LECTURE 4

Date of Lecture: August 22, 2019

A reminder: The set \mathbf{N} includes 0.

1. An important Banach Algebra

The aim of this section is to prove that the ring of strictly convergent power series in *n*-variables over a complete non-archimedean field is a Banach algebra.

1.1. **Basic Lemma.** If $(M, \|\cdot\|)$ is a normed linear space over a normed field K, then a series $\sum_{n=0}^{\infty} a_n$ in M is a said to be *absolutely convergent* if $\sum_{n=0}^{\infty} \|a_n\| < \infty$. It is *convergent* if there exists $a \in M$ such that $\lim_{n\to\infty} \sum_{l=0}^{n} a_l = a$. The series $\sum_{n=1}^{\infty} a_n$ is said to be *Cauchy* if its sequence of partial sums is Cauchy.

Lemma 1.1.1. Let $(K, |\cdot|)$ be a complete normed field (archimedean or non-archimedean) and $(M, \|\cdot\|)$ a normed vector space over K. M is a K-Banach space if and only if every absolutely convergent series in M is convergent.

Proof. First note that for any series $\sum_{n=1}^{\infty} a_n$ in M, we must have $\|\sum_{l=m}^n a_l\| \leq \sum_{l=m}^n \|a_l\|$, for $m \leq n$, whence an absolutely convergent series in M is necessarily Cauchy. It follows that if M is Banach, every absolutely convergent series in M converges.

Conversely suppose every absolutely convergent series in M converges. Let $\{s_n\}$ be a Cauchy sequence in M. For each $k \in \mathbb{N}$ there exists n_k such that

$$||s_n - s_m|| \le 2^{-k}$$
 $(n, m \ge n_k).$

We choose our $n_{k+1} > n_k$ for all $k \ge 0$. Clearly this can always be arranged. Let

$$a_0 = s_{n_0}$$

 $a_k = s_{n_k} - s_{n_{k-1}}, \qquad k \ge 1.$

Now for $1 \le m \le n$ we have

$$\sum_{k=0}^{\infty} \|a_k\| \le \|a_0\| + \sum_{k=1}^{\infty} \|s_{n_k} - s_{n_{k-1}}\| \le \|a_0\| + \sum_{k=1}^{\infty} 2^{-k+1} < \infty.$$

Thus $\sum_k a_k$ converges absolutely. By our hypothesis it therefore converges to a limit a. Now $\sum_{l=0}^k a_l = s_{n_k}$ for all $k \ge 0$ and hence

$$\lim_{k \to \infty} s_{n_k} = a.$$

Thus the Cauchy sequence $\{s_n\}$ has a convergent subsequence $\{s_{n_k}\}$. It follows that $\lim_{n\to\infty} s_n = a$. In somewhat greater detail, given $\epsilon > 0$, there exists $N \in \mathbf{N}$ such that $||s_n - s_m|| < \epsilon$ for $m, n \ge N$. Pick $k \in \mathbf{N}$ such that $n_k \ge N$ and $||s_{n_k} - a|| < \epsilon$. Then

 $||s_n - a|| \le ||s_n - s_{n_k}|| + ||s_{n_k} - a|| < 2\epsilon \quad (n \ge N).$

1.2. The Tate algebra is a Banach algebra. Let $(K, |\cdot|)$ be a complete nonarchimedean field with non-trivial absolute value and as before let

$$T_n = K < \zeta_1, \dots, \zeta_n >= \{ \sum_{\boldsymbol{\nu} \in \mathbf{N}^n} c_{\boldsymbol{\nu}} \boldsymbol{\zeta}^{\boldsymbol{\nu}} \mid \lim_{|\boldsymbol{\nu}| \to \infty} |c_{\boldsymbol{\nu}}| = 0 \}.$$

Recall T_n has a norm $\|\cdot\|: T_n \to [0,\infty)$ on it, namely the Gauss norm,

$$\left\|\sum_{\boldsymbol{\nu}\in\mathbf{N}^n}c_{\boldsymbol{\nu}}\boldsymbol{\zeta}^{\boldsymbol{\nu}}\right\|=\max_{\boldsymbol{\nu}}|c_{\boldsymbol{\nu}}|.$$

It is easy to see (as we did on pp. 2–3 of Lecture 3) that T_n is a normed K-algebra, i.e., it is a normed vector space over K satisfying ||fg|| = ||f|| ||g|| for f and g in T_n .

Theorem 1.2.1. T_n is a Banach K-algebra.

Proof. Let $\sum_{j \in \mathbf{N}} f_j$ be an absolutely convergent series in T_n . According to Lemma 1.1.1, we have to show that $\sum_j f_j$ is then it is convergent. Let $c_{j,\nu} \in K$, for $j \in \mathbf{N}$ and $\nu \in \mathbf{N}^n$, be defined by

$$f_j = \sum_{\boldsymbol{\nu}} c_{j,\boldsymbol{\nu}} \boldsymbol{\zeta}^{\boldsymbol{\nu}}.$$

For a fixed ν we have

$$\sum_{j} |c_{j,\boldsymbol{\nu}}| \le \sum_{j} ||f_{j}|| < \infty$$

whence $\sum_{j} c_{j,\nu}$ is convergent in K. Set

$$c_{\boldsymbol{\nu}} = \sum_{j} c_{j,\boldsymbol{\nu}}.$$

Let $\epsilon > 0$ be given. Since $\sum_{j} \|f_{j}\| < \infty$, there exists $N \in \mathbb{N}$ such that $\|f_{j}\| < \epsilon$ for $j \ge N$, whence

$$|c_{j,\boldsymbol{\nu}}| < \epsilon \qquad (j \ge N, \boldsymbol{\nu} \in \mathbf{N}^n).$$

For each $j \in \{0, \ldots, N-1\}$, since $f_j \in T_n$, for all but a finite number of $\boldsymbol{\nu}$ we have $|c_{j,\boldsymbol{\nu}}| < \epsilon$. Varying j over $\{0, \ldots, N-1\}$, we see that for all but a finite number of $(j,\boldsymbol{\nu}) \in \mathbf{N} \times \mathbf{N}^n, |c_{j,\boldsymbol{\nu}}| < \epsilon$. It follows that $|c_{\boldsymbol{\nu}}| < \epsilon$ for all but a finite number of $\boldsymbol{\nu} \in \mathbf{N}^n$. In other words $\lim_{|\boldsymbol{\nu}|\to\infty} |c_{\boldsymbol{\nu}}| = 0$, whence $\sum_{\boldsymbol{\nu}} c_{\boldsymbol{\nu}} \boldsymbol{\zeta}^{\boldsymbol{\nu}} \in T_n$. Let

$$f = \sum_{\nu} c_{\nu} \zeta^{\nu}$$

It is easy to see that $\sum_{j} f_{j}$ converges to f.

2. The valuation ring associated with $(K, |\cdot|)$

Throughout this section K is a non-archimedean field with a non-trivial absolute value.

2.1. The ring \mathcal{O}_K . Let

(2.1.1)

$$\mathcal{O}_{K} = \{x \in K \mid |x| \leq 1\},$$

$$\mathfrak{m}_{K} = \{x \in K \mid |x| < 1\},$$

$$\widetilde{K} = \mathcal{O}_{K}/\mathfrak{m}_{K}.$$

We therefore have a canonical surjective map

The image of any element $x \in \mathcal{O}_K$ in \widetilde{K} is denoted \widetilde{x} .

If $0 \neq x \in K$, then either x or x^{-1} lies in \mathcal{O}_K , whence \mathcal{O}_K is a valuation ring in K with \mathfrak{m}_K its unique maximal ideal. Since the absolute value on K is assumed to be non-trivial, $\mathfrak{m}_K \neq 0$. The field \widetilde{K} is called the *residue field* of K as well as the residue field of \mathcal{O}_K .

Proposition 2.1.3. If K is algebraically closed then \mathcal{O}_K is non-noetherian.

Proof. Let $x \in \mathfrak{m} \subset K$. Since K is algebraically closed, there exists $y \in K$ such that $y^2 = x$. It follows that $\mathfrak{m}_K^2 = \mathfrak{m}_K$. Moreover, since the absolute value on K is non-trivial, $\mathfrak{m}_K \neq 0$. By Nakayama's lemma, \mathscr{O}_K is non-noetherian.

2.2. Behaviour with respect to extensions. If L is a field extension of K, and L has a norm which extends the one on K, we often write $(L, |\cdot|_L)$ is an extension of $(K, |\cdot|_K)$, or simply $(L, |\cdot|)$ is an extension of $(K, |\cdot|)$. We also sometimes describe this by saying $(K, |\cdot|) \rightarrow (L, |\cdot|)$ is an extension of normed fields. It is an algebraic or finite extension if the underlying field extension is algebraic of finite. Suppose

$$(K, |\cdot|) \longrightarrow (L, |\cdot|)$$

is an extension of normed fields. Clearly $\mathscr{O}_K \subset \mathscr{O}_L$ and $\mathfrak{m}_L \cap \mathscr{O}_K = \mathfrak{m}_K$. Hence we have an extension of fields

 $\widetilde{K} \to \widetilde{L}.$

Theorem 2.2.1. Let $(L, |\cdot|)$ be an algebraic extension of $(K, |\cdot|)$. Then \widetilde{L} is an algebraic extension of \widetilde{K} .

Proof. Let $\tilde{\theta} \in \tilde{L}$ be an element, and $\theta \in \mathcal{O}_L$ a pre-image of θ . Let

$$f(X) = \sum_{i=0}^{d} a_i X^i$$

be a polynomial over K such that $f(\theta) = 0$ and $a_d = 1$. If all the a_i lie in \mathscr{O}_K , then $\tilde{f}(\tilde{\theta}) = 0$, where $\tilde{f} = \sum_{i=0}^d \tilde{a}_i X^i$, and since $\tilde{a}_d = 1$, this shows $\tilde{\theta}$ is algebraic. Otherwise, let $l \in \{0, \ldots, d\}$ be an index such that $|a_i| \leq |a_l|$ for all $i \in \{0, \ldots, d\}$. Then $b_i = a_i/a_l$, $i = 0, \ldots, d$ lie in \mathscr{O}_K . We have $g(X) = \sum_{i=0}^d b_i X^i \in \mathscr{O}_K[X]$, and since $b_l = 1$, this is a non-zero polynomial. Clearly $\tilde{g}(\tilde{\theta}) = 0$, where $\tilde{g}(X) \in \tilde{K}[X]$ has the obvious meaning. Thus $\tilde{\theta}$ is algebraic.

Theorem 2.2.2. If K is algebraically closed, then \widetilde{K} is algebraically closed.

Proof. Let $\tilde{c} \in \widetilde{K}$ and say its minimal polynomial over \widetilde{K} is $\tilde{g} \in \widetilde{K}[X]$. Lift \tilde{g} to a monic polynomial $g \in \mathscr{O}_K[X]$. Since K is algebraically closed, $g = \prod_i (X - c_i)$ for some $c_i \in K$. Since \mathscr{O}_K is a valuation ring of K, the c_i lie in \mathscr{O}_K . Hence $\tilde{g} = \prod_i (X - \tilde{c}_i)$. Note that $\tilde{c}_i \in \widetilde{K}$, and \tilde{c} is one of the \tilde{c}_i . Thus $\tilde{c} \in \widetilde{K}$. **Theorem 2.2.3.** Let \overline{K} be an algebraic closure of K and fix a norm on \overline{K} such that $(\overline{K}, |\cdot|)$ is an extension of $(K, |\cdot|)$. Then $\widetilde{\overline{K}}$ is an algebraic closure of \widetilde{K} .

Proof. This is immediate from Theorem 2.2.1 and Theorem 2.2.2

$$\overline{\widetilde{K}} = \overline{\overline{K}}.$$

From now onwards we will do so, the implicit assumption being that algebraic closures have somehow been fixed. Recall that two algebraic closures of a field are isomorphic, but not uniquely isomorphic. In fact even the separable closures are not uniquely isomorphic, though they are isomorphic.

3. The ring T_n°

In this section K is a *complete* non-trivial and non-archimedean field and we set

$$k = \widetilde{K}.$$

3.1. Notations and definitions. Let $n \in \mathbb{N}$. Set

(3.1.1)
$$T_n^{\circ} = \{ f \in T_n \mid ||f|| \le 1 \}.$$

Sometimes T_n° is also written as $\mathscr{O}_K \langle \zeta_1, \ldots, \zeta_n \rangle$ and we might have occasion to write it in this manner. The reason for the alternative notation is clear; if $f = \sum_{\nu} c_{\nu} \zeta^{\nu}$, then $c_{\nu} \in \mathscr{O}_K$ for all $\nu \in \mathbf{N}^n$.

If $f = \sum_{\nu} c_{\nu} \zeta^{\nu}$, then for all but a finite number of c_{ν} , we have $|c_{\nu}| < 1$, for $\lim_{|\nu|\to\infty} |c_{\nu}| = 0$ and $|c_{\nu}| \leq 1$ for all $\nu \in \mathbb{N}^n$. In other words, $c_{\nu} \in \mathcal{O}_K$ and for all but a finite number of ν , $c_{\nu} \in \mathfrak{m}_K$. We therefore have a natural ring homomorphism:

$$\pi_n: T_n^{\circ} \longrightarrow k[\zeta_1, \dots, \zeta_n].$$

The preferred notation in the subject is

(3.1.2)
$$f = \pi_n(f) \qquad (f \in T_n^\circ).$$

3.2. The maximum modulus principle. Consider the "unit disc" in \overline{K}^n ,

$$\mathbb{B}^{n}(\overline{K}) = \left\{ (x_{1}, \dots, x_{n}) \in \overline{K}^{n} \mid |x_{i}| \leq 1, 1 \leq i \leq n \right\}.$$

Theorem 3.2.1. (The Maximum Modulus Principle) Let $f \in T_n$. Then $|f(x_1, \ldots, x_n)|$ attains a maximum in $\mathbb{B}^n(\overline{K})$ and

$$||f|| = \max \left\{ |f(\mathbf{x})| | \mathbf{x} \in \mathbb{B}^n(\overline{K}) \right\}.$$

Proof. First, from Problem 6 of HW 1, we know that $f(\mathbf{x})$ makes sense for $\mathbf{x} \in \mathbb{B}^n(\overline{K})$. Without loss of generality we may assume ||f|| = 1. Suppose $f = \sum_{\nu} c_{\nu} \zeta^{\nu}$. Since |f| = 1, each $|c_{\nu}| \leq 1$, whence for every $(x_1, \ldots, x_n) \in \mathbb{B}^n(\overline{K})$,

$$|f(x_1,\ldots,x_n)| \le \left|\sum_{\nu} c_{\nu} x_1^{\nu_1} \ldots x_n^{\nu_n}\right| \le 1$$

since each $|c_{\boldsymbol{\nu}} x_1^{\nu_1} \dots x_n^{\nu_n}| \leq 1$. Thus

$$\sup\left\{\left|f(\mathbf{x})\right| \middle| \mathbf{x} \in \mathbb{B}^{n}(\overline{K})\right\} \leq 1.$$

Since ||f|| = 1, there is a $\nu_0 \in \mathbf{N}^n$ such that $|c_{\nu_0}| = 1$, whence \tilde{f} is a non-zero polynomial, for \tilde{c}_{ν_0} is a non-zero coefficient in the expansion of $\tilde{f} \in k[\boldsymbol{\zeta}]$. By

Theorem 2.2.3, k is algebraically closed and hence by the Hilbert Nullstellensatz (for example), there exists $\widetilde{\mathbf{x}} = (\widetilde{x_1}, \ldots, \widetilde{x_n}) \in k^n$ such that $\widetilde{f}(\widetilde{\mathbf{x}}) \neq 0$. Pick any preimage $\mathbf{x} \in \mathbb{B}^n(\overline{K})$ of $\widetilde{\mathbf{x}}$. Then $\widetilde{f}(\widetilde{\mathbf{x}}) = \widetilde{f}(\widetilde{\mathbf{x}}) \neq 0$. Hence $|f(\mathbf{x})| = 1$. This proves the supremum displayed above is attained at $\mathbf{x} \in \mathbb{B}^n(\overline{K})$, and hence is the maximum asserted. \Box