LECTURES 18 AND 19

Dates of Lectures: October 22 and 24, 2019

We fix a Grothendieck topology $(\mathscr{C}, \mathscr{C}ov)$ throughout the notes for these two lectures (see [Lecture 14, 1.2.2]). As before $\mathbf{N} = \{0, 1, 2, \ldots, m, \ldots\}$. Rings mean commutative rings with 1.

The symbol P is for flagging a cautionary comment or a tricky argument. It occurs in the margins and is Knuth's version of Bourbaki's "dangerous bend symbol".

1. Presheaves and the Čech complex

Let $\mathcal{A}b$ denote the category of abelian groups.

1.1. **Presheaves.** A presheaf of abelian groups \mathscr{P} on \mathscr{C} is a contravariant functor on \mathscr{C} taking values in $\mathcal{A}b$. In other words

$$\mathscr{P}\colon \mathscr{C}^{\circ}\longrightarrow \mathcal{A}b$$

where \mathscr{C}° denotes the opposite category of \mathscr{C} . From now on, by a presheaf we will mean a presheaf of abelian groups, unless otherwise specified. If \mathscr{P} and \mathscr{P}' are presheaves, a morphism between then is a natural transformation $\mathscr{P} \to \mathscr{P}'$. This makes presheaves on \mathscr{C} into a category which we denote $\mathfrak{Psh}_{\mathscr{C}}$, or simply \mathfrak{Psh} .

The topology $\mathscr{C}ov$ is irrelevant to the notion of a presheaf. If $\phi: \mathscr{P} \to \mathscr{Q}$ is a map of presheaves then ker ϕ is the presheaf $U \mapsto \ker \phi(U)$. Similarly, define coker ϕ as the presheaf $U \mapsto \operatorname{coker} \phi(U)$. One checks that ker ϕ and coker ϕ are indeed the kernel and cokernel of ϕ in \mathfrak{Psh} .

For $V \in \mathscr{C}$, let \mathcal{Z}_V be the presheaf of abelian groups on \mathscr{C} given by

$$Z_V(W) = \mathbf{Z}^{\operatorname{Hom}_{\mathscr{C}}(W, V)} = \bigoplus_{\phi \colon V \to W} \mathbf{Z} \qquad (W \in \mathscr{C})$$

with obvious "restriction" maps.

The following is easy to see.

- (1) $\mathcal{A}b$ has arbitrary direct sums.
- (2) If $(\mathscr{P}_i)_{i\in I}$ is a family of subobjects of $\mathscr{P} \in \mathcal{A}b$, and \mathscr{Q} is another subobject of \mathscr{P} , then

$$\sum_{i\in I}(\mathscr{P}_i\cap\mathscr{Q})=\sum_{i\in I}(\mathscr{P}_i)\cap\mathscr{Q}$$

(3) The collection $\{Z_V\}_V$ of presheaves are a set of generators for $Psh_{\mathscr{C}}$.

Because of the above properties, \mathcal{Psh} has enough injectives, i.e., given $\mathscr{P} \in \mathcal{Psh}$, there exists an injective object \mathscr{E} in \mathcal{Psh} such that \mathscr{P} is a subobject of \mathscr{E} . We will not be proving this.

1.2. Čech theory. Let $U \in \mathscr{C}$ and let $\mathfrak{U} = \{U_i \to U\}_{i \in I} \in \mathscr{C}ov(U)$. For $p \in \mathbb{N}$ and $\mathbf{i} = (i_0, \ldots, i_p) \in I^{p+1}$, we write

$$U_{\boldsymbol{i}} = U_{i_0 \dots i_p} = U_{i_0} \times_U \dots \times_U U_{i_p}$$

For a presheaf \mathscr{P} the Čech complex $C^{\bullet}(\mathfrak{U}, \mathscr{P})$ of \mathscr{P} over \mathfrak{U} is defined as follows. For $p \in \mathbf{N}$, the module $C^{p}(\mathfrak{U}, \mathscr{P})$ is

(1.2.1)
$$C^{p}(\mathfrak{U}, \mathscr{P}) := \prod_{\in I^{p+1}} \mathscr{P}(U_{i_0\dots i_p}),$$

and the coboundary map $\partial^p: C^p(\mathfrak{U}, \mathscr{P}) \to C^{p+1}(\mathfrak{U}, \mathscr{P})$ is given by the formula

(1.2.2)
$$(\partial^p \sigma)(i_0, \dots, i_{p+1}) = \sum_{j=0}^{p+1} (-1)^j \sigma(i_0, \dots, \hat{i}_j, \dots, i_{p+1})|_{U_{i_0\dots i_{p+1}}}$$

It is easy to see that $\partial^{p+1}\partial^p = 0$ for every p. The cohomology groups of $C^{\bullet}(\mathfrak{U}, \mathscr{P})$ are denoted $H^p(\mathfrak{U}, \mathscr{P})$ and are called the *Čech cohomology groups of* \mathscr{P} with respect to \mathfrak{U} . For future reference we record this definition:

(1.2.3)
$$H^p(\mathfrak{U}, \mathscr{P}) := \mathrm{H}^p(C^{\bullet}(\mathfrak{U}, \mathscr{P})), \qquad p \in \mathbf{N}.$$

We also define the p^{th} Čech cohomology of \mathscr{P} over U to be

(1.2.4)
$$\check{H}^{p}(U\mathscr{P}) := \lim_{\mathfrak{V}} H^{p}(\mathfrak{V}, \mathscr{P})), \qquad (p \in \mathbf{N}).$$

where \mathfrak{V} ranges over members of $\mathscr{C}ov(U)$ with the "partial order" being given by refinements. We pass over the existence of such direct limits, with a huge class of indices, in silence, except to note that it is a "filtered" directed system, whence usual notions of direct limits apply.

Note that we have a natural map

(1.2.5)
$$\mathscr{P}(U) \longrightarrow H^0(\mathfrak{U}, \mathscr{P})$$

for if $s \in \mathscr{P}(U)$ the element $(s_{\alpha}) \in \prod_{\alpha \in I} \mathscr{P}(U_{\alpha}) = C^{0}(\mathfrak{U}, \mathscr{P})$ is a cocycle in $C^{\bullet}(\mathfrak{U}, \mathscr{P})$.

Proposition 1.2.6. Let & be an injective object in Psh. Then

$$H^p(\mathfrak{U},\mathscr{E}) = \check{H}^p(U,\mathscr{E}) = 0, \qquad (p \ge 1).$$

Proof. Let \mathcal{Z}_{\bullet} be the homology complex defined in problem (4) of HW 7. According to *loc.cit.*, $H^{p}(\mathfrak{U}, \mathscr{E}) = \mathrm{H}^{p}(\mathrm{Hom}_{\mathscr{Psh}}(\mathcal{Z}_{\bullet}, \mathscr{E}))$. Since \mathscr{E} is an injective object, the latter equals $\mathrm{Hom}_{\mathscr{Psh}}(\mathrm{H}_{p}(\mathcal{Z}_{\bullet}), \mathscr{E})$ and this is zero for $p \geq 1$ by *loc.cit.* Thus $H^{p}(\mathfrak{U}, \mathscr{E}) = 0$ for $p \geq 1$. Taking direct limits over refinements we get the remaining assertion. \Box

Proposition 1.2.7. Given a short exact sequence of presheaves

(E)
$$0 \to \mathscr{P}' \longrightarrow \mathscr{P} \longrightarrow \mathscr{P}'' \to 0$$

there exist long exact sequences

$$(E_{\mathfrak{U}}) \qquad \begin{array}{c} 0 \longrightarrow H^{0}(\mathfrak{U}, \mathscr{P}') \longrightarrow H^{0}(\mathfrak{U}, \mathscr{P}) \longrightarrow H^{0}(\mathfrak{U}, \mathscr{P}'') \longrightarrow H^{1}(\mathfrak{U}, \mathscr{P}') \longrightarrow \dots \\ \dots \longrightarrow H^{p-1}(\mathfrak{U}, \mathscr{P}'') \longrightarrow H^{p}(\mathfrak{U}, \mathscr{P}') \longrightarrow \dots \end{array}$$

and

$$(\check{E}) \qquad \begin{array}{c} 0 \longrightarrow \check{H}^0(U, \mathscr{P}') \longrightarrow \check{H}^0(U, \mathscr{P}) \longrightarrow \check{H}^0(U, \mathscr{P}'') \longrightarrow \check{H}^1(U, \mathscr{P}') \longrightarrow \dots \\ \dots \longrightarrow \check{H}^{p-1}(U, \mathscr{P}'') \longrightarrow \check{H}^p(U, \mathscr{P}') \longrightarrow \dots \end{array}$$

which are functorial in short exact sequences of the form (E).

Proof. By the definition of kernels and cokernels in \mathcal{Psh} it is clear that $C^{\bullet}(\mathfrak{U}, (E))$ is a short exact sequence of complexes of abelian groups. The long exact sequence $(E_{\mathfrak{U}})$ is the one induced by this. Taking direct limits we get (\check{E}) . Functoriality with respect to (E) is clear from the functoriality of $C^{\bullet}(\mathfrak{U}, (E))$, of long exact sequences associated with short exact sequences, and of direct limits.

Theorem 1.2.8. For $p \in \mathbf{N}$, $H^p(\mathfrak{U}, -)$ and $\check{H}^p(U, -)$ are the p^{th} right derived functors of $H^0(\mathfrak{U}, -)$ and $\check{H}^0(U, -)$ respectively.

Proof. This is immediate from Propositions 1.2.6 and 1.2.7.

2. Sheaves and sheafification

2.1. Sheaves and the functor $\mathscr{P} \mapsto \mathscr{P}^{*}$. The standard notion of a separated presheaf and that of a sheaf on a classical topological space have the following generalisation.

Definition 2.1.1. A presheaf \mathscr{F} on \mathscr{C} is said to be *separated* on $(\mathscr{C}, \mathscr{C}ov)$ if the natural map $\mathscr{F}(U) \to H^0(\mathfrak{U}, \mathscr{F})$ of (1.2.5) is an injective map of abelian groups for every $\mathfrak{U} \in \mathscr{C}ov(U)$ and every $U \in \mathscr{C}$. It is called a *sheaf* if $\mathscr{F}(U) \to H^0(\mathfrak{U}, \mathscr{F})$ is an isomorphism or every $\mathfrak{U} \in \mathscr{C}ov(U)$ and every $U \in \mathscr{C}$. The full subcategory of *Psh* consisting of sheaves is denoted $\mathscr{S}h_{\mathscr{C}}$ or simply $\mathscr{S}h$

2.1.2. We define a functor

$$()^* \colon \mathcal{P}sh \to \mathcal{P}sh$$

by the rule

(2.1.2.1) $\mathscr{P}^{+}(U) = \check{H}^{0}(U, \mathscr{P})$

for $U \in \mathscr{C}$ and $\mathscr{P} \in \mathcal{Psh}$. Using (1.2.5) we see there is a natural map

(2.1.2.2)
$$\theta(\mathscr{P}) \colon \mathscr{P} \to \mathscr{P}^+.$$

Now, by definition of a sheaf, if \mathscr{P} is a sheaf then (1.2.5) is an isomorphism for every $\mathfrak{U} \in \mathscr{C}ov(U)$ and every $U \in \mathscr{C}$, whence $\theta(\mathscr{P})$ is an isomorphism. The map $\theta(\mathscr{P})$ is clearly functorial in \mathscr{P} and so our discussion can be restated as saying there is a natural transformation

$$(2.1.2.3) \qquad \qquad \theta: \mathbf{1}_{\mathfrak{Psh}} \to ()^*$$

such that

$$(2.1.2.4) \qquad \qquad \theta|_{Sh} \colon \mathbf{1}_{Sh} \xrightarrow{\sim} ()^*|_{Sh}.$$

When \mathscr{F} is a sheaf, we do not distinguish between \mathscr{F} and \mathscr{F}^+ in view of (2.1.2.4). We claim \mathscr{P}^+ is a separated sheaf. Suppose $\mathscr{P} \in \mathfrak{Psh}, U \in \mathscr{C}$ and $\mathfrak{U} \in \mathscr{C}ov(U)$ are given. Say $\mathfrak{U} = \{U_{\alpha} \to U\}$. Suppose $\bar{\xi}_1, \bar{\xi}_2 \in \mathscr{P}^+$ are such that

$$(*) \qquad \qquad \bar{\xi}_1|_{U_\alpha} = \bar{\xi}_2|_{U_\alpha}$$

for every index α . We can find a cover $\mathfrak{V} = \{V_{\nu} \to U\} \in \mathscr{C}ov(U)$ such that $\overline{\xi}_1$ and $\overline{\xi}_2$ are represented by elements in $H^0(\mathfrak{V}, \mathscr{P})$, say by $\xi_1, \xi_2 \in H^0(\mathfrak{V}, \mathscr{P})$. For a fixed α , let

$$U_{\alpha} \times_U \mathfrak{V} := \{ U_{\alpha} \times_U V_{\nu} \to U_{\alpha} \} \in \mathscr{C}ov(U_{\alpha}).$$

The image of ξ_i in $H^0(U_{\alpha} \times_U \mathfrak{V}, \mathscr{P})$ represents $\overline{\xi}_i|_{U_{\alpha}} \in \check{H}^0(U_{\alpha}, \mathscr{P})$. By (*) we have a "refinement" $\mathfrak{W}_{\alpha} = \{W_{\alpha\nu} \to U_{\alpha}\} \in \mathscr{C}ov(U_{\alpha})$ of $U_{\alpha} \times_U \mathfrak{V}$ such that the images of ξ_1 and ξ_2 in $H^0(\mathfrak{W}_{\alpha}, \mathscr{P})$ are equal. Let $\mathfrak{W} = \{W_{\alpha\nu} \to U\} \in \mathscr{C}ov(U)$.

The images of ξ_1 and ξ_2 in $H^0(\mathfrak{W}, \mathscr{P})$ are then equal, and hence $\overline{\xi}_1 = \overline{\xi}_2$. This proves that \mathscr{P}^+ is separated.

We claim more, namely, if \mathscr{P} is separated, then \mathscr{P}^+ is a sheaf. To see this, we make an observation.

Assume \mathscr{P} is separated and fix $U \in \mathscr{C}$. Let $\mathfrak{U}, \mathfrak{V} \in \mathscr{C}ov(U)$ with \mathfrak{V} a refinement of \mathfrak{U} . Then $H^0(\mathfrak{U}, \mathscr{P}) \to H^0(\mathfrak{V}, \mathscr{P})$ is an injective map.

We denote the specific refinement \mathfrak{V} of \mathfrak{U} by the shorthand $\mathfrak{V} \to \mathfrak{U}$. For concreteness, let $\mathfrak{U} = \{U_{\alpha} \to U\}$ and $\mathfrak{V} = \{V_{\nu} \to U\}$. Then

 $\mathfrak{V} \times_U \mathfrak{U} = \{ V_{\nu} \times_U U_{\alpha} \to U \} \in \mathscr{C}ov(U)$

is a common refinement of \mathfrak{U} and \mathfrak{V} . Since \mathscr{P} is separated, we have injective maps

$$\mathscr{P}(U_{\alpha}) \hookrightarrow H^{0}(\mathfrak{V} \times_{U} U_{\alpha}, \mathscr{P}) \hookrightarrow C^{0}(\mathfrak{V} \times_{U} U_{\alpha}, \mathscr{P})$$

for every α . Since $C^0(\mathfrak{V}_{\times_U}U_{\alpha}, \mathscr{P}) = \prod_{\nu} \mathscr{P}(V_{\nu} \times_U U_{\alpha})$ and $C^0(\mathfrak{U}, \mathscr{P}) = \prod_{\alpha} \mathscr{P}(U_{\alpha})$, taking products of the displayed inclusion over α we get

$$C^0(\mathfrak{U}, \mathscr{P}) \hookrightarrow C^0(\mathfrak{U} \times_U \mathfrak{V}, \mathscr{P})$$

where the hooked arrow is the one arising from the refinement $\mathfrak{V} \to \mathfrak{U}$. Since $\mathfrak{V} \times_U \mathfrak{U} \to \mathfrak{U}$ factors as $\mathfrak{V} \times_U \mathfrak{U} \to \mathfrak{V} \to \mathfrak{U}$, therefore the map $C^0(\mathfrak{U}, \mathscr{P}) \to C^0(\mathfrak{V}, \mathscr{P})$ is injective. It then follows that $H^0(\mathfrak{U}, \mathscr{P}) \to H^0(\mathfrak{V}, \mathscr{P})$ is injective, as claimed above.

We now show that \mathscr{P}^+ is a sheaf (under the assumption that \mathscr{P} is a separated presheaf). Let $U \in \mathscr{C}, \mathfrak{V} = \{V_\alpha \to U\} \in \mathscr{C}ov(U)$ and suppose $(\bar{\xi}_\alpha) \in H^0(\mathfrak{V}, \mathscr{P}^+)$. We wish to show that there exists $\bar{\xi} \in \mathscr{P}^+(U)$ such that

$$|\bar{\xi}|_{U_{\alpha}} = \bar{\xi}_{\alpha}$$

for every α . Now for each α , $\bar{\xi}_{\alpha} \in \mathscr{P}^{*}(U_{\alpha})$, and hence we have $\mathfrak{W}_{\alpha} \in \mathscr{C}ov(V_{\alpha})$ and an element $\xi_{\alpha} \in H^{0}(\mathfrak{W}_{\alpha}, \mathscr{P})$ such that ξ_{α} represents $\bar{\xi}_{\alpha}$. For definiteness suppose $\mathfrak{W}_{\alpha} = \{W_{\alpha\nu} \to V_{\alpha}\}$ and

$$(**) \qquad \qquad \xi_{\alpha} = (\xi_{\alpha\nu})_{\nu}$$

For good book-keeping let us denote the refinement \mathscr{V} of (the singleton) $\{U\}$ by $\rho: \mathscr{V} \to \{U\}$. Varying α , the \mathfrak{W}_{α} give us a refinement $\mathfrak{W} = \{W_{\alpha\nu} \to U\}$ of \mathfrak{V} , and denote this refinement by $\rho': \mathfrak{W} \to \mathfrak{V}$. Consider the following "cartesian" diagram of covers of U via refinements:

 $V_{\alpha\beta} = V_{\alpha} \times_{U} V_{\beta}.$ Recall, $\xi_{\alpha} \in H^{0}(\mathfrak{W}_{\alpha}, \mathscr{P})$ represents $\bar{\xi}_{\alpha} \in \mathscr{P}^{+}(V_{\alpha}).$ Let $\xi^{1}_{\alpha\beta} \in H^{0}(\mathfrak{W}_{\alpha} \times_{U} V_{\beta}, \mathscr{P})$

be its image. Then $\xi^1_{\alpha\beta}$ represents $\bar{\xi}_{\alpha}|_{V_{\alpha\beta}} \in \mathscr{P}^+(V_{\alpha\beta})$. Similarly, if

$$\xi_{\alpha\beta}^2 \in H^0(V_\alpha \times_U \mathfrak{W}_\beta, \mathscr{P})$$

is the image of $\xi_{\beta} \in H^0(\mathfrak{W}_{\beta}, \mathscr{P})$, then $\xi^2_{\alpha\beta}$ represents $\overline{\xi}_{\beta}|_{V_{\alpha\beta}} \in \mathscr{P}^*(V_{\alpha\beta})$. By hypothesis, $\overline{\xi}_{\alpha}|_{V_{\alpha\beta}} = \overline{\xi}_{\beta}|_{V_{\alpha\beta}}$. It follows that there is a common refinement \mathfrak{U} of $\mathfrak{W}_{\alpha} \times_U V_{\beta}$ and $V_{\alpha} \times_U \mathfrak{W}_{\beta}$ in $\mathscr{C}ov(V_{\alpha\beta})$ such that the images of $\xi^1_{\alpha\beta}$ and $\xi^2_{\alpha\beta}$ in $H^0(\mathfrak{U}, \mathscr{P})$ are the same. But since \mathscr{P} is separated, from our observation above, the images of $\xi^1_{\alpha\beta}$ and $\xi^2_{\alpha\beta}$ would be the same in $H^0(\mathfrak{R}, \mathscr{P})$ for any common refinement $\mathfrak{R} \in \mathscr{C}ov(V_{\alpha\beta})$ of $\mathfrak{W}_{\alpha} \times_U V_{\beta}$ and $V_{\alpha} \times_U \mathfrak{W}_{\beta}$. Now $\mathfrak{R} = \mathfrak{W}_{\alpha} \times_U \mathfrak{W}_{\beta}$ is such a common refinement. Let $\xi_{\alpha\beta}$ be the common image of $\xi^1_{\alpha\beta}$ and $\xi^2_{\alpha\beta}$ in $H^0(\mathfrak{W}_{\alpha} \times_U \mathfrak{W}_{\beta}, \mathscr{P})$. Write $W_{\alpha\nu\beta\mu} = W_{\alpha\nu} \times_U W_{\beta\mu}$. Then

$$\xi_{\alpha\beta} = (\xi_{\alpha\nu\beta\mu})_{\nu\mu}.$$

In fact, using the representation (**) above we may write

$$\xi^1_{\alpha\beta}|_{W_{\alpha\nu\beta\mu}} = \xi_{\alpha\nu\beta\mu} = \xi^2_{\alpha\beta}|_{W_{\alpha\nu\beta\mu}}.$$

Let α, β, μ, ν all vary. Set

$$\xi = (\xi_{\alpha\nu\beta\mu})_{\alpha\nu\beta\mu}.$$

Then $\xi \in C^0(\mathfrak{W} \times_U \mathfrak{W}, \mathscr{P})$. In fact, clearly $\xi \in H^0(\mathfrak{W} \times_U \mathfrak{W}, \mathscr{P})$. Let its image in $\check{H}^0(U, \mathscr{P}) = \mathscr{P}^+(U)$ be $\bar{\xi}$. Then $\bar{\xi}|_{V_\alpha} = \bar{\xi}_\alpha$ for every α . This proves that \mathscr{P}^+ is a sheaf. We have thus proven the following.

Theorem 2.1.3. Let $\mathscr{P} \in \mathcal{Psh}$.

- (i) \mathscr{P}^+ is separated.
- (ii) If \mathscr{P} is separated then \mathscr{P}^+ is a sheaf.
- (iii) If 𝒫 is a sheaf then 𝒫⁺ = 𝒫. More precisely, if 𝒫 is a sheaf then the natural map θ(𝒫): 𝒫 → 𝒫⁺ of (2.1.2.2) is an isomorphism.

2.2. Sheafifications. Let

be the forgetful functor. For any $\mathscr{P} \in \mathcal{Psh}$ set

$$(2.2.2) \qquad \qquad \mathscr{P}^{\#} := \mathscr{P}^{+^{+}}.$$

Then, according to Theorem 2.1.3, $\mathscr{P}^{\#}$ is a sheaf. The sheaf $\mathscr{P}^{\#}$ is called the *sheafification* of \mathscr{P} . The assignment $\mathscr{P} \mapsto \mathscr{P}^{\#}$ gives us a functor

$$(2.2.3) \qquad \qquad ()^{\#}: \mathfrak{Psh} \longrightarrow \mathfrak{Sh},$$

the so-called *sheafification functor*. In fact, as with $()^+$, we have a natural transformation (the so called *sheafication map*)

$$(2.2.4) \qquad \qquad \vartheta: \mathbf{1}_{\mathfrak{Psh}} \longrightarrow i \circ ()^{\#}$$

of endo-functors on Psh. Also, according to Theorem 2.1.3, we have an isomorphism

$$(2.2.5) \qquad ()^{\#} \circ i \xrightarrow{\sim} \mathbf{1}_{Sh}$$

Let

In fact, the functor ()[#] is left adjoint to *i* as we shall see. In more naive terms, suppose $\mathscr{P} \in \mathscr{Psh}$ and $\mathscr{F} \in \mathscr{Sh}$. Suppose we have a map of presheaves $\varphi : \mathscr{P} \to i(\mathscr{F})$. Applying ()[#] we get a map $\varphi^{#} : \mathscr{P}^{#} \to (i(\mathscr{F}))^{#} = \mathscr{F}$ (we are treating (2.2.5) as the identity natural transformation). One checks easily that the diagram

commutes. Moreover, $x = i(\varphi^{\#})$ is the only solution to the equation $x \circ \vartheta(\mathscr{P}) = \varphi$. This can be seen by using (2.2.5). In other words, we have just seen the universal property of sheafifications. This can be reformulated as

(2.2.6) $\operatorname{Hom}_{\mathfrak{Psh}}(\mathscr{P}, i(\mathscr{F})) \xrightarrow{\sim} \operatorname{Hom}_{\mathfrak{Sh}}(\mathscr{P}^{\#}, \mathscr{F}).$

The above isomorphism is *bifunctorial*, i.e. it is functorial in $\mathscr{P} \in \mathcal{Psh}$ and in $\mathscr{F} \in \mathcal{Sh}$. We thus have the following reformulation of the universal property of sheafifications:

Lemma 2.2.7. The sheafification functor ()[#] is a left adjoint to the forgetful functor i.

2.3. Kernels and cokernels of maps of sheaves. Let $\varphi: \mathscr{F} \to \mathscr{G}$ be a map of sheaves. Let \mathscr{K} and \mathscr{P} be the presheaf kernel and presheaf cokernel, i.e., $\mathscr{K} = \ker i(\varphi)$ and $\mathscr{P} = \operatorname{coker} i(\varphi)$. It turns out that \mathscr{K} is already a sheaf, and the proof is exactly the same as the one in the classical theory over classical topological spaces. Moreover, it is indeed a kernel in \mathcal{Sh} , i.e. it has the universal property of kernels. \mathscr{P} on the other hand need not be a sheaf. One sets coker $\varphi = \mathscr{P}^{\#}$. With this definition, using the universal property of sheafifications, one sees that coker φ is indeed a cokernel in \mathcal{Sh} , i.e. it has the right universal property.

One checks that \mathcal{Sh} is an abelian category. In fact, for the same reasons that \mathcal{Psh} does, \mathcal{Sh} has enough injectives. Finally from our description of kernels and cokernels, it is clear that ()[#] is an exact functor. We record these statements below.

Lemma 2.3.1. Sh is an abelian category with enough injectives, and ()[#]: $\mathfrak{Psh} \to \mathfrak{Sh}$ is an exact functor.

An immediate consequence is the following:

Proposition 2.3.2. Let \mathscr{E} be an injective object in Sh. Then $i(\mathscr{E})$ is an injective object in Psh.

Proof. We have

 $\operatorname{Hom}_{\mathfrak{Psh}}(-, i(\mathscr{E})) \xrightarrow{\sim} \operatorname{Hom}_{\mathfrak{Sh}}(-^{\sharp}, \mathscr{E}) = \operatorname{Hom}_{\mathfrak{Sh}}(-, \mathscr{E}) \circ ()^{\sharp}.$

On the extreme right we have a composite of exact functors, \mathscr{E} being injective, and ()[#] being exact. Thus $\operatorname{Hom}_{\operatorname{Psft}}(-, i(\mathscr{E}))$ is exact, whence $i(\mathscr{E})$ is an injective object in Psft .