LECTURE 4

Date of Lecture: August 22, 2019
A reminder: The set N includes 0.

1. An important Banach Algebra

The aim of this section is to prove that the ring of strictly convergent power
series in m-variables over a complete non-archimedean field is a Banach algebra.

1.1. Basic Lemma. If (M, ||-]|) is a normed linear space over a normed field K,
then a series Y~ a,, in M is a said to be absolutely convergent if Y~ ||ay|| < oo.
It is convergent if there exists a € M such that lim, . Z?:o a; = a. The series
Zf;l ay, is said to be Cauchy if its sequence of partial sums is Cauchy.

Lemma 1.1.1. Let (K, |-|) be a complete normed field (archimedean or non-archimedean)
and (M, ||I-]]) a normed vector space over K. M is a K-Banach space if and only if
every absolutely convergent series in M is convergent.

Proof. First note that for any series Y -, a, in M, we must have ||>°;"  a] <
> llad]l, for m < n, whence an absolutely convergent series in M is necessarily
Cauchy. It follows that if M is Banach, every absolutely convergent series in M
converges.

Conversely suppose every absolutely convergent series in M converges. Let {s,}
be a Cauchy sequence in M. For each k € N there exists nj such that

15 — S| < 27F (n,m > ny).
We choose our ngi1 > ny for all £ > 0. Clearly this can always be arranged. Let
ag = Sng
Gk = Snj, — Sng_1s k> 1.

Now for 1 < m < n we have

oo oo o0
D llarll < llaoll + D llsne = snes | < laoll + D275 < oo
k=0 k=1 k=1

Thus ), ar converges absolutely. By our hypothesis it therefore converges to a
limit a. Now Zf:o a; = sy, for all k> 0 and hence

lim s,, =a.
k— o0

Thus the Cauchy sequence {s,,} has a convergent subsequence {s,, }. It follows that
lim, o S, = a. In somewhat greater detail, given € > 0, there exists N € N such
that ||s, — sm|| < € for m,n > N. Pick k € N such that ny > N and ||s,, —a| < e.
Then

lsn —all <l[sn = snill + [lsn —all <2¢ (n > N).



1.2. The Tate algebra is a Banach algebra. Let (K, |-|) be a complete non-
archimedean field with non-trivial absolute value and as before let

T, =K <G, 6 >={) i’ Jim ey | =0}
veEN®

Recall T,, has a norm ||-||: T, — [0, 00) on it, namely the Gauss norm,
H Z c,,CVH = max|cy|.
veN” v

It is easy to see (as we did on pp.2-3 of Lecture 3) that T, is a normed K-
algebra, i.e., it is a normed vector space over K satisfying || fg|| = || f|l|lg|| for f and
gin T,.

Theorem 1.2.1. T, is a Banach K-algebra.

Proof. Let > JEN f; be an absolutely convergent series in T},. According to Lemma 1.1.1,
we have to show that Zj f;j is then it is convergent. Let c;, € K, for j € N and
v € N, be defined by
fi=> "
174

For a fixed v we have

> leiwl < DIl < o0
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whence } ¢;, is convergent in K. Set
Cy = E Cjv-
J

Let € > 0 be given. Since ;|| f;|| < oo, there exists N € N such that || f;[| < e for
j > N, whence

lejw| <€ (j > N,v e N").

For each j € {0,..., N —1}, since f; € T,,, for all but a finite number of v we have
lcjv| < €. Varying j over {0,..., N — 1}, we see that for all but a finite number of
(4,v) € N x N", |¢j| < e. It follows that |c,| < € for all but a finite number of
v € N". In other words lim|, |, ¢, | = 0, whence ¢, (" € T),. Let

f=2_ el
v
It is easy to see that Zj f; converges to f. O

2. The valuation ring associated with (K, ||)

Throughout this section K is a non-archimedean field with a non-trivial absolute
value.



2.1. The ring Ok. Let
Ok ={z € K ||z| <1},

(2.1.1) mg ={z €K ||z| <1},
K= Ok /mg.

We therefore have a canonical surjective map

(2.1.2) Ox — K.

The image of any element x € Ok in K is denoted 7.

If 0 # z € K, then either z or 7! lies in Ok, whence O is a valuation ring in
K with mg its unique maximal ideal. Since the absolute value on K is assumed to
be non-trivial, mg # 0. The field K is called the residue field of K as well as the
residue field of O .

Proposition 2.1.3. If K is algebraically closed then Ok is non-noetherian.

Proof. Let © € m C K. Since K is algebraically closed, there exists y € K such
that y? = x. It follows that m% = my. Moreover, since the absolute value on K is
non-trivial, mg # 0. By Nakayama’s lemma, Ok is non-noetherian. (I

2.2. Behaviour with respect to extensions. If L is a field extension of K, and
L has a norm which extends the one on K, we often write (L, |-|1) is an extension
of (K, |-|k), or simply (L, |]) is an extension of (K, |-|). We also sometimes describe
this by saying (K, |-|) = (L, |-]) is an extension of normed fields. It is an algebraic
or finite extension if the underlying field extension is algebraic of finite. Suppose

(B ) — (L, |])

is an extension of normed fields. Clearly O C €, and m; N O = mg. Hence we
have an extension of fields B B

K — L.
Theorem 2.2.1. Let (L, |-|) be an algebraic extension of (K,|-|). Then L is an

algebraic extension of K.

Proof. Let 6 € L be an element, and 0 € 0y, a pre-image of 0. Let
d
FX) =) aX’
i=0

be a polynomial over K such that f(f) = 0 and ag = 1. If all the a; lie in Ok,
then f(g) = 0, where f = Z?:o @;X*, and since @y = 1, this shows 6 is algebraic.
Otherwise, let I € {0,...,d} be an index such that |a;| < |a;| for all i € {0,...,d}.
Then b; = a;/a;, i =0, ...,d lie in Ox. We have g(X) = % b; X! € O[X], and
since b; = 1, this is a non-zero polynomial. Clearly () = 0, where §(X) € K[X]
has the obvious meaning. Thus 0 is algebraic. (I

Theorem 2.2.2. If K is algebraically closed, then K is algebraically closed.

Proof. Let é € K and say its minimal polynomial over K is § € K [X]. Lift g to

a monic polynomial g € Ok [X]. Since K is algebraically closed, g = [[,(X — ¢;)

for some ¢; € K. Since Ok is a valuation ring of K, the ¢; lie irl Ok . Hence

g =[1I,(X —¢&;). Note that ¢; € K, and ¢ is one of the ¢;. Thus ¢ € K. O
3



Theorem 2.2.3. Let K be an algebraic closure of K and fir a norm on K such
that (K,|-|) is an extension of (K,|-|). Then K is an algebraic closure of K.

Proof. This is immediate from Theorem 2.2.1 and Theorem 2.2.2 O
Theorem 2.2.3 is often written succinctly as

K=K.
From now onwards we will do so, the implicit assumption being that algebraic
closures have somehow been fixed. Recall that two algebraic closures of a field are
isomorphic, but not uniquely isomorphic. In fact even the separable closures are
not uniquely isomorphic, though they are isomorphic.

3. The ring T,
In this section K is a complete non-trivial and non-archimedean field and we set
k=K.
3.1. Notations and definitions. Let n € IN. Set
(3.1.1) T, ={feTu | Ifl <1}

Sometimes T,; is also written as Ok ((1, .. ., (,) and we might have occasion to write
it in this manner. The reason for the alternative notation is clear; if f =", ¢, ¢",
then ¢, € Ok for all v € N”.

If f=725,cC", then for all but a finite number of ¢,, we have |¢,| < 1, for
lim,| o0 | = 0 and || < 1 for all v € N™. In other words, ¢, € Ok and
for all but a finite number of v, ¢, € mg. We therefore have a natural ring
homomorphism:

s T) — k[C1, .o, Gl
The preferred notation in the subject is
(3.1.2) f=m(f) (fET)).

3.2. The maximum modulus principle. Consider the “unit disc” in Fn,
B"(K) = {(wl,...,xn) cK" \ ] <1,1<i< n}

Theorem 3.2.1. (The Maximum Modulus Principle) Let f € T,,. Then |f(x1,...,2ys)]

attains a mazimum in B"(K) and
11l = max {|£(x)|| x € B(K) }.

Proof. First, from Problem6 of HW 1, we know that f(x) makes sense for x €

B™(K). Without loss of generality we may assume || f|| = 1. Suppose f =", c,¢".

Since |f| = 1, each |¢,| < 1, whence for every (x1,...,2,) € B"(K),

|[f(z1,. .. 20)| < )Zc,,sc’fl x| <1
v
since each |c,z7* ... z¥"| < 1. Thus
sup {|f(x)|‘x € B"(?)} <1.
Since ||f|| = 1, there is a vy € N™ such that |c,,| = 1, whence f is a non-zero

polynomial, for ¢,, is a non-zero coefficient in the expansion of f € k[¢]. By
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Theorem 2.2.3, k is algebraically closed and hence by the Hilbert Nullstellensatz

(for example), there exists X = (z71,...,%,) € k™ such that f(X) # 0. Pick any pre-

image x € B"(K) of x. Then f(x) = f(x) # 0. Hence |f(x)[ = 1. This proves the

supremum displayed above is attained at x € B™(K), and hence is the maximum
asserted. |



