
LECTURE 4

Date of Lecture: August 22, 2019

A reminder: The set N includes 0.

1. An important Banach Algebra

The aim of this section is to prove that the ring of strictly convergent power
series in n-variables over a complete non-archimedean field is a Banach algebra.

1.1. Basic Lemma. If (M, ‖·‖) is a normed linear space over a normed field K,
then a series

∑∞
n=0 an in M is a said to be absolutely convergent if

∑∞
n=0 ‖an‖ <∞.

It is convergent if there exists a ∈ M such that limn→∞
∑n
l=0 al = a. The series∑∞

n=1 an is said to be Cauchy if its sequence of partial sums is Cauchy.

Lemma 1.1.1. Let (K, |·|) be a complete normed field (archimedean or non-archimedean)
and (M, ‖·‖) a normed vector space over K. M is a K-Banach space if and only if
every absolutely convergent series in M is convergent.

Proof. First note that for any series
∑∞
n=1 an in M , we must have ‖

∑n
l=m al‖ ≤∑n

l=m ‖al‖, for m ≤ n, whence an absolutely convergent series in M is necessarily
Cauchy. It follows that if M is Banach, every absolutely convergent series in M
converges.

Conversely suppose every absolutely convergent series in M converges. Let {sn}
be a Cauchy sequence in M . For each k ∈ N there exists nk such that

‖sn − sm‖ ≤ 2−k (n,m ≥ nk).

We choose our nk+1 > nk for all k ≥ 0. Clearly this can always be arranged. Let

a0 = sn0

ak = snk
− snk−1

, k ≥ 1.

Now for 1 ≤ m ≤ n we have
∞∑
k=0

‖ak‖ ≤ ‖a0‖+

∞∑
k=1

‖snk
− snk−1

‖ ≤ ‖a0‖+

∞∑
k=1

2−k+1 <∞.

Thus
∑
k ak converges absolutely. By our hypothesis it therefore converges to a

limit a. Now
∑k
l=0 al = snk

for all k ≥ 0 and hence

lim
k→∞

snk
= a.

Thus the Cauchy sequence {sn} has a convergent subsequence {snk
}. It follows that

limn→∞ sn = a. In somewhat greater detail, given ε > 0, there exists N ∈ N such
that ‖sn − sm‖ < ε for m,n ≥ N . Pick k ∈ N such that nk ≥ N and ‖snk

− a‖ < ε.
Then

‖sn − a‖ ≤ ‖sn − snk
‖+ ‖snk

− a‖ < 2ε (n ≥ N).

�
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1.2. The Tate algebra is a Banach algebra. Let (K, |·|) be a complete non-
archimedean field with non-trivial absolute value and as before let

Tn = K < ζ1, . . . , ζn >= {
∑

ν∈Nn

cνζ
ν | lim
|ν|→∞

|cν | = 0}.

Recall Tn has a norm ‖·‖ : Tn → [0,∞) on it, namely the Gauss norm,∥∥∥ ∑
ν∈Nn

cνζ
ν
∥∥∥ = max

ν
|cν |.

It is easy to see (as we did on pp. 2–3 of Lecture 3) that Tn is a normed K-
algebra, i.e., it is a normed vector space over K satisfying ‖fg‖ = ‖f‖‖g‖ for f and
g in Tn.

Theorem 1.2.1. Tn is a Banach K-algebra.

Proof. Let
∑
j∈N fj be an absolutely convergent series in Tn. According to Lemma 1.1.1,

we have to show that
∑
j fj is then it is convergent. Let cj,ν ∈ K, for j ∈ N and

ν ∈ Nn, be defined by

fj =
∑
ν

cj,νζ
ν .

For a fixed ν we have ∑
j

|cj,ν | ≤
∑
j

‖fj‖ <∞

whence
∑
j cj,ν is convergent in K. Set

cν =
∑
j

cj,ν .

Let ε > 0 be given. Since
∑
j ‖fj‖ <∞, there exists N ∈ N such that ‖fj‖ < ε for

j ≥ N , whence

|cj,ν | < ε (j ≥ N,ν ∈ Nn).

For each j ∈ {0, . . . , N − 1}, since fj ∈ Tn, for all but a finite number of ν we have
|cj,ν | < ε. Varying j over {0, . . . , N − 1}, we see that for all but a finite number of
(j,ν) ∈ N ×Nn, |cj,ν | < ε. It follows that |cν | < ε for all but a finite number of
ν ∈ Nn. In other words lim|ν|→∞ |cν | = 0, whence

∑
ν cνζ

ν ∈ Tn. Let

f =
∑
ν

cνζ
ν .

It is easy to see that
∑
j fj converges to f . �

2. The valuation ring associated with (K, |·|)

Throughout this section K is a non-archimedean field with a non-trivial absolute
value.
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2.1. The ring OK . Let

(2.1.1)

OK = {x ∈ K | |x| ≤ 1},
mK = {x ∈ K | |x| < 1},
K̃ = OK/mK .

We therefore have a canonical surjective map

(2.1.2) OK −→ K̃.

The image of any element x ∈ OK in K̃ is denoted x̃.
If 0 6= x ∈ K, then either x or x−1 lies in OK , whence OK is a valuation ring in

K with mK its unique maximal ideal. Since the absolute value on K is assumed to

be non-trivial, mK 6= 0. The field K̃ is called the residue field of K as well as the
residue field of OK .

Proposition 2.1.3. If K is algebraically closed then OK is non-noetherian.

Proof. Let x ∈ m ⊂ K. Since K is algebraically closed, there exists y ∈ K such
that y2 = x. It follows that m2

K = mK . Moreover, since the absolute value on K is
non-trivial, mK 6= 0. By Nakayama’s lemma, OK is non-noetherian. �

2.2. Behaviour with respect to extensions. If L is a field extension of K, and
L has a norm which extends the one on K, we often write (L, |·|L) is an extension
of (K, |·|K), or simply (L, |·|) is an extension of (K, |·|). We also sometimes describe
this by saying (K, |·|)→ (L, |·|) is an extension of normed fields. It is an algebraic
or finite extension if the underlying field extension is algebraic of finite. Suppose

(K, |·|) −→ (L, |·|)
is an extension of normed fields. Clearly OK ⊂ OL and mL ∩OK = mK . Hence we
have an extension of fields

K̃ → L̃.

Theorem 2.2.1. Let (L, |·|) be an algebraic extension of (K, |·|). Then L̃ is an

algebraic extension of K̃.

Proof. Let θ̃ ∈ L̃ be an element, and θ ∈ OL a pre-image of θ. Let

f(X) =

d∑
i=0

aiX
i

be a polynomial over K such that f(θ) = 0 and ad = 1. If all the ai lie in OK ,

then f̃(θ̃) = 0, where f̃ =
∑d
i=0 ãiX

i, and since ãd = 1, this shows θ̃ is algebraic.
Otherwise, let l ∈ {0, . . . , d} be an index such that |ai| ≤ |al| for all i ∈ {0, . . . , d}.
Then bi = ai/al, i = 0, . . . , d lie in OK . We have g(X) =

∑d
i=0 biX

i ∈ OK [X], and

since bl = 1, this is a non-zero polynomial. Clearly g̃(θ̃) = 0, where g̃(X) ∈ K̃[X]

has the obvious meaning. Thus θ̃ is algebraic. �

Theorem 2.2.2. If K is algebraically closed, then K̃ is algebraically closed.

Proof. Let c̃ ∈ K̃ and say its minimal polynomial over K̃ is g̃ ∈ K̃[X]. Lift g̃ to
a monic polynomial g ∈ OK [X]. Since K is algebraically closed, g =

∏
i(X − ci)

for some ci ∈ K. Since OK is a valuation ring of K, the ci lie in OK . Hence

g̃ =
∏
i(X − c̃i). Note that c̃i ∈ K̃, and c̃ is one of the c̃i. Thus c̃ ∈ K̃. �
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Theorem 2.2.3. Let K be an algebraic closure of K and fix a norm on K such

that (K, |·|) is an extension of (K, |·|). Then K̃ is an algebraic closure of K̃.

Proof. This is immediate from Theorem 2.2.1 and Theorem 2.2.2 �
Theorem 2.2.3 is often written succinctly as

K̃ = K̃.

From now onwards we will do so, the implicit assumption being that algebraic
closures have somehow been fixed. Recall that two algebraic closures of a field are
isomorphic, but not uniquely isomorphic. In fact even the separable closures are
not uniquely isomorphic, though they are isomorphic.

3. The ring T ◦n

In this section K is a complete non-trivial and non-archimedean field and we set

k = K̃.

3.1. Notations and definitions. Let n ∈ N. Set

(3.1.1) T ◦n = {f ∈ Tn | ‖f‖ ≤ 1}.
Sometimes T ◦n is also written as OK〈ζ1, . . . , ζn〉 and we might have occasion to write
it in this manner. The reason for the alternative notation is clear; if f =

∑
ν cνζ

ν ,
then cν ∈ OK for all ν ∈ Nn.

If f =
∑

ν cνζ
ν , then for all but a finite number of cν , we have |cν | < 1, for

lim|ν|→∞ |cν | = 0 and |cν | ≤ 1 for all ν ∈ Nn. In other words, cν ∈ OK and
for all but a finite number of ν, cν ∈ mK . We therefore have a natural ring
homomorphism:

πn : T ◦n −→ k[ζ1, . . . , ζn].

The preferred notation in the subject is

(3.1.2) f̃ = πn(f) (f ∈ T ◦n ).

3.2. The maximum modulus principle. Consider the “unit disc” in K
n
,

Bn(K) =
{

(x1, . . . , xn) ∈ Kn
∣∣∣ |xi| ≤ 1, 1 ≤ i ≤ n

}
.

Theorem 3.2.1. (The Maximum Modulus Principle) Let f ∈ Tn. Then |f(x1, . . . , xn)|
attains a maximum in Bn(K) and

‖f‖ = max
{
|f(x)|

∣∣∣x ∈ Bn(K)
}
.

Proof. First, from Problem 6 of HW 1, we know that f(x) makes sense for x ∈
Bn(K). Without loss of generality we may assume ‖f‖ = 1. Suppose f =

∑
ν cνζ

ν .

Since |f | = 1, each |cν | ≤ 1, whence for every (x1, . . . , xn) ∈ Bn(K),

|f(x1, . . . , xn)| ≤
∣∣∣∑

ν

cνx
ν1
1 . . . xνnn

∣∣∣ ≤ 1

since each |cνxν11 . . . xνnn | ≤ 1. Thus

sup
{
|f(x)|

∣∣∣x ∈ Bn(K)
}
≤ 1.

Since ‖f‖ = 1, there is a ν0 ∈ Nn such that |cν0 | = 1, whence f̃ is a non-zero

polynomial, for c̃ν0
is a non-zero coefficient in the expansion of f̃ ∈ k[ζ]. By
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Theorem 2.2.3, k is algebraically closed and hence by the Hilbert Nullstellensatz

(for example), there exists x̃ = (x̃1, . . . , x̃n) ∈ kn such that f̃(x̃) 6= 0. Pick any pre-

image x ∈ Bn(K) of x̃. Then f̃(x) = f̃(x̃) 6= 0. Hence |f(x)| = 1. This proves the
supremum displayed above is attained at x ∈ Bn(K), and hence is the maximum
asserted. �
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