a =
d. |

We then have the following important corollary

(f)
\
T,/a
/

Corollary 1.2.5. Let m be a mazimal ideal of T,,. Then the field extension
K —T,/m
(given by the composite K C T,, — T,,/m) is finite.
Proof. Since the Krull dimension of T;,/m is zero, and since Ty = K, we are done

by Noether normalisation. O

Hndeed any generating set for Tp,/a as a Ty, —1-module is also a generating set for 75, /a as a
T,,—1/a1-module since the map Tp,—1 — Tp,—1/a1 is surjective.
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1.3. The maximal spectrum of T,,. Let = (x1,...,2,) € B*(K) and let

me = {f € B*(K) | f(z) =0}

Iff=>,cC” €T,, then f(x) =), cox” liesin K(x1,...,x,) since K(z1,...,2,)
is complete. This gives us the evaluation map at x

Oz Tn — K(x1,...,2,), fr— f(x).

Clearly
my, = ker ¢ .
Clearly m, € Max(T,,) since Tp,/mg = K(21,...,2y,).
Theorem 1.3.1. The map
B"(K) — Max(T},,), T — My
18 surjective.

Proof. Let m € Max(T;,). Let L = T,,/m. By Corollary 1.2.5, L is a finite extension
of K and hence there is an embedding L — K. Let

o: T, -+ K
be the induced map, i.e., ¢ is the composite T, - L — K. We claim that
(*) le(OI<fIl - (f € Th).
This will prove that ¢ is continuous. Moreover, setting z; = ¢((;), i = 1,...,n, the

inequality (*) shows that |x;| < ||| = 1, and hence that = (21, ...,z,) € B"(K).
Since ¢ is continuous (assuming (*)), ¢ = @, and so ker p = ker g, i.e. m = my,.

It remains to prove (x). Suppose (*) is not true. There is an f € T, such that
lo(f)| > |IfIl- This means f # 0, and we may assume || f|| = 1. Let a = ¢(f). Note
that

la| > 1.
Let
0=X"+e X" 4t 1 X+ € K[X]

be the minimal polynomial of o over K, and aq, ..., a, the roots of § in K. Since
K is not necessarily separable, the roots are not necessarily distinct. Since the
fields K («;) are canonically isomorphic to each other, and since the extensions of
the norm from K to K[X]/(f) is unique, we have

|| = | (i=1,...,7).

Now,
T

0= H(X - Oéi).

i=1
Thus ¢, = (—1)"ay ... a,. It follows that
ler| = la|” > 1.
Since ¢; = (—=1)ioy(ay,..., ), i = 1,...,7, where o; is the i*® elementary sym-
metric polynomial in r variables, we have
(4) leil < Jal < Jal” = el (1 << 7).
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We have used the fact that |a] > 1 in establishing (**). Thus we have

0(f):=cr+erif+-+af T fr= cr<1 n ZbH-fT)
=1

Land b; = ¢ie; 7t for i =1,...,r — 1. Setting

g=- Zbrfifia
=1

we see via (+*) that ||g|| < 1. Thus 1 — g is a unit in 7}, with inverse > g™
This means 6(f) = c.(1 — g) is a unit in T},, and hence ©((f)) is a unit in K.
However,

where by = ¢

e(0(f)) = 0(p(f)) = 0(a) = 0,
giving a contradiction. Thus |p(f)| < ||f]] for every f € T,,. O
Remark 1.3.2. Since ¢, is continuous therefore my is closed in T;,. And by the

theorem, this means every maximal ideal of T;, is closed. In fact every ideal in T,
is closed as we will see in a future (next?) lecture.



