
LECTURE 20

Date of Lecture: October 29, 2019

Let Ab denote the category of abelian groups.
The symbol � is for flagging a cautionary comment or a tricky argument. It

occurs in the margins and is Knuth’s version of Bourbaki’s “dangerous bend sym-
bol”.

1. Cartan-Eilenberg resolutions

Fix an abelian category A with enough injectives.

1.1. The Horseshoe Lemma. The following result is fundamental, though easy
to prove.

Lemma 1.1.1. Let

0→ A −→ B −→ C → 0

be an exact sequence in A , and A → E•
A and C → E•

C injective resolutions in
A . Then there exists an injective resolution B → E•

B and an exact sequence of
complexes

(†) 0→ E•
A −→ E•

B −→ E•
C → 0.

Proof. Write ∂pA and ∂pC for the pth-coboundary maps in E•
A and E•

C . Since E•
A

and E•
C are injective complexes, if E•

B exists as in the assertion, then necessarily
EpB is the direct sum EpA ⊕ E

p
C . Therefore set

EpB = EpA ⊕ E
p
C (p ∈ N).

We have to find maps ∂pB : EpB → Ep+1
B such that the resulting complex E•

B resolves
B and fits into the sequence (†) making it exact. At each level p ∈ N we have a
split exact sequence

0→ EpA
( 1
0
)

−−−→ EpB
(0 1)−−−→ EpC → 0.

Since E0
A is an injective object and A is a subobject of B, the map A → E0

A

extends (in perhaps many ways) to B giving us a map ϕ : B → E0
A. Let ψ : B → E0

C

be the composite B → C → E0
C . It is clear that the following diagram with exact

rows commutes:

0 // E0
A

( 1
0
)
// E0
A ⊕ E0

C

( 0 1 ) // E0
C

// 0

0 // A //

OO

B //

(ϕψ )
OO

C //

OO

0

It is easy to check that the middle vertical arrow is injective. Thus we have an
exact sequence 0 → B → E0

B . Let A0 = cokerA→ E0
A, B0 = cokerB → E0

B , and
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C0 = cokerC → E0
C . Then we have a short exact sequence (use the snake lemma

on the above commutative diagram with exact rows)

0→ A0 −→ B0 −→ C0 → 0.

Repeating the argument we gave earlier, since E1
A is an injective object, we have a

map ϕ0 : B0 → E1
A extending the natural map A0 → E1

A and a map ψ0 : B0 → E1
C

which is the composite B0 → C0 → E1
C . Repeating earlier arguments one notes

that

B0

(
ϕ0

ψ0

)
−−−−→ E1

B

is injective and that the diagram below, whose rows are exact, commutes.

0 // E1
A

( 1
0
)
// E1
A ⊕ E1

C

( 0 1 ) // E0
C

// 0

0 // A0 //

OO

B0 //

(
ϕ0

ψ0

) OO
C0 //

OO

0

Set ∂0B : E0
B → E1

B to be the composite

E0
C −−→→ B0

(
ϕ0

ψ0

)
−−−−→ E1

B .

Then 0 → B → E0
B → E1

B is exact. The process can be repeated ad infinitum.
For example, set A1, B1, C1 to be the cokernels of A0 → E1

A, B0 → E1
B , and

C0 → E1
C respectively. Then A1 ↪→ E2

A, C1 ↪→ E2
C and we can find appropriate

ϕ1 : B1 → E2
A and ψ1 : B1 → E2

C and set ∂1B to be the composite of E1
B � B1

followed by
(
ϕ1

ψ1

)
: B1 → E2

B . One checks that H1(0→ E0
B → E1

B → E2
B → 0) = 0.

A standard induction argument then gives the result. �

1.2. Cartan-Eilenberg resolutions. The following is a cut and paste from an-
other set of notes (on spectral sequences) that I wrote. So the notations may not be
consistent with what we had in the lecture. Note that our injective resolutions in
class were “vertical”. Here they are horizontal, and indeed, given other conventions,
having them horizontal is better.

Suppose A is an abelian category with enough injectives, and C• a bounded
below complex in A , say Cq = 0 if q < q0. One can find a double-complex I•,•

(whose total complex is written I•) of injectives in A and maps εq : Cq → I0,q

fitting into the diagram below satisfying the following:

(1) Ip,q = 0 if either p < 0 or q < q0.
(2) The horizontal rows are exact, i.e., for each q ≥ q0, Cq → I•,q is an injective

resolution.
(3) Let Ip,qZ be the kernel of the “vertical differential” Ip,q → Ip,q+1. Then I•,qZ

is an injective resolution of Zq = Zq(C•), where Zq → I•,qZ is the natural
map induced by C• → I•.

(4) Let Ip,qB be the image of the vertical differential Ip,q → Ip,q+1. Then I•,qB
is an injective resolution of Bq = Bq(C•). The map Bq → I0,qB is (again)
the natural map arising from C• → I•.

(5) Let Ip,qH be the q-th cohomology of the complex Ip,•. Then I•,qH is an
injective resolution of Hq(C•) (again via C• → I•).
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...
...

...

0 // Cq+1

OO

εq+1
// I0,q+1 //

OO

I1,q+1 //

OO

· · ·

0 // Cq

OO

εq // I0,q //

OO

I1,q //

OO

· · ·

0 // Cq−1

OO

εq−1
// I0,q−1 //

OO

I1,q−1 //

OO

· · ·

...

OO

...

OO

...

OO

Such a “resolution” of C• always exists. It is by no means unique. It is called a
Cartan-Eilenberg resolution of C•. Here is one way of building one.

Pick arbitrary injective resolutions for Bq and for Hp(C•), with the caveat that
injective resolutions of zero objects will be chosen to be the zero injective resolution.
Call these resolutions I•,qB and I•,qH respectively. Since

(∗) 0→ Bq → Zq → Hq(C•)→ 0

is a short exact sequence of objects, one can use the Horseshoe Lemma to get an
injective resolution of Z•,q of IqZ which fits into a short exact sequence of complexes

(†) 0→ I•,qB → I•,qZ → I•,qH → 0

lifting (∗). Next we have an exact sequence

(∗∗) 0→ Zq → Cq → Bq+1 → 0.

Since we have injective resolutions for the two ends of the short exact sequence,
another application of the Horseshoe Lemma gives us an injective resolution I•,q

which fits into a short exact sequence of complexes

(‡) 0→ I•,qZ → I•,q → I•,q+1
B → 0

lifting (∗∗). Note that since we dealing with injective modules in (†) and (‡) we
have decompositions.

(1.2.1) Ip,q = Ip,qZ ⊕ Ip,q+1
B = Ip,qB ⊕ Ip,qH ⊕ Ip,q+1

B .

It follows that for a fixed p the composite

(1.2.2) Ip,q � Ip,q+1
B ↪→ Ip,q+1

gives a complex Ip,•. In fact, as is easily checked, I•,• forms a double-complex and
the notations we have used in the construction are consistent with the notations
used in the list of requirements from a Cartan-Eilenberg resolution of C•.

The following (easy) Lemma is what gives us the Grothendieck spectral sequence.

Lemma 1.2.3. Let G : A → B be an additive functor. Then for every pair of
integers (p, q) we have

G(Ip,qH ) = Hq(G(Ip,•)).
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Proof. Since G is additive, it respects direct sums. Apply G to the decompositions
in (1.2.1) to obtain

G(Ip,q) = G(Ip,qB )⊕G(Ip,qH )⊕G(Ip,q+1
B ).

The q-th coboundary map for the complex G(Ip,•) can be computed via (1.2.2),

and it is the projection G(Ip,q) � G(p,q+1
B ) followed by the inclusion G(Ip,q+1

B ) ↪→
G(Ip,q+1). From here the q-cocycles and the q-coboundaries in the complex G(Ip,•)
are easily seen to be G(Ip,qB )⊕G(Ip,qH ) and G(Ip,qB ) respectively, giving the lemma.

�

An immediate corollary is the following.

Corollary 1.2.4. Suppose F above is left exact, B also has enough injectives and
G : B → C is a left exact functor between abelian categories such that F (I) is G-
acyclic for every injective object I of A . Let A ∈ A , A→ E• an injective resolution
of A, and I•• a Cartan-Eilenberg resolution of C• = F (E•). Let D•• = G(I••)
and let HIIH

pq
I be as in Problems 3, 4 in HW 5. Then

HIIH
pq
I −→

∼ (RpG ◦RqF )(A) (p, q ∈ N).

Proof. By definition/construction of Cartan-Eilenberg resolutions, I•,qH is an injec-
tive resolution of RqF (A). Lemma 1.2.3 gives G(I•,qH ) = H•,q

I , whence we have

RpG(RqF (A)) = Hp(G(I•,qH )) = Hp(H•,q
I ) = HIIH

pq
I .

�

1.2.5. Consider the situation in Corollary 1.2.4. We have a natural map of com-
plexes (in fact an injective map of complexes)

(1.2.5.1) ϕ• : F (E•)→ Tot (I••)

given at the graded level by F (Eq)→ I0,q ↪→ (Tot (I••))q. Since the qth-row of I••

resolves F (Eq) (via ϕq), ϕ• is a quasi-isomorphism. Since it is a quasi-isomorphism
between G-acyclic complexes,

G(ϕ•) : GF (I•) −→ G(Tot (I••)) = Tot (D••)

is also a quasi-isomorphism. This is seen as follows (in the event you haven’t seen
the argument before). First, if R• is an exact bounded below complex of G-acyclics,
then G(R•) is exact, as can be seen by breaking up R• into short exact sequences,
and noting that if the first two terms of a short exact sequence are G-acyclic, then
so is the last term. The mapping cone C•

ϕ of ϕ• is exact since ϕ• is a quasi-
isomorphism. Moroever, C•

ϕ consists of G-acyclics. Hence, setting R• = C•
ϕ in the

above, we see that G(C•
ϕ) is exact. But clearly G(C•

ϕ) = C•
Gϕ. Hence G(ϕ•) is a

quasi-isomorphism. There are other ways of seeing this (for example use the fact
that the qth-row of D•• must resolve GF (Iq) since F (Iq) is G-acyclic). The net
result is that one has isomorphisms

(1.2.5.2) Rn(GF )(A) −→∼ Hn(Tot (D••)) (n ∈ N).

The map ϕ• identifies F (E•) as a sub-complex of Tot (I••). This can be regarded
as a map along the “y-axis” which forms an edge of I••. There is one along
the ”x-axis” too. Namely, the complex I•,0H which is an injective resolution of

4



H0(F (E•)) = F (A), by the definition/construction of a Cartan-Eilenberg resolution
of F (E•). We thus have a map of complexes

(1.2.5.3) ψ• : I•,0H ↪→ Tot (I••).

This need not be a quasi-isomorphism. But it gives rise to a map,

(1.2.5.4) RnG(F (A)) −→ Hn(Tot (D••)) (n ∈ N).

The following diagram might help in keeping things clear in one’s head (see com-
ments below the diagram).

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

.

.

.

.

.

.

.

.

.

D0q

OO

// D1q

OO

// . . . . . . . . . // Dpq //

OO

. . .

.

.

.

OO

.

.

.

OO

.

.

.

OO

GF (E•) //
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

D00

OO

// D10

OO

// . . . . . . . . . // Dp0 //

OO

. . .

______________________

G
(
I
•,0
H

)

OO

The double-complex D•• is within the dotted lines. The horizontal arrow which
goes across the vertical dotted line on the left is a quasi-isomorphism and gives rise
to the isomorphism (1.2.5.2). The vertical arrow which goes across the horizontal
dotted line at the bottom need not be a quasi-isomorphism. It gives rise to (1.2.5.4).

Remark 1.2.6. In situation discussed in §§§1.2.5, (1.2.5.1)
−1 ◦ (1.2.5.4) gives us a

edge homomorphism (one of many which are so called)

(1.2.6.1) RnG(F (A)) −→ Rn(GF )(A) (n ∈ N).

According to Problem (6) of HW 6 and Corollary 1.2.4 above, if RpGRqF (A) = 0
for (p, q) such that q ≥ 1 and n− 1 ≤ p+ q ≤ n, then (1.2.6.1) is an isomorphism.
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