LECTURES 18 AND 19

Dates of Lectures: October 22 and 24, 2019

We fix a Grothendieck topology (\mathscr{C}, \mathscr{C} ov) throughout the notes for these two lectures (see [Lecture 14, 1.2.2]). As before $\mathbf{N}=\{0,1,2, \ldots, m, \ldots\}$. Rings mean commutative rings with 1.

The symbol 3 is for flagging a cautionary comment or a tricky argument. It occurs in the margins and is Knuth's version of Bourbaki's "dangerous bend symbol".

1. Presheaves and the Čech complex

Let $\mathcal{A} b$ denote the category of abelian groups.
1.1. Presheaves. A presheaf of abelian groups \mathscr{P} on \mathscr{C} is a contravariant functor on \mathscr{C} taking values in $\mathcal{A} b$. In other words

$$
\mathscr{P}: \mathscr{C}^{\circ} \longrightarrow \mathcal{A} b
$$

where \mathscr{C}° denotes the opposite category of \mathscr{C}. From now on, by a presheaf we will mean a presheaf of abelian groups, unless otherwise specified. If \mathscr{P} and \mathscr{P}^{\prime} are presheaves, a morphism between then is a natural transformation $\mathscr{P} \rightarrow \mathscr{P}^{\prime}$. This makes presheaves on \mathscr{C} into a category which we denote $\mathcal{P}_{s} \mathscr{C}_{\mathscr{C}}$, or simply $\mathcal{P} s \mathscr{F}_{\text {. }}$.

The topology $\mathscr{C o v}$ is irrelevant to the notion of a presheaf. If $\phi: \mathscr{P} \rightarrow \mathscr{Q}$ is a map of presheaves then $\operatorname{ker} \phi$ is the presheaf $U \mapsto \operatorname{ker} \phi(U)$. Similarly, define coker ϕ as the presheaf $U \mapsto \operatorname{coker} \phi(U)$. One checks that $\operatorname{ker} \phi$ and coker ϕ are indeed the kernel and cokernel of ϕ in $P s \hbar$.

For $V \in \mathscr{C}$, let z_{V} be the presheaf of abelian groups on \mathscr{C} given by

$$
z_{V}(W)=\mathbf{Z}^{\operatorname{Hom}_{\mathscr{C}}(W, V)}=\bigoplus_{\phi: V \rightarrow W} \mathbf{Z} \quad(W \in \mathscr{C})
$$

with obvious "restriction" maps.
The following is easy to see.
(1) $\mathcal{A} b$ has arbitrary direct sums.
(2) If $\left(\mathscr{P}_{i}\right)_{i \in I}$ is a family of subobjects of $\mathscr{P} \in \mathcal{A} b$, and \mathscr{Q} is another subobject of \mathscr{P}, then

$$
\sum_{i \in I}\left(\mathscr{P}_{i} \cap \mathscr{Q}\right)=\sum_{i \in I}\left(\mathscr{P}_{i}\right) \cap \mathscr{Q} .
$$

(3) The collection $\left\{z_{V}\right\}_{V}$ of presheaves are a set of generators for $\mathscr{P}_{s} \mathcal{L}_{\mathscr{C}}$.

Because of the above properties, $P_{s} \neq$ has enough injectives, i.e., given $\mathscr{P} \in \mathscr{P} s h$, there exists an injective object \mathscr{E} in P sh such that \mathscr{P} is a subobject of \mathscr{E}. We will not be proving this.
1.2. Čech theory. Let $U \in \mathscr{C}$ and let $\mathfrak{U}=\left\{U_{i} \rightarrow U\right\}_{i \in I} \in \mathscr{C o v}(U)$. For $p \in \mathbf{N}$ and $\boldsymbol{i}=\left(i_{0}, \ldots, i_{p}\right) \in I^{p+1}$, we write

$$
U_{i}=U_{i_{0} \ldots i_{p}}=U_{i_{0}} \times_{U} \cdots \times_{U} U_{i_{p}}
$$

For a presheaf \mathscr{P} the Čech complex $C \bullet(\mathfrak{U}, \mathscr{P})$ of \mathscr{P} over \mathfrak{U} is defined as follows. For $p \in \mathbf{N}$, the module $C^{p}(\mathfrak{U}, \mathscr{P})$ is

$$
\begin{equation*}
C^{p}(\mathfrak{U}, \mathscr{P}):=\prod_{\in I^{p+1}} \mathscr{P}\left(U_{i_{0} \ldots i_{p}}\right) \tag{1.2.1}
\end{equation*}
$$

and the coboundary map $\partial^{p}: C^{p}(\mathfrak{U}, \mathscr{P}) \rightarrow C^{p+1}(\mathfrak{U}, \mathscr{P})$ is given by the formula

$$
\begin{equation*}
\left(\partial^{p} \sigma\right)\left(i_{0}, \ldots, i_{p+1}\right)=\left.\sum_{j=0}^{p+1}(-1)^{j} \sigma\left(i_{0}, \ldots, \hat{i}_{j}, \ldots, i_{p+1}\right)\right|_{U_{i_{0} \ldots i_{p+1}}} \tag{1.2.2}
\end{equation*}
$$

It is easy to see that $\partial^{p+1} \partial^{p}=0$ for every p. The cohomology groups of $C^{\bullet}(\mathfrak{U}, \mathscr{P})$ are denoted $H^{p}(\mathfrak{U}, \mathscr{P})$ and are called the Čech cohomology groups of \mathscr{P} with respect to \mathfrak{U}. For future reference we record this definition:

$$
\begin{equation*}
H^{p}(\mathfrak{U}, \mathscr{P}):=\mathrm{H}^{p}\left(C^{\bullet}(\mathfrak{U}, \mathscr{P})\right), \quad p \in \mathbf{N} . \tag{1.2.3}
\end{equation*}
$$

$$
\begin{equation*}
\left.\check{H}^{p}(U \mathscr{P}):=\underset{\mathfrak{V}}{\lim } H^{p}(\mathfrak{V}, \mathscr{P})\right), \quad(p \in \mathbf{N}) \tag{1.2.4}
\end{equation*}
$$

where \mathfrak{V} ranges over members of $\mathscr{C o v}(U)$ with the "partial order" being given by refinements. We pass over the existence of such direct limits, with a huge class of indices, in silence, except to note that it is a "filtered" directed system, whence usual notions of direct limits apply.

Note that we have a natural map

$$
\begin{equation*}
\mathscr{P}(U) \longrightarrow H^{0}(\mathfrak{U}, \mathscr{P}) \tag{1.2.5}
\end{equation*}
$$

for if $s \in \mathscr{P}(U)$ the element $\left(s_{\alpha}\right) \in \prod_{\alpha \in I} \mathscr{P}\left(U_{\alpha}\right)=C^{0}(\mathfrak{U}, \mathscr{P})$ is a cocycle in $C^{\bullet}(\mathfrak{U}, \mathscr{P})$.

Proposition 1.2.6. Let \mathscr{E} be an injective object in $\mathcal{P s f}$. Then

$$
H^{p}(\mathfrak{U}, \mathscr{E})=\check{H}^{p}(U, \mathscr{E})=0, \quad(p \geq 1)
$$

Proof. Let Z_{\bullet} be the homology complex defined in problem (4) of HW 7. According to loc.cit., $H^{p}(\mathfrak{U}, \mathscr{E})=\mathrm{H}^{p}\left(\operatorname{Hom}_{\mathcal{P}_{s h}}\left(Z_{\bullet}, \mathscr{E}\right)\right)$. Since \mathscr{E} is an injective object, the latter equals $\operatorname{Hom}_{P_{s \hbar}(}\left(\mathrm{H}_{p}\left(Z_{\bullet}\right), \mathscr{E}\right)$ and this is zero for $p \geq 1$ by loc.cit. Thus $H^{p}(\mathfrak{U}, \mathscr{E})=0$ for $p \geq 1$. Taking direct limits over refinements we get the remaining assertion.

Proposition 1.2.7. Given a short exact sequence of presheaves

$$
\begin{equation*}
0 \rightarrow \mathscr{P}^{\prime} \longrightarrow \mathscr{P} \longrightarrow \mathscr{P}^{\prime \prime} \rightarrow 0 \tag{E}
\end{equation*}
$$

there exist long exact sequences
$\left(E_{\mathfrak{U}}\right)$

$$
\begin{aligned}
0 \longrightarrow & H^{0}\left(\mathfrak{U}, \mathscr{P}^{\prime}\right) \longrightarrow H^{0}(\mathfrak{U}, \mathscr{P}) \longrightarrow H^{0}\left(\mathfrak{U}, \mathscr{P}^{\prime \prime}\right) \longrightarrow H^{1}\left(\mathfrak{U}, \mathscr{P}^{\prime}\right) \longrightarrow \ldots \\
& \ldots \longrightarrow H^{p-1}\left(\mathfrak{U}, \mathscr{P}^{\prime \prime}\right) \longrightarrow H^{p}\left(\mathfrak{U}, \mathscr{P}^{\prime}\right) \longrightarrow \ldots
\end{aligned}
$$

and

$$
\begin{gather*}
0 \longrightarrow \check{H}^{0}\left(U, \mathscr{P}^{\prime}\right) \longrightarrow \check{H}^{0}(U, \mathscr{P}) \longrightarrow \check{H}^{0}\left(U, \mathscr{P}^{\prime \prime}\right) \longrightarrow \check{H}^{1}\left(U, \mathscr{P}^{\prime}\right) \longrightarrow \ldots \\
\ldots \longrightarrow \check{H}^{p-1}\left(U, \mathscr{P}^{\prime \prime}\right) \longrightarrow \check{H}^{p}\left(U, \mathscr{P}^{\prime}\right) \longrightarrow \ldots \tag{E}
\end{gather*}
$$

which are functorial in short exact sequences of the form (E).

Proof. By the definition of kernels and cokernels in $\mathcal{P}_{\text {s }} \boldsymbol{Z}$ it is clear that $C^{\bullet}(\mathfrak{U},(\mathrm{E}))$ is a short exact sequence of complexes of abelian groups. The long exact sequence $\left(\mathrm{E}_{\mathfrak{U}}\right)$ is the one induced by this. Taking direct limits we get (E) . Functoriality with respect to (E) is clear from the functoriality of $C^{\bullet}(\mathfrak{U},(\mathrm{E}))$, of long exact sequences associated with short exact sequences, and of direct limits.

Theorem 1.2.8. For $p \in \mathbf{N}, H^{p}(\mathfrak{U},-)$ and $\check{H}^{p}(U,-)$ are the $p^{\text {th }}$ right derived functors of $H^{0}(\mathfrak{U},-)$ and $\check{H}^{0}(U,-)$ respectively.

Proof. This is immediate from Propositions 1.2.6 and 1.2.7.

2. Sheaves and sheafification

2.1. Sheaves and the functor $\mathscr{P} \mapsto \mathscr{P}^{+}$. The standard notion of a separated presheaf and that of a sheaf on a classical topological space have the following generalisation.

Definition 2.1.1. A presheaf \mathscr{F} on \mathscr{C} is said to be separated on $(\mathscr{C}, \mathscr{C}$ ov $)$ if the natural map $\mathscr{F}(U) \rightarrow H^{0}(\mathfrak{U}, \mathscr{F})$ of (1.2.5) is an injective map of abelian groups for every $\mathfrak{U} \in \mathscr{C o v}(U)$ and every $U \in \mathscr{C}$. It is called a sheaf if $\mathscr{F}(U) \rightarrow H^{0}(\mathfrak{U}, \mathscr{F})$ is an isomorphism or every $\mathfrak{U} \in \mathscr{C o v}(U)$ and every $U \in \mathscr{C}$. The full subcategory of Psh consisting of sheaves is denoted $S \mathscr{C}_{\mathscr{C}}$ or simply $S \hbar$
2.1.2. We define a functor

$$
()^{+}: P_{s} \hbar \rightarrow P_{s} \hbar
$$

by the rule

$$
\begin{equation*}
\mathscr{P}^{+}(U)=\check{H}^{0}(U, \mathscr{P}) \tag{2.1.2.1}
\end{equation*}
$$

for $U \in \mathscr{C}$ and $\mathscr{P} \in \mathscr{P} s f$. Using (1.2.5) we see there is a natural map

$$
\begin{equation*}
\theta(\mathscr{P}): \mathscr{P} \rightarrow \mathscr{P}^{+} . \tag{2.1.2.2}
\end{equation*}
$$

Now, by definition of a sheaf, if \mathscr{P} is a sheaf then (1.2.5) is an isomorphism for every $\mathfrak{U} \in \mathscr{C o v}(U)$ and every $U \in \mathscr{C}$, whence $\theta(\mathscr{P})$ is an isomorphism. The map $\theta(\mathscr{P})$ is clearly functorial in \mathscr{P} and so our discussion can be restated as saying there is a natural transformation

$$
\begin{equation*}
\theta: \mathbf{1}_{P_{s h}} \rightarrow()^{+} \tag{2.1.2.3}
\end{equation*}
$$

such that

$$
\begin{equation*}
\left.\theta\right|_{S \hbar}:\left.\mathbf{1}_{S \hbar} \xrightarrow{\sim}()^{+}\right|_{S \hbar} . \tag{2.1.2.4}
\end{equation*}
$$

When \mathscr{F} is a sheaf, we do not distinguish between \mathscr{F} and \mathscr{F}^{+}in view of (2.1.2.4).
We claim \mathscr{P}^{+}is a separated sheaf. Suppose $\mathscr{P} \in \mathcal{P}_{s} \kappa, U \in \mathscr{C}$ and $\mathfrak{U} \in \mathscr{C o v}(U)$ are given. Say $\mathfrak{U}=\left\{U_{\alpha} \rightarrow U\right\}$. Suppose $\bar{\xi}_{1}, \bar{\xi}_{2} \in \mathscr{P}^{+}$are such that

$$
\begin{equation*}
\left.\bar{\xi}_{1}\right|_{U_{\alpha}}=\left.\bar{\xi}_{2}\right|_{U_{\alpha}} \tag{*}
\end{equation*}
$$

for every index α. We can find a cover $\mathfrak{V}=\left\{V_{\nu} \rightarrow U\right\} \in \mathscr{C o v}(U)$ such that $\bar{\xi}_{1}$ and $\bar{\xi}_{2}$ are represented by elements in $H^{0}(\mathfrak{V}, \mathscr{P})$, say by $\xi_{1}, \xi_{2} \in H^{0}(\mathfrak{V}, \mathscr{P})$. For a fixed α, let

$$
U_{\alpha} \times_{U} \mathfrak{V}:=\left\{U_{\alpha} \times_{U} V_{\nu} \rightarrow U_{\alpha}\right\} \in \mathscr{C o v}\left(U_{\alpha}\right)
$$

The image of ξ_{i} in $H^{0}\left(U_{\alpha} \times_{U} \mathfrak{V}, \mathscr{P}\right)$ represents $\left.\bar{\xi}_{i}\right|_{U_{\alpha}} \in \check{H}^{0}\left(U_{\alpha}, \mathscr{P}\right)$. By $(*)$ we have a "refinement" $\mathfrak{W}_{\alpha}=\left\{W_{\alpha \nu} \rightarrow U_{\alpha}\right\} \in \mathscr{C o v}\left(U_{\alpha}\right)$ of $U_{\alpha} \times_{U} \mathfrak{V}$ such that the images of ξ_{1} and ξ_{2} in $H^{0}\left(\mathfrak{W}_{\alpha}, \mathscr{P}\right)$ are equal. Let $\mathfrak{W}=\left\{W_{\alpha \nu} \rightarrow U\right\} \in \mathscr{C o v}(U)$.

The images of ξ_{1} and ξ_{2} in $H^{0}(\mathfrak{W}, \mathscr{P})$ are then equal, and hence $\bar{\xi}_{1}=\bar{\xi}_{2}$. This proves that \mathscr{P}^{+}is separated.

We claim more, namely, if \mathscr{P} is separated, then \mathscr{P}^{+}is a sheaf. To see this, we make an observation.

$$
\begin{aligned}
& \text { Assume } \mathscr{P} \text { is separated and fix } U \in \mathscr{C} \text {. Let } \mathfrak{U}, \mathfrak{V} \in \mathscr{C o v}(U) \text { with } \\
& \mathfrak{V} \text { a refinementof } \mathfrak{U} \text {. Then } H^{0}(\mathfrak{U}, \mathscr{P}) \rightarrow H^{0}(\mathfrak{V}, \mathscr{P}) \text { is an injective } \\
& \text { map. }
\end{aligned}
$$

We denote the specific refinement \mathfrak{V} of \mathfrak{U} by the shorthand $\mathfrak{V} \rightarrow \mathfrak{U}$. For concreteness, let $\mathfrak{U}=\left\{U_{\alpha} \rightarrow U\right\}$ and $\mathfrak{V}=\left\{V_{\nu} \rightarrow U\right\}$. Then

$$
\mathfrak{V} \times_{U} \mathfrak{U}=\left\{V_{\nu} \times_{U} U_{\alpha} \rightarrow U\right\} \in \mathscr{C o v}(U)
$$

is a common refinement of \mathfrak{U} and \mathfrak{V}. Since \mathscr{P} is separated, we have injective maps

$$
\mathscr{P}\left(U_{\alpha}\right) \hookrightarrow H^{0}\left(\mathfrak{V} \times_{U} U_{\alpha}, \mathscr{P}\right) \hookrightarrow C^{0}\left(\mathfrak{V} \times_{U} U_{\alpha}, \mathscr{P}\right)
$$

for every α. Since $C^{0}\left(\mathfrak{V} \times{ }_{U} U_{\alpha}, \mathscr{P}\right)=\prod_{\nu} \mathscr{P}\left(V_{\nu} \times_{U} U_{\alpha}\right)$ and $C^{0}(\mathfrak{U}, \mathscr{P})=\prod_{\alpha} \mathscr{P}\left(U_{\alpha}\right)$, taking products of the displayed inclusion over α we get

$$
C^{0}(\mathfrak{U}, \mathscr{P}) \hookrightarrow C^{0}\left(\mathfrak{U} \times{ }_{U} \mathfrak{V}, \mathscr{P}\right)
$$

where the hooked arrow is the one arising from the refinement $\mathfrak{V} \rightarrow \mathfrak{U}$. Since $\mathfrak{V} \times{ }_{U} \mathfrak{U} \rightarrow \mathfrak{U}$ factors as $\mathfrak{V} \times{ }_{U} \mathfrak{U} \rightarrow \mathfrak{V} \rightarrow \mathfrak{U}$, therefore the map $C^{0}(\mathfrak{U}, \mathscr{P}) \rightarrow C^{0}(\mathfrak{V}, \mathscr{P})$ is injective. It then follows that $H^{0}(\mathfrak{U}, \mathscr{P}) \rightarrow H^{0}(\mathfrak{V}, \mathscr{P})$ is injective, as claimed above.

We now show that \mathscr{P}^{+}is a sheaf (under the assumption that \mathscr{P} is a separated presheaf). Let $U \in \mathscr{C}, \mathfrak{V}=\left\{V_{\alpha} \rightarrow U\right\} \in \mathscr{C o v}(U)$ and suppose $\left(\bar{\xi}_{\alpha}\right) \in H^{0}\left(\mathfrak{V}, \mathscr{P}^{+}\right)$. We wish to show that there exists $\bar{\xi} \in \mathscr{P}^{+}(U)$ such that

$$
\left.\bar{\xi}\right|_{U_{\alpha}}=\bar{\xi}_{\alpha}
$$

for every α. Now for each $\alpha, \bar{\xi}_{\alpha} \in \mathscr{P}^{+}\left(U_{\alpha}\right)$, and hence we have $\mathfrak{W}_{\alpha} \in \mathscr{C o v}\left(V_{\alpha}\right)$ and an element $\xi_{\alpha} \in H^{0}\left(\mathfrak{W}_{\alpha}, \mathscr{P}\right)$ such that ξ_{α} represents $\bar{\xi}_{\alpha}$. For definiteness suppose $\mathfrak{W}_{\alpha}=\left\{W_{\alpha \nu} \rightarrow V_{\alpha}\right\}$ and
(**)

$$
\xi_{\alpha}=\left(\xi_{\alpha \nu}\right)_{\nu} .
$$

For good book-keeping let us denote the refinement \mathscr{V} of (the singleton) $\{U\}$ by $\rho: \mathscr{V} \rightarrow\{U\}$. Varying α, the \mathfrak{W}_{α} give us a refinement $\mathfrak{W}=\left\{W_{\alpha \nu} \rightarrow U\right\}$ of \mathfrak{V}, and denote this refinement by $\rho^{\prime}: \mathfrak{W} \rightarrow \mathfrak{V}$. Consider the following "cartesian" diagram of covers of U via refinements:

Let

$$
V_{\alpha \beta}=V_{\alpha} \times_{U} V_{\beta}
$$

Recall, $\xi_{\alpha} \in H^{0}\left(\mathfrak{W}_{\alpha}, \mathscr{P}\right)$ represents $\bar{\xi}_{\alpha} \in \mathscr{P}^{+}\left(V_{\alpha}\right)$. Let

$$
\xi_{\alpha \beta}^{1} \in H^{0}\left(\mathfrak{W}_{\alpha} \times_{U} V_{\beta}, \mathscr{P}\right)
$$

be its image. Then $\xi_{\alpha \beta}^{1}$ represents $\left.\bar{\xi}_{\alpha}\right|_{V_{\alpha \beta}} \in \mathscr{P}^{+}\left(V_{\alpha \beta}\right)$. Similarly, if

$$
\xi_{\alpha \beta}^{2} \in H^{0}\left(V_{\alpha} \times_{U} \mathfrak{W}_{\beta}, \mathscr{P}\right)
$$

is the image of $\xi_{\beta} \in H^{0}\left(\mathfrak{W}_{\beta}, \mathscr{P}\right)$, then $\xi_{\alpha \beta}^{2}$ represents $\left.\bar{\xi}_{\beta}\right|_{V_{\alpha \beta}} \in \mathscr{P}^{+}\left(V_{\alpha \beta}\right)$. By hypothesis, $\left.\bar{\xi}_{\alpha}\right|_{V_{\alpha \beta}}=\left.\bar{\xi}_{\beta}\right|_{V_{\alpha \beta}}$. It follows that there is a common refinement \mathfrak{U} of $\mathfrak{W}_{\alpha} \times_{U} V_{\beta}$ and $V_{\alpha} \times_{U} \mathfrak{W}_{\beta}$ in $\mathscr{C o v}\left(V_{\alpha \beta}\right)$ such that the images of $\xi_{\alpha \beta}^{1}$ and $\xi_{\alpha \beta}^{2}$ in $H^{0}(\mathfrak{U}, \mathscr{P})$ are the same. But since \mathscr{P} is separated, from our observation above, the images of $\xi_{\alpha \beta}^{1}$ and $\xi_{\alpha \beta}^{2}$ would be the same in $H^{0}(\mathfrak{R}, \mathscr{P})$ for any common refinement $\mathfrak{R} \in \mathscr{C o v}\left(V_{\alpha \beta}\right)$ of $\mathfrak{W}_{\alpha} \times_{U} V_{\beta}$ and $V_{\alpha} \times_{U} \mathfrak{W}_{\beta}$. Now $\mathfrak{R}=\mathfrak{W}_{\alpha} \times_{U} \mathfrak{W}_{\beta}$ is such a common refinement. Let $\xi_{\alpha \beta}$ be the common image of $\xi_{\alpha \beta}^{1}$ and $\xi_{\alpha \beta}^{2}$ in $H^{0}\left(\mathfrak{W}_{\alpha} \times_{U} \mathfrak{W}_{\beta}, \mathscr{P}\right)$. Write $W_{\alpha \nu \beta \mu}=W_{\alpha \nu} \times_{U} W_{\beta \mu}$. Then

$$
\xi_{\alpha \beta}=\left(\xi_{\alpha \nu \beta \mu}\right)_{\nu \mu} .
$$

In fact, using the representation $(* *)$ above we may write

$$
\left.\xi_{\alpha \beta}^{1}\right|_{W_{\alpha \nu \beta \mu}}=\xi_{\alpha \nu \beta \mu}=\left.\xi_{\alpha \beta}^{2}\right|_{W_{\alpha \nu \beta \mu}} .
$$

Let α, β, μ, ν all vary. Set

$$
\xi=\left(\xi_{\alpha \nu \beta \mu}\right)_{\alpha \nu \beta \mu} .
$$

Then $\xi \in C^{0}\left(\mathfrak{W} \times_{U} \mathfrak{W}, \mathscr{P}\right)$. In fact, clearly $\xi \in H^{0}\left(\mathfrak{W} \times_{U} \mathfrak{W}, \mathscr{P}\right)$. Let its image in $\check{H}^{0}(U, \mathscr{P})=\mathscr{P}^{+}(U)$ be $\bar{\xi}$. Then $\left.\bar{\xi}\right|_{V_{\alpha}}=\bar{\xi}_{\alpha}$ for every α. This proves that \mathscr{P}^{+}is a sheaf. We have thus proven the following.

Theorem 2.1.3. Let $\mathscr{P} \in \mathcal{P s}^{\prime}$.
(i) \mathscr{P}^{+}is separated.
(ii) If \mathscr{P} is separated then \mathscr{P}^{+}is a sheaf.
(iii) If \mathscr{P} is a sheaf then $\mathscr{P}^{+}=\mathscr{P}$. More precisely, if \mathscr{P} is a sheaf then the natural map $\theta(\mathscr{P}): \mathscr{P} \rightarrow \mathscr{P}^{+}$of (2.1.2.2) is an isomorphism.
2.2. Sheafifications. Let

$$
\begin{equation*}
i: S \hbar \longrightarrow P_{s} \hbar \tag{2.2.1}
\end{equation*}
$$

be the forgetful functor. For any $\mathscr{P} \in \mathcal{P}_{s h}$ set

$$
\begin{equation*}
\mathscr{P}^{\#}:=\mathscr{P}^{++} . \tag{2.2.2}
\end{equation*}
$$

Then, according to Theorem 2.1.3, $\mathscr{P}^{\#}$ is a sheaf. The sheaf $\mathscr{P}^{\#}$ is called the sheafification of \mathscr{P}. The assignment $\mathscr{P} \mapsto \mathscr{P}^{\#}$ gives us a functor

$$
\begin{equation*}
()^{\#}: P s h \longrightarrow S K \tag{2.2.3}
\end{equation*}
$$

the so-called sheafification functor. In fact, as with () ${ }^{+}$, we have a natural transformation (the so called sheafication map)

$$
\begin{equation*}
\vartheta: \mathbf{1}_{P_{s h}} \longrightarrow i \circ()^{\#} \tag{2.2.4}
\end{equation*}
$$

of endo-functors on $\mathcal{P s} f$. Also, according to Theorem 2.1.3, we have an isomorphism

$$
\begin{equation*}
()^{\#} \circ i \underset{5}{\sim} \mathbf{1}_{S h} . \tag{2.2.5}
\end{equation*}
$$

In fact, the functor ()$^{\#}$ is left adjoint to i as we shall see. In more naive terms, suppose $\mathscr{P} \in \mathcal{P}_{\text {s }} \boldsymbol{K}$ and $\mathscr{F} \in \mathcal{S k}$. Suppose we have a map of presheaves $\varphi: \mathscr{P} \rightarrow i(\mathscr{F})$. Applying () ${ }^{\#}$ we get a map $\varphi^{\#}: \mathscr{P}^{\#} \rightarrow(i(\mathscr{F}))^{\#}=\mathscr{F}$ (we are treating $(2.2 .5)$ as the identity natural transformation). One checks easily that the diagram

commutes. Moreover, $x=i\left(\varphi^{\#}\right)$ is the only solution to the equation $x \circ \vartheta(\mathscr{P})=\varphi$. This can be seen by using (2.2.5). In other words, we have just seen the universal property of sheafifications. This can be reformulated as

$$
\begin{equation*}
\operatorname{Hom}_{P_{s h}(}(\mathscr{P}, i(\mathscr{F})) \xrightarrow{\sim} \operatorname{Hom}_{S h}\left(\mathscr{P}^{\#}, \mathscr{F}\right) . \tag{2.2.6}
\end{equation*}
$$

The above isomorphism is bifunctorial, i.e. it is functorial in $\mathscr{P} \in \mathscr{P} s \mathcal{A}$ and in $\mathscr{F} \in S G$. We thus have the following reformulation of the universal property of sheafifications:

Lemma 2.2.7. The sheafification functor () ${ }^{\#}$ is a left adjoint to the forgetful functor i.
2.3. Kernels and cokernels of maps of sheaves. Let $\varphi: \mathscr{F} \rightarrow \mathscr{G}$ be a map of sheaves. Let \mathscr{K} and \mathscr{P} be the presheaf kernel and presheaf cokernel, i.e., $\mathscr{K}=$ $\operatorname{ker} i(\varphi)$ and $\mathscr{P}=$ coker $i(\varphi)$. It turns out that \mathscr{K} is already a sheaf, and the proof is exactly the same as the one in the classical theory over classical topological spaces. Moreover, it is indeed a kernel in $\boldsymbol{S h}$, i.e. it has the universal property of kernels. \mathscr{P} on the other hand need not be a sheaf. One sets coker $\varphi=\mathscr{P}^{\#}$. With this definition, using the universal property of sheafifications, one sees that coker φ is indeed a cokernel in $\mathcal{S h}$, i.e. it has the right universal property.

One checks that $S K$ is an abelian category. In fact, for the same reasons that $P_{s h}$ does, Sh has enough injectives. Finally from our description of kernels and cokernels, it is clear that ()$^{\#}$ is an exact functor. We record these statements below.
Lemma 2.3.1. Sh is an abelian category with enough injectives, and () : Ps $\mathfrak{H} \rightarrow \mathcal{S K}$ is an exact functor.

An immediate consequence is the following:
Proposition 2.3.2. Let \mathscr{E} be an injective object in Sh. Then $i(\mathscr{E})$ is an injective object in Psh.

Proof. We have

$$
\operatorname{Hom}_{P_{s \hbar}(}(-, i(\mathscr{E})) \xrightarrow{\sim} \operatorname{Hom}_{S \hbar}\left(-^{\#}, \mathscr{E}\right)=\operatorname{Hom}_{S \hbar}(-, \mathscr{E}) \circ()^{\#}
$$

On the extreme right we have a composite of exact functors, \mathscr{E} being injective, and ()$^{\#}$ being exact. Thus $\operatorname{Hom}_{P_{s h}(}(-, i(\mathscr{E}))$ is exact, whence $i(\mathscr{E})$ is an injective object in $P s f$.

