Let $(k, 1.1)$ be a normed field. If k is non-archimedean this is the same as a field with a valuation.

Two metrics $l \cdot l_{1}$ and $H I_{2}$ are said to be equivalent if they induce the same topology on K.

Recall that a metric is said to be tonvial of $\left|k^{x}\right|=\{1\}$. This is clearly nou-archimebean.

Remark: The only metric equivalent to the trivial metric is the trivial metric. To see this, if 1.1 is torvial then the topology on k is discrete. If on the other hand 1.1 is non-toivial, we can find $a \in k$ with $0<|a|<1$. I. this case $a^{n} \rightarrow 0$ as $n \rightarrow \infty$ since $\left|a^{n}\right|=|a|^{n} \rightarrow 0$ as $n \rightarrow \infty$. Thus the topology on k is not disante.

Examples:

1. $K=\mathbb{R}$ or \mathbb{C} with usual absolute value. These are complete and archimedean. In feat these are the only complete archimetian normed fielle.
2. $k=\mathbb{Q}$. Lit p be a prince. For $x \in Q$ we hare a unique $n \in \mathbb{Z}$ sunk that

$$
x=p^{u} \frac{a}{b} \quad(a, b)=1, \quad(p, a t)=1
$$

Then the formula

$$
|x|_{p}:=p^{-n}
$$

defines ans absolute value on \mathbb{Q}. This is non-anhimedean. We abs have the usual absolute value 1.1∞.

Theorem (Ostrowehi): If p, 1 are district primes then $1 \cdot I_{p}$ and H_{q} are not equivalent. Further, every nourtivial absolute value on \mathbb{Q} is equivalent to 11_{p} for sone $p \leqslant \infty$.
Prof : Will not be doing it. Look up Basic -My II, Janoleson (or any other source). Might develop it as a serves of HW exercises if I have the time.

Proposition: 1.1 , and 1.1_{2} are equivalent if and only if $\exists s>0$ such that $1.1_{1}=1.1_{2}{ }^{2}$.
Prof:
If $1 \cdot I_{1}=1 \cdot 1_{2}^{s}$ for some $s>0$, clearly $1 \cdot 1$, and $1 \cdot I_{2}$ are equivalent.

To prove the otter way int is enough to assume neither $1 \cdot H_{1}$ nor H_{2} are torivial, since we have already adressel the "trivial case" in one of the remarks made above.

So suppose $\left.1 I_{1} \& 1 \cdot\right|_{2}$ are nou-trivial and equinalut. Let $x \in K$ be sit. $|x|<1$. Then $|x|_{1}^{n}=|x|_{1}^{n} \longrightarrow 0$ as $n \longrightarrow \infty$. since $\mid \cdot l_{1}$ and $1 \cdot I_{2}$ are equivalent, this means $x_{2}^{n} \longrightarrow 0$ as $n \longrightarrow \infty$, i.e., $|x|_{2}<1$. By symmetry and the fart that for $a \neq 0,\left|\frac{1}{a}\right|_{j}=\frac{1}{|a|_{j}}, j=1,2$ we see that:

$$
\left.\begin{array}{ll}
|x|_{1}<1 & \Leftrightarrow|x|_{2}<1 \\
|x|_{1}>1 & \Leftrightarrow|x|_{2}>1 \\
|x|_{1}=1 & \Leftrightarrow|x|_{2}=1
\end{array}\right\}(*)
$$

$F_{i x} a_{0} \in k$ witt $\left|a_{0}\right|>1$.
set $s=\frac{\log \left|a_{0}\right|_{1}}{\log \left|a_{0}\right|_{2}}$.
We dais thin

$$
|x|_{1}=|x|_{2}^{\&} \quad \forall x \in k \quad-(* *)
$$

It is enough to prove (**) fer $|x|_{1}>1$, and we will assume that x satrofives this. Let

$$
t=\frac{\log |x|_{1}}{\log \left|a_{0}\right|_{1}} \quad \text { and } \quad t^{\prime}=\frac{\log |x|_{2}}{\log \left|a_{0}\right|_{2}} .
$$

Then $\left|a_{0}\right|_{1}^{t}=|x|_{1}$ and $\left|a_{0}\right|_{2}^{t^{\prime}}=|x|_{2}$. $\left.\quad * * *\right)$

We cain $t=t^{\prime}$. Suppose not. Send $t<t^{\prime}$. Let r be a rational number s.t. $t<r<t^{\prime}$. Let $r=\frac{m}{n}$, where $m, n \in \mathbb{Z}$. $\operatorname{Hom}(* * x)$ and the fort that $\left|a_{0}\right|_{j}>1,|x|_{j}>\mid$, we have

$$
|x|_{1}=\left|a_{0}\right|_{1}^{t}<\left|a_{0}\right|^{m / n} \text { and }|x|_{2}=\left|a_{0}\right|_{2}^{t^{\prime}}>\left|a_{0}\right|^{m / n} \text {. }
$$

This means

$$
\left|\frac{x^{n}}{a_{0}^{m}}\right|_{1}<1 \quad \text { and } \quad\left|\frac{x^{n}}{a_{0}^{n}}\right|_{2}>1
$$

This contradicts $(*)$. So $t \geqslant t^{\prime}$. By symmetry $t^{\prime} \geqslant t$, whence $t=t^{\prime}$. This grins the following:
whence

$$
\begin{aligned}
\frac{\log |x|_{1}}{\log \left|a_{0}\right|_{1}} & =\frac{\log |x|_{2}}{\log |\operatorname{lod}|_{2}}, \\
\log |x|_{1} & =8 \cdot \log |x|_{2} \\
|x|_{1} & =|x|_{2}^{s}
\end{aligned}
$$

ie.,
as required.

Remarks: In what follows k is nou-anchimedean with a nontrivial absolute values (the latter is probably not needed, but I didnit wont ts deal with annoying exceptions which might creep up). $\hat{k}=$ completion of k.

1. If L / k is a finite extension, ate musher of extensions of 1.1_{K} ts L is equal to the number of prime ideals in $L \otimes_{k} \hat{F}$.
2. If k is complete and L / K is algebraic then the extension of 1.1 to L is unique - this is dear from considering finite extensions and using 1. (since $k=\hat{k})$. If funttren L / K is finite, then L is complete w.r.t. absolute value induced by $1 . I_{k}$.
3. Lit \bar{k} be an algelnain closure of k, where k is complete. Then \hat{k} is also algebraically closed. (Lonely therenu! we won't be proving it.)
4. Suppose $1.1_{1}, \ldots, 1 \cdot I_{n}$ are lire extensions of $1 \cdot I_{k}$ to L.

Let L_{i} be the completion of L w.v.t. $1 . l_{i}$. Then there is a natural map $L \otimes_{k} \hat{k} \longrightarrow \prod_{i=1}^{n} L_{i}$ which is surjerture and
such that the kernel is the Jowhin radical of $L \otimes_{k} \hat{K}$. In feats that is how 1. is proved. equal th the milvasical since $L \theta_{k} \hat{k}$ is a finite \hat{k}-algeria, whence a product of actin local rings.

Important Example:
Let \mathbb{Q}_{p} be the completion of \mathbb{Q} w.r.t. $\mid \cdot l_{p}, \overline{\mathbb{Q}}_{p}$ its algehain closme, and let us contume to denote the eningue extension of $1 \cdot 1_{p}$ t \bar{Q}_{p} by 1.1_{p}.

1. Ip extends
uniquely spice
Q_{p} is the
$\underset{\text { w.r.t. }}{\text { amp lam }}$ of Q

$$
\text { w.r.t. } \mathbb{Q}_{p}
$$

Let \mathbb{C}_{p} be completion of \bar{Q}_{p} (w.r.t. I. l_{p} of come). Then from our remarks above, \mathbb{C}_{p} is algetraically closed. In font it is (nou-cononically) isomorphic ts \mathbb{C}. It is often considered the ideal analogue of C in the p-adic world. However it has an important drawback. It is not spherically complete a notion we now define. Spherical completeness also goes by the name of maximally complete.

Definition: $(K, 1.1)$ is spherically complete or maximally complete if earth nested sequence of balls $B_{1} \supset B_{2} \supset \ldots \supset B_{n} \supset \ldots$ hae a nou-empty intersection.

The Halun-Bamaih theorems need not be true in
non-anhimedean fusional analysis - in pent it fails for Banorh spares over \mathbb{E}_{p}. Howenes if k is spherically complete (note that k has to be then complete) then the usual prof of thalum-Bamoulh wales.

To make sense of all this we introduce an important topic. Before we do let us male the following

Convention: From now onwards k is complete, 1.1 nou-trivial, nou-archimelem, enters otherwise stated.

Normed spaces and Bomareh spaces over k
Definition: (i) A normed apure oven K is a veter space E oven K equipped with a map (the "noemi") $\|\cdot\|: E \longrightarrow K$ such that

(ii) A normed space E over k is a Banach space if it is complete with respect to its norm.

If $I \cdot \|_{E}$ and $I \cdot \|_{F}$ are the nous on the nomad spaces E and F then on $E X F, \quad(x, y) \longmapsto\|x\|_{E}+\|y\|_{F}$, gris a norm $\|.\|_{\text {EXP }}$ on EXF which gives the podut topology on EXF.

If E and F are Domains then so is $\left(E X F,\|\cdot\|_{E \times F}\right)$. Classical thrower on Bemanh spares hold over k (except thalu-Iamarlr).

Theovenn: Let E, F be K-Banach spares, and

$$
f: E \rightarrow F
$$

a linear map.
(a) If f is continuous and outs then f is an open Open mapping map. In particular if f is bijerline and continuous Thin then its inverse is also contunous, i.e. $f: E \longrightarrow F$.
(b) The map f is antimous if and only of the paraph $\begin{aligned} & \text { clough } \\ & \text { Ground }\end{aligned} \Gamma_{f}=\{(x, f x) \mid x \in E\}$ is cloned in $E \times F$.
(c) Let b be a collation of continuous linear operators $T: E \longrightarrow F$ s.t. for earl $x \in E$ one has $\left\{\sup _{T \in C}\left\|T_{x}\right\|<\infty\right.$.
$\operatorname{Sup}\|T\|<\infty$
$T \in C_{e}$
where, for any cts orator $T,\|T\|=\sup _{\|x\|=1}\left\|T_{x}\right\|$.
thifforn boundedness Principle.

Caution: Tian also sang that if f is one-to-one and continuous then $f(E)$ is closed in F and $E \sim f(E)$ as a Banach spare. This is dearly not tome in the dassical case, and f very monk doubt it is tome in the nou-archimedean care either. In any care the
classical prof cont not possibly apply as Tian claims, since there is no classical proof. He opus no proof.

Why the terminology? It tums ont that $1 \cdot 1$ is nou-anchimedean if and only if $\forall a \in K,|a| \leq 1$, $|n a| \leq 1 \quad \forall n \in \mathbb{N}$. Using $|a+b|=\operatorname{mar}\{|a|,|b|\}$ one way is clears namely if 1.1 is nou-arehimebeens then then
purpenty holds. Convorsily suppose
$(*) \quad|n a| \leq 1 \quad \forall n \in N$ and \forall a sit. $|a| \leqslant 1$.
if $a, b \in K$ with $|a| \leqslant|b|$, then $\forall n \in \mathbb{N}$ we have

$$
\begin{aligned}
|a+b|^{n} & \leqslant \sum_{j=0}^{n}\left|\binom{n}{j} a^{j} b^{n-j}\right| \\
& =\sum_{j=0}^{n}\left|b^{n-j}\right| \cdot\left|\binom{n}{j} a^{j}\right| \\
& \leqslant \sum_{j=0}^{n}\left|b^{n-j}\right| \cdot\left|b^{j}\right| \text { since }\left|\binom{n}{j} \frac{a j}{b^{j}}\right| \leqslant\left|\frac{a^{j}}{b^{j}}\right| \\
& =(n+1)|b|^{n}
\end{aligned}
$$

Thun

$$
|a+b| \leqslant(n+1)^{1 / n}|b| \quad \forall n \in \mathbb{N} .
$$

Letting $n \rightarrow \infty$ we git $|a+b| \leqslant|b|$. It follows that
1.1 is non-anlimelem.

Recall that for \mathbb{R}, the property $|n x|>|x|$ for some $n \in \mathbb{N}$ is called the archimedean property.

