
LECTURE 17 SUPPLEMENT

Date of Lecture: October 17, 2019

This supplements Lecture 17. Unless otherwise specified, K is a complete non-
archimedean field, and to avoid annoying trivialities we assume the absolute value | |
on K is non-trivial. As before N = {0, 1, 2, . . . ,m, . . . }. Rings mean commutative
rings with 1.

The symbol � is for flagging a cautionary comment or a tricky argument. It
occurs in the margins and is Knuth’s version of Bourbaki’s “dangerous bend sym-
bol”.

1. Finite maps between affinoid algebras

This is section is preliminary to answering questions about maps Tn → A such
that the “free affinoid algebra variables” ζ1, . . . , ζn map to a specified set of elements
a1, . . . , an in A. If instead of Tn we have the polynomial ring K[ζ], then of course
this can always be done.

1.1. Let Tn = K〈ζ1, . . . , ζn〉. Let A be an affinoid K-algebra and ‖ ‖α some residue
norm from a Gauss norm on a Tate algebra. Define (as before)

(1.1.1) A◦ := {x ∈ A | ‖x‖α ≤ 1}.

Also set

(1.1.2)
◦
A := {x ∈ A | ‖x‖sup ≤ 1}.

Since ‖ ‖sup ≤ ‖ ‖α, we have

A◦ ⊂
◦
A.

Lemma 1.1.3.
◦
A is integral over A◦ .

Proof. Suppose f ∈
◦
A. Let T = Tr be the Tate algebra giving ‖ ‖α, i.e., we have

a surjective map α : T → A and ‖ ‖α is the residue norm of the Gauss norm ‖ ‖
on T . According to [Lecture 13, Lemma 1.2.4], for each a ∈ A we have an integral
equation

(∗) an + c1a
n−1 + · · ·+ cn = 0

with ci ∈ T such that ‖a‖sup = maxi‖ci‖
1
i . We are using the fact that ‖ ‖ =

‖ ‖sup on T . By definition of the residue norm, if bi is the image of ci in A,

then ‖bi‖α ≤ ‖ci‖. Now suppose a ∈
◦
A. Then ‖ci‖ ≤ 1 for i = 1, . . . , n (since

1 ≥ ‖a‖sup = maxi‖ci‖
1
i ) and hence ‖bi‖α ≤ 1 for all i, i.e. bi ∈ A◦ . Thus the

integral relation (∗), remains true with bi in place of ci and this shows that a is
integral over A◦ . �

Definition 1.1.4. Let (A, ‖ ‖α) be as above. An element a ∈ A is said to be power
bounded if {‖an‖α | n ∈ N} is bounded.
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Theorem 1.1.5. Let (A, ‖ ‖α) be as above and let a ∈ A. The following are
equivalent

(i) a ∈
◦
A,

(ii) a is integral over A◦ ,
(iii) a is power bounded.

In particular, being power bounded does not depend on the choice of the residue
norm ‖ ‖α.

Proof. We have already seen that (i) implies (ii). Now suppose (ii) is true. Then
A◦ [a] is a finite module over A◦ . If b1, . . . , bm are any A◦ -module generators of
A◦ [a], then ‖x‖α ≤ max1≤j≤m‖bj‖ for every x ∈ A◦ [a]. In particular {‖an‖α}n∈N
is bounded, giving us (iii).

Now suppose (iii) is true. Say ‖an‖α ≤M for all n ∈ N. For any x ∈ Sp(A) we
have |a(x)|n = |an(x)| ≤ ‖an‖sup ≤ ‖an‖α ≤M for n ∈ N and hence |a(x)| ≤ 1. It
follows that ‖a‖sup ≤ 1 giving us (i). �

Theorem 1.1.6. Let B be an affinoid K-algebra and a K-algebra map σ : Tn → B.

Then σ(ζi) ∈
◦
B for i = 1, . . . , n. Conversely, suppose b1, . . . , bn ∈

◦
B. Then there

is a unique K-algebra map σ : Tn = K〈ζ1, . . . , ζn〉 → B such that σ(ζi) = bi,
i = 1, . . . , n.

Proof. The first part is obvious since |σ(ζi)(x)| = |ζi(aσ(x))| ≤ ‖ζi‖sup = 1.
We now prove the converse. Uniqueness follows from the fact that K[ζ] is dense

in K〈ζ〉 and all K-algebra maps between affinoid algebras are continuous. It re-
mains to show existence. Endow B with any residue norm ‖ ‖α. The bi are power
bounded according to Theorem 1.1.5. Hence there exists M > 0 such that for
‖bν11 . . . bνnn ‖α < M for every ν ∈ Nn. If

∑
ν∈Nn cνζ

ν ∈ Tn, it follows that∑
ν‖cνb

ν‖ ≤ M
∑

ν |cν | < ∞, whence
∑

ν cνb
ν is convergent, being absolutely

convergent in the Banach algebra B. Set σ(
∑

ν∈Nn cνζ
ν) =

∑
ν∈Nn cνb

ν . This
gives σ : Tn → B with the required properties. �

Remark 1.1.7. Theorem 1.1.6 gives us the reason why ζi are called free affinoid
algebra generators or free affinoid algebra variables. The Tate algebra Tn should
be viewed as free algebra in n generators for affinoid K-algebras. If σ : Tn =
K〈ζ1, . . . , ζn〉 → B is a surjective map, and bi = σ(ζi) for i = 1, . . . , n, then we
often write

(1.1.7.1) B = K〈b1, . . . , bn〉.

In such a case the bi are called topological K-algebra generators of B.

2. Inverse images of affinoid domains

2.1. Complete tensor products. We briefly touched on this in §§1.1 of Lecture
14. Suppose (A, ‖ ‖) is a Banach ring, (M, ‖ ‖M ) and (N, ‖ ‖N ) be Banach A-
modules. Let x ∈M ⊗A N . Set

(2.1.1) ‖x‖′ = inf
x=

∑
imi⊗ni

max
i
‖mi‖M‖ni‖N

where the sum runs through all representations of x as a finite sum x =
∑
imi⊗ni.

One checks that (M ⊗A N, ‖ ‖′) is a normed A-module.
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Definition 2.1.2. Let (M, ‖ ‖M ) and (N, ‖ ‖N ) be Banach A-modules. The com-
plete tensor product M⊗̂AN of M and N over A is the completion M ⊗A N with
respect to the norm ‖ ‖′ defined in (2.1.1).

2.1.3. Let M , N , E be Banach A-modules, and R, S, B, Banach A-algebras. The
following properties are not hard to establish. The proofs are left to you.

(1) R⊗̂AS is a Banach A-algebra.
(2) If Ψ: M × N → E is a continuous A-bilinear map then there is a unique

continuous A-module map Φ: M⊗̂AN → E such that Φ(m⊗n) = Ψ(m,n)
for (m,n) ∈M ×N .

(3) If Φ: R × S → B is a continuous bilinear map of A-algebras, then the
resulting continuous bilinear a module map Φ: R⊗̂AS → B is a map of
Banach A-algebras.

(4) (−)⊗̂AA = (−)⊗A A = (−).
(5) The functor (−)⊗̂AM is right exact on Banach A-modules.
(6) Let R〈ζ1, . . . , ζn〉 be as in [Lecture 16, §§1.1]. Then

R〈ζ1, . . . , ζn〉 = A〈ζ1, . . . , ζn〉⊗̂AR.

The natural norm of the left side is equivalent to the norm on the right side
arising from (2.1.1). In particular, if A if a K-affinoid algebra, then

A〈ζ1, . . . , ζn〉 = Tn⊗̂KA.

(7) Tn⊗̂KTr = Tn+r. The norm on the complete tensor product on the left—
arising from the formula in (2.1.1)—is equivalent to the Gauss norm on
Tn+r.

(8) If A, R, S are K-affinoid algebras, then so is R⊗̂AS. The norm on R⊗̂AS
arising from the norms on R and S as in (2.1.1) is equivalent to a residue
norm from a Tate algebra.

(9) If A, R, S are K-affinoid then Sp(R⊗̂AS) is the fibre product of Sp(R)→
Sp(A) and Sp(S) → Sp(A) in the category of K-affinoid spaces. If X =
Sp(A), U = Sp(R), V = Sp(S), and W = Sp(R⊗̂AS), then we represent
this situation by the cartesian square

W //

�
��

V

��
U // X

and write W = U ×X V .
(10) Let A and R be affinoid K-algebras, ϕ∗ : A → R a map of affinoid K

algebras and f1, . . . , fr, g1, . . . , gs elements in A. Then

R〈ϕ∗(f)〉 = A〈f〉⊗̂AR,

and

R〈ϕ∗(f),1/ϕ∗(g)〉 = A〈f ,1/g〉⊗̂AR.
If f0, f1, . . . , fr generate the unit ideal in A, then

R〈ϕ∗(f)/ϕ∗(f0)〉 = A〈f/f0〉⊗̂AR.

Theorem 2.1.4. Let A→ B be map of affinoid K-algebras and let σ : A〈ζ1, . . . , ζn〉 →
B an A-algebra map.. Then ‖σ(ζi)‖sup ≤ 1 for i = 1, . . . , n. Conversely, suppose
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b1, . . . , bn ∈ B are such that ‖bi‖sup ≤ 1 for i = 1, . . . , n. Then there is a unique
A-algebra map σ : A〈ζ1, . . . , ζn〉 → B such that σ(ζi) = bi, i = 1, . . . , n.

Proof. The proof is exactly that same as that given for Theorem 1.1.6. �

Remark 2.1.5. This means the ζi can be regarded as in some sense as free variables
for affinoid A-algebras. If σ : A〈ζ1, . . . , ζn〉 → B above is a surjective map, and
bi = σ(ζi) for i = 1, . . . , n, then we often write

(2.1.5.1) B = A〈b1, . . . , bn〉.

The bi in this case are called topological A-algebra generators of B. We draw the
reader’s attention to the ever so slight inconsistency between this notation and the
one in (1.1.2) of Lecture 16. See the footnote in loc.cit.

In the above situation, with B = A〈b1, . . . , bn〉, if A〈ζ〉 is given the norm from
A, i.e. ‖

∑
ν∈Nn aνζ

ν‖ = supν‖aν‖, and B the residue norm from A〈ζ〉, then the
A-algebra map τ : A→ B is clearly a contraction, i.e.

(2.1.5.2) ‖τ(a)‖ ≤ ‖a‖.

2.2. The universal property of complete tensor products very easily yields the
following.

Proposition 2.2.1. Let ϕ∗ : A → B be a map of affinoid K-algebras, with the
corresponding map of affinoid K-spaces being denoted ϕ : Sp(B)→ Sp(A). Suppose
U is an affinoid subdomain of Sp(A) and ı : Sp(A′)→ Sp(A) the associated map of
affinoid spaces. Let B′ = B⊗̂AA′ and  : Sp(B′) → Sp(B) the natural map. Then
(ϕ−1(U), ) is an affinoid subdomain of Sp(B).

Proof. We have a cartesian square (with ϕ′ being the natural map)

Sp(B′)



��
�

ϕ′
// Sp(A′)

ı

��
Sp(B)

ϕ
// Sp(A)

and hence (ϕ ◦ )(Sp(B′)) ⊂ U . It follows that (Sp(B′)) ⊂ ϕ−1(U). If ψ∗ : B → C
is a map of K-affinoid algebras such that ψ(Sp(C)) ⊂ ϕ−1(U), where ψ = aψ∗, then
applying the universal property of ı to ϕ ◦ψ we get a unique a map θ : Sp(C) →
Sp(A′) such that ı ◦ θ = ϕ ◦ψ. Next, the universal property of the fibre product
Sp(B′) = Sp(A′) ×Sp(A) Sp(B), applied to the pair of maps ψ and θ, gives us the
asserted universal property for . �

3. Basic properties of affinoid subdomains

3.1. A couple of remarks tying the discussions above with matters in earlier lectures
is probably worth our while. First, if (U, ı : Sp(A′)→ X) is an affinoid subdomain
of X = Sp(A), then in view of Proposition 2.1.2 of Lecture 16, especially item (i)
of loc.cit., we can identify U with Sp(A′). We often do this and simply say U is
an affinoid subdomain of X. When we do this we write OX(U) for A′. From this
point of view, the main conclusion of Proposition 2.2.1 can be rephrased succinctly
as:
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The inverse image of an affinoid subdomain of Sp(A) is an affinoid
subdomain of Sp(B).

Next, compare 2.1.3 (10) with Proposition 1.3.5 of Lecture 15 and Proposition 2.1.3
of Lecture 16 to understand how inverse images of special affinoid subdomains look
under maps of affinoid domains.

Proposition 3.1.1. Using the conventions above, let X be an affinoid space, U an
affinoid subdomain of X, and V an affinoid subdomain of U . Then V is an affinoid
subdomain of X.

Proof. Unpackaged, using the notation introduced directly above, what is being
said is this: the map OX(X)→ OU (V ) given by the compositeOX(X)→ OX(U) =
OU (U)→ OU (V ), has the required universal property turning (V,OX(X)→ OU (V ))
into an affnoid domain. But this is essentially a tautology. (We can therefore write
OU (V ) = OX(V ).) �

Proposition 3.1.2. The intersection of two affinoid subdomains of an affinoid
space is again an affinoid subdomain.

Proof. This is a direct consequence of Proposition 2.2.1. In greater detail, if U and
V are affinoid subdomains of X, then U ∩V can be identified with U ×X V , giving
the result. Note that OA(U ∩ V ) = OA(U)⊗̂OX(X)OX(V ). �
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