LECTURE 5

Date of Lecture: August 27, 2019

In this lecture, we fix a complete non-archimedean field K and assume that the
absolute value is non-trivial.

A quick recap of some notations and definitions may be in order. As before, T}, is
the n'h Tate algebra K((1,...,(,) of restricted power series in (1, ..., (, over K and
T, is the subring of T}, consisting of elements f € T,, such that ||f|| < 1. In other
words T)) = Ok{C1,...,(n), the ring of restricted power series with coefficients in
Ok . Note that O =T} .

The residue field K is denoted k in this lecture. In other words

k= ﬁK/mK.
For feT,, fe E[C1,--.,Cpn] is the image of f under the natural map of rings
Tyj - ﬁK<C1;7C’n> — k[Ch?Cn]

Note that all but a finite number of coefficients of an restricted power series f in
Ok {C1,...,Cn) lie in mg, explaining the above ring homomorphism.
A reminder: The set N includes 0.

1. Units in 7,; and T,

1.1. The following two theorems (equivalent to each other) characterise units in
T2 and T,.
Theorem 1.1.1. Let f € T, . The following are equivalent:

(1) fis aunitin T, . )

(2) f is a unit in k[C1,...,C, te., f€K*.

@) [FO) =1 and || f = fO)| <1.
Proof. 1t is clear that (1) implies (2) and that (2) <= (3). Suppose f satisfies (3).
Then ||f|| = 1. Without loss of generality, we may assume f(0) = 1. Set

g=1—1f.

Then ||g| < 1since g = —(f— f(0)). It follows that the series > >~ ; g” is absolutely

convergent. Since T, is a Banach K-algebra (see Theorem 1.2.1] of Lecture4), this
means ZSO:O g¥ converges in T,, by Lemma 1.1.1 of Lecture 2. Let

h = Zgl’.
Now ||h]| = 1 since ||¢°|| = 1, and ||g"|| < 1 for n > 1. Thus h € T2. Clearly
(1—gh=1,1e. fh=1. O
Theorem 1.1.1 is equivalent to:
Theorem 1.1.2. Let f € T,,. The following are equivalent:
(1) f is a unit in T,,.

(2) f#0 and f/||f]l is a unit in T, .
1



@) If = FOI <[£0)].

Proof. Statements (1) and (2) are clearly equivalent, for an element of norm 1 is
a unit in 7T, if and only if it is a unit in 7,;. By Theorem 1.1.1, (2) is equiva-
lent to saying |f(0)/||flll = 1 and || f — f(0)]] < ||f||. But thesecond statement
is clearly equivalent to saying || f|| = |f(0)| and ||f — f(0)|| < |f(0)|. However, if
IIf — fO)|| < |f£(0)], then ||f|| = |f(0)] showing that (2) is equivalent to (3). O

2. Distinguished elements

In this section we make the first moves towards stating and proving the Weier-
strass Division Theorem and the Weierstrass Preparation Theorem. The conse-
quences of the two theorems are many. They show that T;, is a noetherian UFD
with finite Krull dimension equal to n.

2.1. (,-distinguished elements. If f € T,, = K{((,...,(,) then clearly f has a
unique decomposition into a series

(+) F=>9¢ (9 €Ty, veN).
veEN

Definition 2.1.1. An element f € T, is said to be (,-distinguished of order s if in
the decomposition f =3 .y 9.Ch in (*) above, the following hold:

(i) gs is a unit in T, _q.

(i) llgsll = llgll and [|gs|| > [lgo [| for v > s.

Remark 2.1.2. Suppose ||g|| = 1. Then g is distinguished of order s if and only if

g = §s§}i + gs—1<571 +-+ glCn + gs

with g5 € k*. In particular, g is distinguished of order 0 if and only if g € k¥, i.e.,
if and only if g is a unit. It follows that an arbitrary g € T,, (not necessarily with
llgll = 1) is ¢,,-distinguished if and only if it is a unit.

2.2. An automorphism of T,,. Let a1,...,a,_1 be positive integers. We have
a map

oa: K[[¢]] — KI|C]]
defined by
N G+ ¢y fori<n
oalC) = {Cn,for i=n.

According to Problem (4) of HW 2, 04 (f) makes sense for any f € K[|¢]]. It has
an inverse given by (once again using Problem 4 of HW 2)

¢ G—Cyifori<n
' Cn, for i = n.

There are two observations worth making
(1) 16+ Gl =1 =[Gl

(ii) For v € N" let g, = H;:f(g- + ¢%)vi - ¢4, Then ||g,|| = 1.
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Let f =3, cnn € bein T;,. We have
Ua(f) = Z Cvfv-
veN™

Let € > 0 be given. There exists N such that for all v with [v| > N, |c| < €.
Then for any finite subset I of the set of indices v with |v| > N, we have

I3 cogull < max fleugy|| = max ey | < c.
I

It follows that ), ¢, g, converges in T}, since T}, is complete, and clearly >, c, g, =
oa(f). Moreover ||oa(f)|| < sup, |cvgull = sup, |cu| = ||f||- Similar considera-
tions for o' show that in fact

loa(HI =711 (f €T

whence o, is an isometric automorphism of Banach K-algebras, and in particular
is continuous. We record that as follows

Lemma 2.2.1. The map
oa: Ty — T,

is a Banach K-algebra automorphism which preserves norms.

Lemma 2.2.2. Let f1,..., f, be finitely many non-zero elements of T,,. Then there
exists a = (a1,...,0n—1) such that oo (f1),...,0a(fr) are ,-distinguished.

Proof. Let r =1 and f = f1. Let f =3 . . cu¢”. Without loss of generality we
assume || f|| = 1. Let

S:{ueN" 5V7Ao}.
Then S is finite and
f = Z 5uC"-
ves

For each v € S, consider
by =Vp+Vp X+ +1 X" € Z[X].

Since there are only a finite number of plynomials in play there exists a real number
ro > 0 such that

bu(@) — bu(2) A0 (x> 10, pv €S and v # pr).
Pick t € N withr > r,. Let a; = """, i=1,...,n—1,and let @ = (a1, ..., 0p_1).
Let 0 = 04. Then

o)=Y a ] +cey ¢

ves

— § :EVCZHV1+“'+(¥n—1yn—l+Vn +3g
ves

=> a4y

ves

where g € k[¢] is a polynomial in (,, whose degree in (, is strictly less than the
maximum of all exponents ¢, (t) with v varying over S.
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Since t > rq, these exponents are pairwise distinct, and hence there is a maximum
) )
exponent s which is assumed at a unique v* € S. Then

U(f) = 61}*(5, +h
where h is a polynomial of degree < s in (,. Since ¢, # 0 (for v* € S), o(f) is
(n-distinguished of order s.

The general case, i.e. when r > 1, is dealt with in the same way. We simply have
to pick a t which is large enough that it works for f1,..., f, simultaneously. O



