
LECTURES 18 AND 19

Dates of Lectures: October 22 and 24, 2019

We fix a Grothendieck topology (C ,Cov) throughout the notes for these two
lectures (see [Lecture 14, 1.2.2]). As before N = {0, 1, 2, . . . ,m, . . . }. Rings mean
commutative rings with 1.

The symbol � is for flagging a cautionary comment or a tricky argument. It
occurs in the margins and is Knuth’s version of Bourbaki’s “dangerous bend sym-
bol”.

1. Presheaves and the Čech complex

Let Ab denote the category of abelian groups.

1.1. Presheaves. A presheaf of abelian groups P on C is a contravariant functor
on C taking values in Ab. In other words

P : C ◦ −→ Ab

where C ◦ denotes the opposite category of C . From now on, by a presheaf we will
mean a presheaf of abelian groups, unless otherwise specified. If P and P ′ are
presheaves, a morphism between then is a natural transformation P → P ′. This
makes presheaves on C into a category which we denote PshC , or simply Psh .

The topology Cov is irrelevant to the notion of a presheaf. If φ : P → Q is a
map of presheaves then kerφ is the presheaf U 7→ kerφ(U). Similarly, define cokerφ
as the presheaf U 7→ cokerφ(U). One checks that kerφ and cokerφ are indeed the
kernel and cokernel of φ in Psh .

For V ∈ C , let ZV be the presheaf of abelian groups on C given by

ZV (W ) = ZHomC (W,V ) =
⊕

φ : V→W

Z (W ∈ C )

with obvious “restriction” maps.
The following is easy to see.

(1) Ab has arbitrary direct sums.
(2) If (Pi)i∈I is a family of subobjects of P ∈ Ab, and Q is another subobject

of P, then ∑
i∈I

(Pi ∩Q) =
∑
i∈I

(Pi) ∩Q.

(3) The collection {ZV }V of presheaves are a set of generators for PshC .

Because of the above properties, Psh has enough injectives, i.e., given P ∈ Psh ,
there exists an injective object E in Psh such that P is a subobject of E . We will
not be proving this.
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1.2. Čech theory. Let U ∈ C and let U = {Ui → U}i∈I ∈ Cov(U). For p ∈ N
and i = (i0, . . . , ip) ∈ Ip+1, we write

Ui = Ui0...ip = Ui0 ×U · · · ×U Uip .

For a presheaf P the Čech complex C•(U, P) of P over U is defined as follows.
For p ∈ N, the module Cp(U,P) is

(1.2.1) Cp(U, P) :=
∏

∈Ip+1

P(Ui0...ip),

and the coboundary map ∂p : Cp(U, P)→ Cp+1(U, P) is given by the formula

(1.2.2) (∂pσ)(i0, . . . , ip+1) =

p+1∑
j=0

(−1)jσ(i0, . . . , îj , . . . , ip+1)|Ui0...ip+1
.

It is easy to see that ∂p+1∂p = 0 for every p. The cohomology groups of C•(U, P)
are denoted Hp(U, P) and are called the Čech cohomology groups of P with respect
to U. For future reference we record this definition:

(1.2.3) Hp(U, P) := Hp(C•(U, P)), p ∈ N.

We also define the pth Čech cohomology of P over U to be

(1.2.4) Ȟp(U P) := lim−−→
V

Hp(V, P)), (p ∈ N).

where V ranges over members of Cov(U) with the “partial order” being given by
refinements. We pass over the existence of such direct limits, with a huge class of
indices, in silence, except to note that it is a “filtered” directed system, whence
usual notions of direct limits apply.

Note that we have a natural map

(1.2.5) P(U) −→ H0(U, P)

for if s ∈ P(U) the element (sα) ∈
∏
α∈I P(Uα) = C0(U, P) is a cocycle in

C•(U, P).

Proposition 1.2.6. Let E be an injective object in Psh. Then

Hp(U,E ) = Ȟp(U,E ) = 0, (p ≥ 1).

Proof. Let Z• be the homology complex defined in problem (4) of HW 7. According
to loc.cit., Hp(U,E ) = Hp(HomPsh (Z•,E )). Since E is an injective object, the latter
equals HomPsh (Hp(Z•),E ) and this is zero for p ≥ 1 by loc.cit. Thus Hp(U,E ) = 0
for p ≥ 1. Taking direct limits over refinements we get the remaining assertion. �

Proposition 1.2.7. Given a short exact sequence of presheaves

(E) 0→P ′ −→P −→P ′′ → 0

there exist long exact sequences

(EU)
0 −→H0(U,P ′) −→ H0(U, P) −→ H0(U, P ′′) −→ H1(U, P ′) −→ . . .

. . . −→ Hp−1(U,P ′′) −→ Hp(U, P ′) −→ . . .

and

(Ě)
0 −→Ȟ0(U,P ′) −→ Ȟ0(U, P) −→ Ȟ0(U, P ′′) −→ Ȟ1(U, P ′) −→ . . .

. . . −→ Ȟp−1(U,P ′′) −→ Ȟp(U, P ′) −→ . . .

which are functorial in short exact sequences of the form (E).
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Proof. By the definition of kernels and cokernels in Psh it is clear that C•(U, (E))
is a short exact sequence of complexes of abelian groups. The long exact sequence
(EU) is the one induced by this. Taking direct limits we get (Ě). Functoriality with
respect to (E) is clear from the functoriality of C•(U, (E)), of long exact sequences
associated with short exact sequences, and of direct limits. �

Theorem 1.2.8. For p ∈ N, Hp(U,−) and Ȟp(U, −) are the pth right derived
functors of H0(U, −) and Ȟ0(U, −) respectively.

Proof. This is immediate from Propositions 1.2.6 and 1.2.7. �

2. Sheaves and sheafification

2.1. Sheaves and the functor P 7→ P+. The standard notion of a separated
presheaf and that of a sheaf on a classical topological space have the following
generalisation.

Definition 2.1.1. A presheaf F on C is said to be separated on (C ,Cov) if the
natural map F (U)→ H0(U,F ) of (1.2.5) is an injective map of abelian groups for
every U ∈ Cov(U) and every U ∈ C . It is called a sheaf if F (U) → H0(U,F ) is
an isomorphism or every U ∈ Cov(U) and every U ∈ C . The full subcategory of
Psh consisting of sheaves is denoted ShC or simply Sh

2.1.2. We define a functor
( )

+
: Psh → Psh

by the rule

(2.1.2.1) P+(U) = Ȟ0(U, P)

for U ∈ C and P ∈ Psh . Using (1.2.5) we see there is a natural map

(2.1.2.2) θ(P) : P →P+.

Now, by definition of a sheaf, if P is a sheaf then (1.2.5) is an isomorphism for
every U ∈ Cov(U) and every U ∈ C , whence θ(P) is an isomorphism. The map
θ(P) is clearly functorial in P and so our discussion can be restated as saying
there is a natural transformation

(2.1.2.3) θ : 1Psh → ( )
+

such that

(2.1.2.4) θ|Sh : 1Sh −→∼ ( )
+|Sh .

When F is a sheaf, we do not distinguish between F and F + in view of (2.1.2.4).
We claim P+ is a separated sheaf. Suppose P ∈ Psh , U ∈ C and U ∈ Cov(U)

are given. Say U = {Uα → U}. Suppose ξ̄1, ξ̄2 ∈P+ are such that

(∗) ξ̄1|Uα = ξ̄2|Uα
for every index α. We can find a cover V = {Vν → U} ∈ Cov(U) such that ξ̄1
and ξ̄2 are represented by elements in H0(V, P), say by ξ1, ξ2 ∈ H0(V, P). For
a fixed α, let

Uα ×U V := {Uα ×U Vν → Uα} ∈ Cov(Uα).

The image of ξi in H0(Uα ×U V, P) represents ξ̄i|Uα ∈ Ȟ0(Uα, P). By (∗) we
have a “refinement” Wα = {Wαν → Uα} ∈ Cov(Uα) of Uα ×U V such that the
images of ξ1 and ξ2 in H0(Wα, P) are equal. Let W = {Wαν → U} ∈ Cov(U).
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The images of ξ1 and ξ2 in H0(W, P) are then equal, and hence ξ̄1 = ξ̄2. This
proves that P+ is separated.

We claim more, namely, if P is separated, then P+ is a sheaf. To see this, we
make an observation.

Assume P is separated and fix U ∈ C . Let U,V ∈ Cov(U) with
V a refinementof U. Then H0(U, P)→ H0(V, P) is an injective
map.

We denote the specific refinement V of U by the shorthand V → U. For con-
creteness, let U = {Uα → U} and V = {Vν → U}. Then

V×U U = {Vν ×U Uα → U} ∈ Cov(U)

is a common refinement of U and V. Since P is separated, we have injective maps

P(Uα) ↪→ H0(V×U Uα, P) ↪→ C0(V×U Uα, P)

for every α. Since C0(V×UUα, P) =
∏
ν P(Vν×UUα) and C0(U,P) =

∏
α P(Uα),

taking products of the displayed inclusion over α we get

C0(U, P) ↪→ C0(U×U V, P)

where the hooked arrow is the one arising from the refinement V → U. Since
V×UU→ U factors as V×UU→ V→ U, therefore the map C0(U, P)→ C0(V, P)
is injective. It then follows that H0(U,P) → H0(V,P) is injective, as claimed
above.

We now show that P+ is a sheaf (under the assumption that P is a separated
presheaf). Let U ∈ C , V = {Vα → U} ∈ Cov(U) and suppose (ξ̄α) ∈ H0(V, P+).
We wish to show that there exists ξ̄ ∈P+(U) such that

ξ̄|Uα = ξ̄α

for every α. Now for each α, ξ̄α ∈P+(Uα), and hence we have Wα ∈ Cov(Vα) and
an element ξα ∈ H0(Wα, P) such that ξα represents ξ̄α. For definiteness suppose
Wα = {Wαν → Vα} and

(∗∗) ξα = (ξαν)ν .

For good book-keeping let us denote the refinement V of (the singleton) {U} by
ρ : V → {U}. Varying α, the Wα give us a refinement W = {Wαν → U} of V, and
denote this refinement by ρ′ : W→ V. Consider the following “cartesian” diagram
of covers of U via refinements:

W

ρ′

��

W×U V
1×ρoo

ρ′×1

��

W×U W

ρ′×1

��

1×ρ′oo

V

ρ

��

V×U V

ρ×1

��

1×ρoo V×U W

ρ×1

��

1×ρ′oo

{U} V
ρ

oo W
ρ′

oo
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Let

Vαβ = Vα ×U Vβ .
Recall, ξα ∈ H0(Wα, P) represents ξ̄α ∈P+(Vα). Let

ξ1αβ ∈ H0(Wα ×U Vβ , P)

be its image. Then ξ1αβ represents ξ̄α|Vαβ ∈P+(Vαβ). Similarly, if

ξ2αβ ∈ H0(Vα ×U Wβ ,P)

is the image of ξβ ∈ H0(Wβ , P), then ξ2αβ represents ξ̄β |Vαβ ∈ P+(Vαβ). By

hypothesis, ξ̄α|Vαβ = ξ̄β |Vαβ . It follows that there is a common refinement U of

Wα ×U Vβ and Vα ×U Wβ in Cov(Vαβ) such that the images of ξ1αβ and ξ2αβ in

H0(U, P) are the same. But since P is separated, from our observation above, the
images of ξ1αβ and ξ2αβ would be the same in H0(R, P) for any common refinement

R ∈ Cov(Vαβ) of Wα×U Vβ and Vα×UWβ . Now R = Wα×UWβ is such a common
refinement. Let ξαβ be the common image of ξ1αβ and ξ2αβ in H0(Wα ×U Wβ , P).
Write Wανβµ = Wαν ×U Wβµ. Then

ξαβ = (ξανβµ)νµ.

In fact,using the representation (∗∗) above we may write

ξ1αβ |Wανβµ
= ξανβµ = ξ2αβ |Wανβµ

.

Let α, β, µ, ν all vary. Set

ξ = (ξανβµ)ανβµ.

Then ξ ∈ C0(W ×U W, P). In fact, clearly ξ ∈ H0(W ×U W, P). Let its image
in Ȟ0(U, P) = P+(U) be ξ̄. Then ξ̄|Vα = ξ̄α for every α. This proves that P+ is
a sheaf. We have thus proven the following.

Theorem 2.1.3. Let P ∈ Psh.

(i) P+ is separated.
(ii) If P is separated then P+ is a sheaf.
(iii) If P is a sheaf then P+ = P. More precisely, if P is a sheaf then the

natural map θ(P) : P →P+ of (2.1.2.2) is an isomorphism.

2.2. Sheafifications. Let

(2.2.1) i : Sh −→ Psh

be the forgetful functor. For any P ∈ Psh set

(2.2.2) P# := P++.

Then, according to Theorem 2.1.3, P# is a sheaf. The sheaf P# is called the
sheafification of P. The assignment P 7→P# gives us a functor

(2.2.3) ( )
#
: Psh −→ Sh ,

the so-called sheafification functor. In fact, as with ( )
+
, we have a natural trans-

formation (the so called sheafication map)

(2.2.4) ϑ : 1Psh −→ i ◦ ( )
#

of endo-functors on Psh . Also, according to Theorem 2.1.3, we have an isomorphism

(2.2.5) ( )
# ◦ i −→∼ 1Sh .
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In fact, the functor ( )
#

is left adjoint to i as we shall see. In more naive terms,
suppose P ∈ Psh and F ∈ Sh . Suppose we have a map of presheaves ϕ : P → i(F ).

Applying ( )
#

we get a map ϕ# : P# → (i(F ))# = F (we are treating (2.2.5) as the
identity natural transformation). One checks easily that the diagram

P
ϑ(P) //

ϕ --

i(P#)

i(ϕ#)

��
i(F )

commutes. Moreover, x = i(ϕ#) is the only solution to the equation x ◦ϑ(P) = ϕ.
This can be seen by using (2.2.5). In other words, we have just seen the universal
property of sheafifications. This can be reformulated as

(2.2.6) HomPsh (P, i(F )) −→∼ HomSh (P#, F ).

The above isomorphism is bifunctorial, i.e. it is functorial in P ∈ Psh and in
F ∈ Sh . We thus have the following reformulation of the universal property of
sheafifications:

Lemma 2.2.7. The sheafification functor ( )
#

is a left adjoint to the forgetful
functor i.

2.3. Kernels and cokernels of maps of sheaves. Let ϕ : F → G be a map of
sheaves. Let K and P be the presheaf kernel and presheaf cokernel, i.e., K =
ker i(ϕ) and P = coker i(ϕ). It turns out that K is already a sheaf, and the
proof is exactly the same as the one in the classical theory over classical topological
spaces. Moreover, it is indeed a kernel in Sh , i.e. it has the universal property of
kernels. P on the other hand need not be a sheaf. One sets cokerϕ = P#. With
this definition, using the universal property of sheafifications, one sees that cokerϕ
is indeed a cokernel in Sh , i.e. it has the right universal property.

One checks that Sh is an abelian category. In fact, for the same reasons that
Psh does, Sh has enough injectives. Finally from our description of kernels and
cokernels, it is clear that ( )

#
is an exact functor. We record these statements

below.

Lemma 2.3.1. Sh is an abelian category with enough injectives, and ( )
#
: Psh → Sh

is an exact functor.

An immediate consequence is the following:

Proposition 2.3.2. Let E be an injective object in Sh. Then i(E ) is an injective
object in Psh.

Proof. We have

HomPsh (−, i(E )) −→∼ HomSh (−#, E ) = HomSh (−, E ) ◦ ( )
#
.

On the extreme right we have a composite of exact functors, E being injective, and
( )

#
being exact. Thus HomPsh (−, i(E )) is exact, whence i(E ) is an injective object

in Psh . �
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