
LECTURE 7

Date of Lecture: September 3, 2019

As usual, K is a complete non-archimedean field and k = K̃, i.e., k = OK/mK .
T ∗n is the group of units in Tn.
For any ring A, Max(A) is the collection of maximal ideal of A.
As before N = {0, 1, 2, . . . ,m, . . . }. Rings mean commutative rings with 1.
The symbol � is for flagging a cautionary comment or a tricky argument. It

occurs in the margins and is Knuth’s version of Bourbaki’s “dangerous bend sym-
bol”.

A Weierstrass polynomial in Tn is an element w ∈ Tn−1[ζn] which is monic and
‖w‖ = 1. A Weierstrass polynomial w is clearly ζn-distinguished of order equal
to deg (w). The Weierstrass Preparation Theorem says that any ζn-distinguished
element g ∈ Tn is of the form g = ew where e is a unit in Tn, and w is Weierstrass
polynomial. Moreover, the representation g = ew is unique.

1. Consequences of the Weierstrass theorems

1.1. A basic lemma. We begin with the following important lemma.

Lemma 1.1.1. Let f be a non-zero element in Tn. Then there is a finite monomor-
phism

Tn−1 ↪→ Tn/(f).

Proof. By Lemma 2.2.2 of Lecture 5, we have a norm preserving K-automorphism
σ : Tn → Tn such that g = σ(f) is ζn distinguished, say of order s. Then

Tn/(f) −→∼ Tn/(g).

By the Weierstrass Division Theorem, if h ∈ Tn, there is a unique polynomial
rh ∈ Tn−1[ζn], deg (rh) < s such that h ≡ rh (mod g). It follows that the natural
composition of maps of rings Tn−1 ↪→ Tn � Tn/(g) is a finite map and as a Tn−1-

module Tn/(g) is free of rank s. For clarity, if rh =
∑s−1
i=0 giζ

i
n, with gi ∈ Tn−1,

then the Tn−1-module isomorphism Tn/(g) −→∼ T⊕sn−1 is h+(g) 7→ (g0, g1, . . . , gs−1).
Since Tn/(g) −→∼ Tn/(f), we are done. �

Remark 1.1.2. The monomorphism Tn−1 ↪→ Tn/(f) is not (necessarily) the�

composite of the standard inclusion Tn−1 ⊂ Tn followed by the canonical map
Tn � Tn/(f) but is instead the composite Tn−1 ⊂ Tn −→∼ Tn � Tn/(f) where
the inclusion on the left is the standard one, the surjective map on the right the
canonical one, and the automorphism on Tn the inverse of an automorphism which
sends f to a ζn-distinguished element via Lemma 2.2.2 of Lecture 5. If f is already
ζn-distinguished then one can take this automorphism to be the identity map.

1.2. First properties of Tn. In this sub-section we show that Tn is a noetherian
UFD of Krull dimension n. In particular it is normal. We also show that there is
a natural surjective Bn(K)→ Max(Tn).
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Theorem 1.2.1. Tn is noetherian with finite Krull dimension. Its Krull dimension
is n.

Proof. We will first prove that Tn is noetherian. Now, T0 = K is noetherian.
Assume n > 0 and Tn−1 is noetherian. Let I be a anon-zero ideal in Tn. Pick
0 6= f ∈ I and let I be its image in Tn/(f). By Lemma 1.1.1, we have a finite
monomorphism of rings Tn−1 ↪→ Tn/(f). Since Tn−1 is noetherian by our induction
hypothesis, Tn/(f) is a noetherian Tn−1 module, and therefore so is I. If g1 +
(f), . . . , gm + (f) are generators of I as a Tn−1-module, then they are generators of
I as a Tn/(f) ideal. It follows that I is generated by g1, . . . , gm and f . Thus Tn is
noetherian.

For a ring A, let dimA denote its Krull dimension, which could well be∞. Note
that dimT0 = 0. Let n > 1 and assume that dimTn−1 = n− 1. Suppose

(0) ( p1 ( . . . ( pm

is an increasing chain of prime ideals in Tn with m ∈ N. We claim that m ≤ n.
Indeed let 0 6= f ∈ p1 and for i = 0, . . . ,m− 1 set qi = pi+1. Then

q0 ( q1 ( . . . ( qm−1

is an increasing chain of prime ideals in Tn/(f) of length m − 1. Since we have a
finite monomorphism Tn−1 ↪→ Tn/(f), and dimTn−1 = n− 1, the Krull dimension
of Tn/(f) is also n− 1. It follows that m− 1 ≤ n− 1, i.e. m ≤ n. Thus dimTn ≤ n.
The existence of the chain of primes ideals (0) ( (ζ1) ( . . . ( (ζn) shows that
dimTn = n. �

Theorem 1.2.2. Tn is a UFD and hence is normal.

Remark : If A is a UFD then it must be normal. Indeed, let Q = Q(A) be its field
of fractions and suppose x ∈ Q is integral over A, say

xr + ar−1x
r−1 + ar−2x

r−2 + · · ·+ a1x+ a0 = 0

with r > 0. Write x = α/β with α, β ∈ A, β 6= 0, and (α, β) = 1. Clearing
denominators in the above integral relation, we get

αr = −(ar−1α
r−1β + ar−2α

r−2β2 + · · ·+ a1αβ
r−1 + a0β

r).

In other words αr = βa for some a ∈ A. Since (α, β) = 1 this forces β to be a unit
in A. Thus x = α/β ∈ A.

Proof of Theorem. By way of induction, we assume Tn−1 is a UFD. By Gauss’s
lemma, so is Tn−1[ζn]

Let f ∈ Tn. We have to factor f into irreducible factors. By Lemma 2.2.2 of
Lecture 5 we may assume f is ζn-distinguished, in fact a Weierstrass poynomial.
Thus f ∈ Tn−1[ζn], is monic, and ‖f‖ = 1. Using the fact that Tn−1[ζn] is a UFD,
we can write f = π1 . . . πm where πi ∈ Tn−1[ζn] are prime in Tn−1[ζn]. Since f
is monic, we can re-arrange matters (by multiplying each πi by a unit from Tn−1)
so that each πi is monic. It follows that ‖πi‖ ≥ 1 for each i. Since ‖f‖ = 1,
we have ‖πi‖ = 1 for each i. Thus each πi is a Weierstrass polynomial, whence
ζn-distingushed. It remains to show that each πi is prime in Tn, in other words to
show that Tn/(πi) is an integral domain. To see this note that the canonical map

Tn−1[ζn]/(πi) −→ Tn/(πi),
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induced by the inclusion Tn−1[ζn] ⊂ Tn, is an isomorphism. Indeed, if s = degζn(πi),
then both sides are free Tn−1-modules of rank s freely generated by the residue
classes of ζn, . . . , ζ

s−1
n , the left side because of Euclid Division and the right because

of Weierstrass Division. The ring Tn−1[ζn]/(πi) is an integral domain since πi is
prime in Tn−1[ζn]. �

Remark 1.2.3. In fact Tn is a regular ring. We will see this later in the course
(hopefully).

Theorem 1.2.4. (Noether normalisation) Let a be an ideal of Tn and d = dimTn/a.
Then there exists a K-algebra finite monomorphism Td ↪→ Tn/a.

Proof. The theorem is clearly true for n = 0. Let n > 0 and suppose the theorem
is true for Tn−1. If a = 0 then the statement is clearly true with d = n. So
suppose we have a non-zero element f in a. By Lemma 1.1.1 we have a finite
injective ring homomorphsim Tn−1 ↪→ Tn/(f). Let a1 be the kernel of the composite
Tn−1 ↪→ Tn/(f) � Tn/a. The following commutative diagram might help:

Tn/(f)

$$ $$I
II

II
II

II

Tn−1
, �

::uuuuuuuuu

$$ $$I
II

II
II

II
Tn/a

Tn−1/a1

, �

::uuuuuuuuu

The twoheaded arrows of the form � denote (as always) surjective maps. These
are the two southeast pointing arrows in the above diagram. A word of caution:
the northeast pointing monomorphism on the left is not (necessarily) the composite
Tn−1 ⊂ Tn � Tn/(f) where the inclusion on the left is the standard one. See
Remark 1.1.2 for clarification.

Since composite of the northeast pointing arrow from Tn−1 followed by the
southeast arrow from Tn/(f) is finite, so is the composite of the southeast fol-
lowed by the northeast pointing arrow in the lower half of the diagram. The in-
clusion Tn−1/a1 ↪→ Tn/a is therefore a finite monomorphism of K-algebras.1 By
our induction hypothesis, the theorem is true for Tn−1, whence we have a finite
monomorphsim Td ↪→ Tn−1/a1. Composing, we get a finite monomorphism

Td ↪→ Tn/a.

It is clear (from the various going up and going down theorems) that dimTn/a =
d. �

We then have the following important corollary

Corollary 1.2.5. Let m be a maximal ideal of Tn. Then the field extension

K → Tn/m

(given by the composite K ⊂ Tn � Tn/m) is finite.

Proof. Since the Krull dimension of Tn/m is zero, and since T0 = K, we are done
by Noether normalisation. �

1Indeed any generating set for Tn/a as a Tn−1-module is also a generating set for Tn/a as a
Tn−1/a1-module since the map Tn−1 � Tn−1/a1 is surjective.
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1.3. The maximal spectrum of Tn. Let x = (x1, . . . , xn) ∈ Bn(K) and let

mx = {f ∈ Bn(K) | f(x) = 0}.

If f =
∑
ν cνζ

ν ∈ Tn, then f(x) =
∑
ν cνx

ν lies inK(x1, . . . , xn) sinceK(x1, . . . , xn)
is complete. This gives us the evaluation map at x

ϕx : Tn −→ K(x1, . . . , xn), f 7−→ f(x).

Clearly

mx = kerϕx.

Clearly mx ∈ Max(Tn) since Tn/mx ∼= K(x1, . . . , xn).

Theorem 1.3.1. The map

Bn(K) −→ Max(Tn), x 7−→ mx

is surjective.

Proof. Let m ∈ Max(Tn). Let L = Tn/m. By Corollary 1.2.5, L is a finite extension
of K and hence there is an embedding L ↪→ K. Let

ϕ : Tn → K

be the induced map, i.e., ϕ is the composite Tn � L ↪→ K. We claim that

(∗) |ϕ(f)| ≤ ‖f‖ (f ∈ Tn).

This will prove that ϕ is continuous. Moreover, setting xi = ϕ(ζi), i = 1, . . . , n, the
inequality (∗) shows that |xi| ≤ ‖ζi‖ = 1, and hence that x = (x1, . . . , xn) ∈ Bn(K).
Since ϕ is continuous (assuming (∗)), ϕ = ϕx, and so kerϕ = kerϕx, i.e. m = mx.

It remains to prove (∗). Suppose (∗) is not true. There is an f ∈ Tn such that
|ϕ(f)| > ‖f‖. This means f 6= 0, and we may assume ‖f‖ = 1. Let α = ϕ(f). Note
that

|α| > 1.

Let

θ = Xr + c1X
r−1 + · · ·+ cr−1X + cr ∈ K[X]

be the minimal polynomial of α over K, and α1, . . . , αr the roots of θ in K. Since
K is not necessarily separable, the roots are not necessarily distinct. Since the
fields K(αi) are canonically isomorphic to each other, and since the extensions of
the norm from K to K[X]/(θ) is unique, we have

|αi| = |α| (i = 1, . . . , r).

Now,

θ =

r∏
i=1

(X − αi).

Thus cr = (−1)rα1 . . . αr. It follows that

|cr| = |α|r > 1.

Since ci = (−1)iσi(α1, . . . , αr), i = 1, . . . , r, where σi is the ith elementary sym-
metric polynomial in r variables, we have

(∗∗) |ci| ≤ |α|i < |α|r = |cr| (1 ≤ i < r).
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We have used the fact that |α| > 1 in establishing (∗∗). Thus we have

θ(f) := cr + cr−1f + · · ·+ c1f
r−1 + fr = cr

(
1 +

r∑
i=1

br−if
r
)

where b0 = c−1r and bi = cic
−1
r for i = 1, . . . , r − 1. Setting

g = −
r∑
i=1

br−if
i,

we see via (∗∗) that ‖g‖ < 1. Thus 1 − g is a unit in Tn with inverse
∑
m∈N gm.

This means θ(f) = cr(1 − g) is a unit in Tn, and hence ϕ(θ(f)) is a unit in K.
However,

ϕ(θ(f)) = θ(ϕ(f)) = θ(α) = 0,

giving a contradiction. Thus |ϕ(f)| ≤ ‖f‖ for every f ∈ Tn. �

Remark 1.3.2. Since ϕx is continuous therefore mx is closed in Tn. And by the
theorem, this means every maximal ideal of Tn is closed. In fact every ideal in Tn
is closed as we will see in a future (next?) lecture.
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