
LECTURE 6

Date of Lecture: August 29, 2019

As usual, K is a complete non-archimedean field (with non-trivial |·|) and k = K̃,
i.e., k = OK/mK . And as before N = {0, 1, 2, . . . ,m, . . . }. Rings mean commuta-
tive rings with 1.

1. The Weierstrass Division and Preparation Theorems

1.1. Euclidean Division over arbitrary rings. It is not necessary to assume
that the coefficients of of polynomials come from a fixed field for the Euclidean
algorithm to be valid. It is enough that the polynomial one is dividing by is monic.
In more precise detail:

Theorem 1.1.1. Let A be a ring and g = a0 +a1X+ · · ·+ad−1X
d−1 +Xd ∈ A[X]

a monic polynomial. Then for any f ∈ A[X] there exist unique elements q and r
in A[X] with deg r < d such that

f = qg + r.

Proof. Let us first prove uniqueness. If gq+r = 0, where q, r ∈ A[X] with deg r < d,
then as g is monic, q and r must be zero.

It remains to prove existence. We proceed by induction on m = deg f . Let
m = deg f and a the leading coefficient of f . If m < d then we may pick r = f and
q = 0. If m ≥ d then set f1 = f − aXm−dg. Then deg f1 < deg f and by induction
we may assume that f1 = q1g + r with deg r < d. Set q = aXm−d + q1. Then
f = qg + r. �

1.2. The Weierstrass Theorems. Recall (see Definition 2.1.1 of Lecture 5) that
an element f ∈ Tn is said to be ζn-distinguished of order s if in the decomposition
f =

∑
ν∈N gνζ

ν
n with gν ∈ Tn−1, the following hold:

(i) gs is a unit in Tn−1.
(ii) ‖gs‖ = ‖g‖ and ‖gs‖ > ‖gν‖ for ν > s.

Theorem 1.2.1. (The Weierstrass Division Theorem) Let g ∈ Tn be ζn-distinguished
of order s. For each f ∈ Tn there exist unique elements q ∈ Tn and r ∈ Tn−1[ζn]
with degζn(r) < s such that

f = qg + r.

Moreover, the following equality holds:

‖f‖ = max{‖qg‖, ‖r‖}.
If in addition f and g are in Tn−1[ζn] then q is also a polynomial in Tn−1[ζn].

Proof. We first prove that if the relation (∗) below holds for an f ∈ Tn
(∗) f = qg + r, (q ∈ Tn and degζn(r) < s)

then

(†) ‖f‖ = max{‖qg‖, ‖r‖}.
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Suppose (f, q, r) satisfies (∗). It is certainly true that

‖f‖ ≤ max{‖qg‖, ‖r‖}.
If max{‖qg‖, ‖r‖} = 0 then (†) is trivially true. So suppose the maximum is not
zero. Without loss of generality we may assume

‖g‖ = 1 and max{‖q‖, ‖r‖} = 1.

Then ‖f‖, ‖q‖, ‖r‖ ≤ 1 and hence f , q, and r lie in T ◦n . We then have

f̃ = q̃g̃ + r̃

with degζn(r̃) < s. If ‖f‖ < 1 then f̃ = 0, and by the uniqueness assertion for

Euclidean Division in the ring R[ζn], with R = k[ζ1, . . . , ζn−1],1 we must have
q̃ = r̃ = 0. This contradicts the fact that max{‖q‖, ‖r‖} = 1. Thus ‖f‖ = 1 =
max{‖q‖, ‖r‖}. This proves that (f, q, r) satisfies (†).

One consequence of what we proved is that if f ∈ Tn has a representation as in
(∗), then the representation is unique. Indeed, if qg+ r = 0 with degζn(r) < s, then
by (†) we must have max{‖qg‖, ‖r‖} = 0, whence q = r = 0.

It only remains to show that every f ∈ Tn has a representation of the form (∗).
We may assume without loss of generality that ‖g‖ = 1. Let

B =
{
qg + r

∣∣∣ q ∈ Tn, degζn(r) < s
}
.

We will show that B = Tn. As a first step, we will show that B is closed in Tn.
Note that B is an additive subgroup of (Tn,+). If {fm} is a Cauchy sequence
in B, say fm = qmg + rm with degζn(rm) < s, then for each ε > 0 there exists
N ∈ N such that ‖fm − fν‖ ≤ ε whenever m, ν ≥ N . Applying (†) to the relation
fm − fν = (qm − qν)g + (rm − rν), we get that ‖qm − qν‖ ≤ ε and ‖rm − rν‖ ≤ ε.
In other words {qm} and {rm} are also Cauchy. Let f , q, and r be the limits in Tn
of {fm}, {qm}, and {rm} respectively. Clearly f = qg + r and degζn(r) < s. Thus
f ∈ B. It follows that B is complete, and hence closed in Tn.

We will show that B is dense in Tn. This will prove that B = Tn, and hence
prove that every f ∈ Tn can be represented as in (∗). Let

ε = max
ν>s
‖gν‖.

Since ‖gν‖ < ‖gs‖ = ‖g‖ = 1 for ν > s, it is clear that ε < 1. Set

Kε := {x ∈ K | |x| ≤ ε}
and

kε = K/Kε.

We have an obvious ring map

τε : T ◦n −→ kε[ζ1, . . . , ζn]

with ker τε = {f ∈ T ◦n | ‖f‖ ≤ ε}.
For f ∈ T ◦n , by Euclidean division on kε[ζ1, . . . , ζn] = kε[ζ1, . . . , ζn−1][ζn] we

have, for each f ∈ T ◦n , elements q ∈ T ◦n and r ∈ T ◦n−1[ζn] with degζn(r) < s such
that

τε(f) = τε(q)τε(g) + τε(r).

We are using the fact that 1 = ‖g‖ = ‖gs‖ whence τε(gs) is a unit, making τε(g)
a unitary polynomial (i.e. essentially monic) in kε[z1, . . . , ζn−1]][ζn]. It follows that

1see Theorem 1.1.1
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for f ∈ T ◦n there exists b ∈ B (b = qg + r in this case) such that ‖f − b‖ ≤ ε. This
means that for f ∈ Tn, there exists b ∈ B such that

(‡) ‖f − b‖ ≤ ε‖f‖.
In order to show that B is dense in Tn, we have to show that for each f ∈ Tn,

d(f,B) = 0 where d(f,B) is the distance from f to B, i.e. d(f,B) = infb∈B ‖f − b‖.
Suppose there is an f in Tn such that d(f,B) > 0. Since ε−1 > 1, there exists b1 ∈ B
such that ‖f − b1‖ < ε−1d(f,B). Applying (‡) to f − b1 we find that there exists
b2 ∈ B such that

‖f − (b1 + b2)‖ = ‖(f − b1)− b2‖ ≤ ε‖f − b1‖ < εε−1d(f,B) = d(f,B).

This contradicts the definition of d(f,B). Hence d(f,B) = 0 for all f ∈ Tn, i.e. B
is dense in Tn. �

As a corollary we have:

Corollary 1.2.2. (The Weierstrass Preparation Theorem) Let g ∈ Tn be ζn-
distinguished of order s. Then there exist a unique representation

g = ew

of g with e a unit in Tn and w a monic polynomial of degree s in Tn−1[ζn]. Moreover,
‖w‖ = 1 and hence w is ζn-distinguished or order s. If g ∈ Tn−1[ζn] then e is also
an element of Tn−1[ζn].

Proof. Without loss of generality we may assume ‖g‖ = 1. Apply Weierstrass
division to ζsn to get q ∈ Tn and r ∈ Tn−1[ζn] with deg (r) < s such that

ζsn = qg + r.

Set w = ζsn−r. Then w is a monic polynomial in Tn−1[ζn and of degree s. Moreover,
we have max{‖q‖, ‖r‖} = ‖ζsn‖ = 1, whence q and r lie in T ◦n . It follows that in
k[ζ] we have ζsn = q̃g̃ + r̃. Since degζn(ζsn) = degζn(g̃) = s and g̃ is unitary as a
polynomial in ζn over k[ζ1, . . . , ζn−1], we have q̃ ∈ k∗, which means q is a unit in
T ◦n and hence in Tn. Let e = q−1. Then g = ew. It is clear that ‖w‖ = 1.

We now prove the uniqueness of the representation g = ew of e. If we set q = e−1

and r = ζsn−w we get g = qg+ r with r ∈ Tn−1[ζn] and deg r < s. This determines
q and r by the uniqueness part of the Weierstrass Division Theorem, and hence
determines e and w.

The last part of the statement of the Corollary is obvious from the last part of
the Weierstrass Division Theorem. �
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