LECTURE 21

Date of Lecture: October 31, 2019

Let $\mathcal{A}b$ denote the category of abelian groups. Fix a Grothendieck topology $(\mathscr{C}, \mathscr{C}ov)$. $\mathcal{P}sh$ and $\mathcal{S}h$ denote the category of presheaves and sheaves (of abelian groups) on $(\mathscr{C}, \mathscr{C}ov)$.

The symbol P is for flagging a cautionary comment or a tricky argument. It occurs in the margins and is Knuth's version of Bourbaki's "dangerous bend symbol".

1. Sheafications

1.1. As in §§2.1 of Lectures 18 and 19, let $i: \mathcal{Sh} \to \mathcal{Psh}$ be the forgetful functor and ()[#]: $\mathcal{Psh} \to \mathcal{Sh}$ the sheafifcation functor. Recall that the notion of kernels and cokernels in \mathcal{Psh} are such that for a complex \mathscr{P}^{\bullet} in \mathcal{Psh} ,

(1.1.1)
$$(\mathrm{H}^{q}(\mathscr{P}^{\bullet}))(U) = \mathrm{H}^{q}(\mathscr{P}^{\bullet}(U)) \qquad (U \in \mathscr{C}).$$

Lemma 1.1.2. Let $\mathscr{F} \in Sh$ and $q \in \mathbb{N}$. Then

$$\mathbf{R}^q i(\mathscr{F}) = \{ U \mapsto H^q(U, \mathscr{F}) \}.$$

Proof. Let $\mathscr{F} \to \mathscr{E}^{\bullet}$ be an injective resolution of \mathscr{F} in Sh. Using (1.1.1) we see that

$$\mathbf{R}^{q}i(\mathscr{F})(U) = (\mathbf{H}^{q}(i(\mathscr{E}^{\bullet})))(U) = \mathbf{H}^{q}(\mathscr{E}^{\bullet}(U)) = H^{q}(U,\mathscr{F})$$

for every $U \in \mathscr{C}$.

Proposition 1.1.3. Let \mathscr{F} be a sheaf. Then $(\mathbb{R}^q i(\mathscr{F}))^{\#} = 0$ for $q \geq 1$.

Proof. We know that $()^{\#} \circ i = \mathbf{1}_{Sh}$ (see (2.2.5) of the notes on Lectures 18 and 19). Thus $\mathbb{R}^{q}(()^{\#} \circ i) = 0$ for $q \geq 1$. Since $()^{\#}$ is exact, $\mathbb{R}^{q}(()^{\#} \circ i) = ()^{\#} \circ \mathbb{R}^{q}i = (\mathbb{R}^{q}i)^{\#}$. This proves the proposition.

1.2. Cech to derived functor (first steps). We begin with a result which has important consequences.

Proposition 1.2.1. Let \mathscr{F} be a sheaf. Then $\check{H}^0(U, \mathbb{R}^q i(\mathscr{F})) = 0$ for every $q \ge 1$ and every $U \in \mathscr{C}$.

Proof. First note that since \mathscr{P}^+ is separated for $\mathscr{P} \in \mathscr{Psh}$, the natural map from \mathscr{P}^+ to \mathscr{P}^{+^+} is an inclusion, $\mathscr{P}^+ \hookrightarrow \mathscr{P}^{+^+}$.

Let $U \in \mathscr{C}$ and $q \geq 1$. Proposition 1.1.3 gives:

$$\check{H}^{0}(U, \mathbf{R}^{q}i(\mathscr{F})) = (\mathbf{R}^{q}i(\mathscr{F}))^{*}(U) \hookrightarrow (\mathbf{R}^{q}i(\mathscr{F}))^{**}(U) = (\mathbf{R}^{q}i(\mathscr{F}))^{\sharp}(U) = 0.$$

1.2.2. For $U \in \mathscr{C}$ we have $\check{H}^0(U, -) \circ i = \Gamma(U, -)$. Fix $\mathscr{F} \in \mathcal{Sh}$, as well as an injective resolution $\mathscr{F} \to E^{\bullet}$ in the category of sheaves. Let $I^{\bullet \bullet}$ be a Cartan-Eilenberg resolution of $i(E^{\bullet \bullet})$ in \mathcal{Psh} , and $D^{\bullet \bullet} = \check{H}^0(U, I^{\bullet \bullet})$.

We now switch to more standard notation in place of $H_{II}H_I^{pq}$ associated to $D^{\bullet\bullet}$. Let

(1.2.2.1)
$$E_2^{pq} := H_{II} H_I^{pq}$$

where the right side is the iterated cohomology group associated with $D^{\bullet\bullet}$, as in HW 4, HW 6. E_2^{pq} is technically the " E_2 -term of the spectral sequence associated with $D^{\bullet \bullet}$ ".

The discussion in [Lecture 20, §§1.2], especially Corollary 1.2.4 and §§§1.2.5 of *loc.cit.* applies to our situation if we set F = i and $G = \check{H}^0(U, -)$. Recall that $\check{H}^p(U,-), p \in \mathbf{N}$, are the right derived functors of $\check{H}^0: \mathfrak{Psh} \to \mathcal{A}b$ (see Theorem 1.2.8 of notes on Lectures 18 and 19). Thus we have natural isomorphisms

$$E_2^{pq} \xrightarrow{\sim} \check{H}^p(U, \mathbf{R}^q i(\mathscr{F}))$$

and

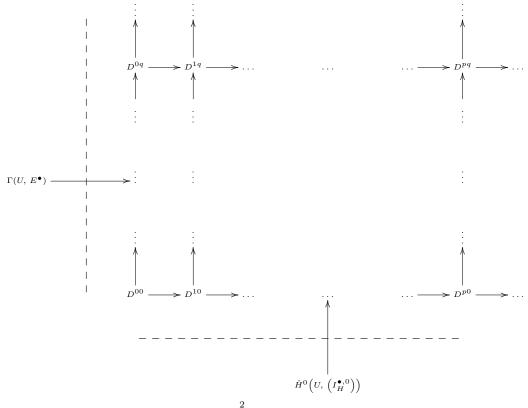
$$H^n(U, \mathscr{F}) \xrightarrow{\sim} H^n(\operatorname{Tot} D^{\bullet \bullet})$$

via [Lecture 20, Corollary 1.2.4 and (1.2.5.2)]. Finally, by [Lecture 20, (1.2.6.1)] we have maps, one for each $n \in \mathbf{N}$,

(1.2.2.2)
$$\check{H}^n(U,\mathscr{F}) \longrightarrow H^n(U,\mathscr{F}) \qquad (n \in \mathbf{N}).$$

These are the *Čech to derived functor cohomology maps*.

The important picture to keep in mind is the following with the understanding that the horizontal arrow passing through the vertical broken line is a quasiisomorphism.



Here the complex $I_H^{\bullet 0}$ is the injective resolution in \mathcal{Psh} of $\mathrm{H}^0(i(E^{\bullet})) = i(\mathscr{F})$ coming from the Cartan-Eilenberg resolution $I^{\bullet \bullet}$ of $i(E^{\bullet})$. In other words, $I_H^{p0} = \mathrm{H}^0(I^{p \bullet}) = \ker(I^{p0} \to I^{p1}), p \in \mathbb{N}$.

The following result is well known in classical topology.

Proposition 1.2.3. Let \mathscr{F} be a sheaf and $U \in \mathscr{C}$. Then (1.2.2.2) gives an isomorphism

$$\check{H}^1(U,\mathscr{F}) \xrightarrow{\sim} H^1(U,\mathscr{F}).$$

Proof. According to Proposition 1.2.1, $E_2^{01} = 0$. The assertion follows from Remark 1.2.6 of Lecture 20, or, what amounts to the same thing, from Problem (6) of HW 6.