
LECTURE 17

Date of Lecture: October 17, 2019

Unless otherwise specified, K is a complete non-archimedean field, and to avoid
annoying trivialities we assume the absolute value | | on K is non-trivial. As before
N = {0, 1, 2, . . . ,m, . . . }. Rings mean commutative rings with 1.

The symbol � is for flagging a cautionary comment or a tricky argument. It
occurs in the margins and is Knuth’s version of Bourbaki’s “dangerous bend sym-
bol”.

1. Affinoid subdomains are open

We will be using freely the results from the supplement to Lecture 17. In partic-�

ular, as mentioned in §§3.1 of the supplement, if X = Sp(A) is an affinoid K-space
and (U, ı : Sp(A′)→ X) an affinoid subdomain of X, we simply say U is an affinoid
subdomain of X and write OX(U) for A′.

1.1. Intersection of the special affinoid subdomains. Let X = Sp(A) be an
K-affinoid space. The Weierstrass, Laurent, and rational subdomains of X are
called special affinoid subdomains, and as we saw in Proposition 2.1.3 of Lecture
16, these are open affinoid subdomains of X. The following is a useful result.

Lemma 1.1.1. The intersetction of two Weierstrass (resp. Laurent, resp. rational)
affinoid subdomains of X is again a Weierstrass (resp. Laurent, resp. rational)
affinoid subdomain of X.

Proof. It is more or less straightforward from the definitions that the intersection
of two Weierstrass subdomains is a Weirstrass subdomain and that the intersection
of two Laurent subdomains is a Laurent subdomain. The same is true for rational
subdomains of X. Indeed, suppose f0, f1, . . . , fn generate the unit ideal in A and
say, so do g0, g1, . . . , gm. Then (figj) generates the unit ideal in A, and it is easy

to see that A〈f/f0〉⊗̂AA〈g/g0〉 = A〈( figjf0g0
)(i,j)6=(0,0)〉. From a point set perspective,

if x ∈ X(f/f0) ∩ X(g/g0) then fi(x)gj(x) ≤ f0(x)g0(x) for all (i, j) 6= (0, 0).
Conversely, suppse x ∈ X is such fi(x)gj(x) ≤ f0(x)g0(x), for all (i, j) 6= (0, 0).
Note that (figj)i,j≥0 generates the unit ideal in A. If f0(x) = 0, then fi(x)gj(x) = 0
for all i and j, which is not possible from what we just observed. Hence f0(x) 6= 0.
Similarly g0(x) 6= 0. The inequalities fi(x)g0(x) ≤ f0(x)g0(x), 1 ≤ i ≤ n and
f0(x)gj(x) ≤ f0(x)g0(x), 1 ≤ j ≤ m then give x ∈ X(f/f0)∩X(g/g0). From either
point of view (fibre products or set-theoretic) we are done. �

1.2. The first theorem below is one relating “punctual” behaviour with local be-
haviour.

Theorem 1.2.1. Let σ : A → B be a map of K-affinoid algebras, X = Sp(A),
Y = Sp(B) and ϕ(= aσ) : Y → X the corresponding map of K-affinoid spaces. Let
x ∈ X be a point of X and let m = mx. Assume that σ induces

(i) A surjective homomorphism A/m→ B/mB, or
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(ii) isomorphisms A/mn −→∼ B/mnB, n ∈ N.

Then there exists an open affinoid subdomain U = Sp(A′) of A such that x ∈
U and the K-algebra map σ′ : A′ → A′⊗̂AB induced by σ is surjective, or is an
isomorphism respectively. For hypothesis (ii), the conclusion can be restated as
saying that

U ×X Y −→∼ U

where the arrow is the natural projection, or that

ϕ|ϕ−1(U) : ϕ−1(U) −→∼ U.

Proof. Let m = (m1, . . . ,ms).
Let us prove (i). There are two possibilities. Either mB = B or, since A/m is

a field, A/m −→∼ B/mB. Suppose mB = B. We have to show the existence of an
open affinoid subdomain U such that x ∈ U and ϕ−1(U) = ∅. Since mB = B, there
exist g1, . . . , gs ∈ B such that

(∗) σ(m1)g1 + · · ·+ σ(ms)gs = 1.

Let c ∈ K∗ be such that |c|−1 > maxj ‖gj‖. If we set U = X(m1/c, . . . ,ms/c)
then x ∈ U and mi(x) < c for i = 1, . . . , s. We claim ϕ−1(U) = ∅. Indeed, if
y ∈ ϕ−1(U), then

(∗∗)

|σ(m1)(y)g1(y) + · · ·+ σ(ms)(y)gs(y)| ≤ max
j
|σ(mj)(y)gj(y)|

= max
j
|mj(x)gj(y)|

< 1.

Now (∗) and (∗∗) contradict each other, and hence ϕ−1(U) = ∅.
Now suppose A/m −→∼ B/mB. Then the fibre ϕ−1(x) is non-empty. In fact

it consists of exactly one point since B/mB has only one maximal ideal. Say
ϕ−1(x) = {y}. Let b1, . . . , bn ∈ B be “topological” K-algebra generators of B, i.e.,
bi are such that B = K〈b1, . . . , bn〉 (see Remark 1.1.7 of the supplement). Such bi
always exist (see [Lecture 16, (1.1.2)]). Since A/m −→∼ B/mB, we can find ai ∈ A
and βij ∈ B, i = 1, . . . , n, j = 1, . . . , s such that

(1.2.1.1) bi − σ(ai) ∈
s∑
j=1

βijσ(mj), (i = 1, . . . , n, j = 1, . . . , s),

where, as in the beginning of this proof, (m1, . . . ,ms) = m.
To go further, we need to make a couple of observations.
1) Suppose X ′ = Sp(A′) is an open affinoid subdomain of X such that x ∈ X ′.

Let Y ′ = Y ×X X ′ and ϕ′ : Y ′ → X ′ the base change of ϕ. Then ϕ′ : Y ′ → X ′

satisfies the same hypotheses as ϕ, and the fibre of ϕ′ over x is the same as the fibre
of ϕ over x. This means we may replace X,Y, ϕ by X ′, Y ′, ϕ′ if it is convenient to.
We will need to do this.

2) Let Z = Sp(C) be an affinoid K-space. Set

Bn = Sp(Tn) and BnZ = Z ×Sp(K) Bn = Sp(C〈ζ1, . . . , ζn〉).

Note that since B is the homomorphic image of Tn = K〈ζ1, . . . , ζn〉 with ζi mapping
to bi, we have ‖bi‖sup ≤ 1. According to Theorem 2.1.4 of the supplement to this
lecture, we have a map σ : A〈ζ1, . . . , ζn〉 → B. Moreover, this map is surjective.
Indeed, since the bi are topological K-algebra generators of B, they are topological
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A-algebra generators, and hence σ is surjective. In other words B = A〈b1, . . . , bn〉
using the notation in (2.1.5.1) of the supplement to this lecture. We therefore
have a commutative diagram, with the horizontal hooked arrow being the closed
immersion associated to the surjective map A〈ζ〉� A〈b〉 = B:

(1.2.1.2)

Y �
� //

ϕ

  @
@@

@@
@@

@@
@@

@@
@@

@@
BnX

π

��
X

The point is that the above diagram behaves well with respect to open affinoid base
changes. In greater detail, suppose, X ′ = Sp(A′) is an open affinoid subdomain
of X, and Y ′, ϕ′ are as in item 1) above (so X ′ is an open affinoid subdomain
containing x). Then we have the following commutative diagram with the triangle
in the foreground being the “base change” of (1.2.1.2) (i.e. of the triangle in the
background) via the open immersion X ′ ⊂ X.

(1.2.1.3)

Y �
� //

==
==

==

ϕ

��=
==

==
==

==
==

=

BnX

π

��

Y ′
+ �

qqqqqqqqqqqqqq� � //

ϕ′

��=
==

==
==

==
==

==
==

==
= BnX′

+ �

qqqqqqqqqqqqq

π′

��

X

X ′
* 


oooooooooooooo

The rectangle on the right (east) face, the rectangle on the inclined plane, and the
rectangle on top are all obviously cartesian. It is immediate that relations such as
(1.2.1.1) survive base changes by open affinoid subdomains which contain x. We
will use this implicitly.

And example of such an open affinoid subdomain containing x is the Weierstrass
domain X ′ = X(a1, . . . , an). We have already seen that ‖bi‖sup ≤ 1. Since ai(x) =
σ(ai)(y) = bi(y), and since ‖bi‖sup ≤ 1, we therefore have |ai(x)| ≤ 1 for i =
1, . . . , n. In other words x ∈ X(a1, . . . , an). Let us replace X by X(a1, . . . , an), and
thereby assume that

(1.2.1.4) ‖ai‖sup ≤ 1, (i = 1, . . . , n).

Then, using Theorem 1.1.6 of the supplement to this lecture, we can find a Tate
algebra mapping surjectively onto A with a1, . . . , an images of subset of the free
affinoid variables in this Tate algebra. We give A the residue norm from this
surjective map and thereby conclude that with this reisude norm

(1.2.1.5) ‖ai‖ ≤ 1, (i = 1, . . . , n).
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We give A〈ζ〉 the norm from A, namely ‖
∑

ν aνζ
ν‖ = maxν ‖aν‖, and B the

residue norm from A〈ζ〉. Then

(1.2.1.6) ‖bi‖ ≤ 1, (i = 1, . . . , n).

One more replacement of X by an X ′ is needed. First, by rescaling the generators
m1, . . . ,ms of m, we may assume that the βij occurring in (1.2.1.1) satisfy

(1.2.1.7) ‖βij‖ ≤ 1, (i = 1, . . . , n, j = 1, . . . , s).

Pick c ∈ K∗ such that 0 < |c| < 1 and let X ′ = X(c−1m1, . . . , c
−1ms).

If we replace X be X ′, then relations (1.2.1.4), (1.2.1.5), and (1.2.1.6) all sur-
vive. The latter two by (2.1.5.2) of the supplement to this lecture (loc.cit. ap-
plies because X(c−1m1, . . . , c

−1ms) = Sp(A〈c−1m1, . . . , c
−1ms〉)). Finally, since

A〈c−1m1, . . . , c
−1ms〉 can be given the residue norm from A〈ξ1, . . . , ξs〉 where the

ξi are topological free variables for A, we if we replace X by X ′ (and implicitly, A
by A′ = A〈c−1m〉) we get

(1.2.1.8) ‖mj‖ ≤ |c| < 1, (j = 1, . . . , s).

Let µ ∈ N. We have

‖bµi − σ(ai)
µ‖ ≤ ‖bi − σ(ai)‖

∥∥∥∥∥
µ−1∑
j=0

bµ−j−1i σ(aji )

∥∥∥∥∥
≤ ‖bi − σ(ai)‖ max

0≤j≤µ−1
{‖bµ−1−ji ‖‖aji‖}

≤ ‖bi − σ(ai)‖ (via (1.2.1.5) and (1.2.1.6))

≤ max
1≤j≤s

{‖βij‖‖mj‖} (via (1.2.1.1))

≤ |c| (via (1.2.1.8)).

More generally, using the above repeatedly, for (µ1, . . . , µn) ∈ Nn one has:

(1.2.1.9) ‖bµ1

1 . . . bµn
n − σ(a1)µ1 . . . σ(an)µn‖ ≤ |c|.

If b ∈ B is such that ‖b‖ < 1, since the norm on B is the infimum over Gauss
norms of preimages of b in A〈ζ〉, there is a representation b =

∑
µ∈Nn αµb

µ1

1 . . . bµn
n ,

αµ ∈ A, such that maxµ∈Nn‖αµ‖ < 1. In this case, the series
∑

µ∈Nn αµa
µ1

1 . . . aµn
n

converges since ‖ai‖ ≤ 1. Let a =
∑

µ∈Nn αµa
µ1

1 . . . aµn
n . Then ‖a‖ < 1. Moreover

by (1.2.1.9) we get ‖b− σ(a)‖ < |c|. To summarize, for each b ∈ B with ‖b‖ < 1
we have a ∈ A such that

‖a‖ < 1, and ‖b− σ(a)‖ < |c|.

This means if ‖b‖ < |c|ν for some ν ∈ N then we can find a ∈ A such that

(1.2.1.10) ‖a‖ < |c|ν , and ‖b− σ(a)‖ < |c|ν+1.

From here it is easy to see that σ : A → B is surjective. Indeed, if b ∈ B is such
that ‖b‖ < 1, then from (1.2.1.10) we can find a sequence {a(µ)}µ∈N in A such that
the following two inequalities hold

(1.2.1.11)

‖a(µ)‖ < |c|µ, (µ ∈ N),∥∥∥b− ν∑
µ=0

σ(a(µ))
∥∥∥ ≤ |c|ν+1, (ν ∈ N).
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The series
∑
µ a(µ) clearly converges. Let a =

∑
µ∈N a(µ). We have the string

of equalities σ(a) =
∑
µ σ(a(µ)) = b, where the first equality follows from the

continuity of σ and the second equality from the second inequality in (1.2.1.11).
Thus

‖b‖ < 1 =⇒ b ∈ σ(A).

In general, we can find γ ∈ K∗ such that ‖γb‖ < 1, and so γb ∈ σ(A), which means
b ∈ σ(A). We have therefore proven (i).

We now prove (ii). In view of (i) and the nature of the assertion (ii), we may
assume without loss of generality that σ : A → B is surjective. Let a = kerσ
and write Ā = A/a. Then a ⊂ ∩µmµ, and by Krull’s intersection theorem we get
am = (0) ⊂ Am. We can therefore find m ∈ m such that f = 1 −m annihilates a.
Hence one has a map A/a → A[f−1] such that the composite A � Ā → A[f−1] is
the localisation map A → A[f−1]. In particular, the map A → A〈f−1〉 factors as
A� Ā→ A〈f−1〉. Thus

Ā〈f̄−1〉 = A〈f−1〉⊗̂AĀ = A〈f−1〉.

In greater detail, since aA〈f−1〉 = 0 we have A〈f−1〉 ⊗A Ā = A〈f−1〉 which is al-
ready norm complete, giving the above equality. Since Ā −→∼ B (via the surjective
map σ), we have shown that we have an isomorphism

σ′ : A〈f−1〉 −→∼ B〈σ(f)−1〉

where σ′ is the map induced by σ. This proves (ii). �

2. Weak and strong topologies on Sp(A)

Let X = Sp(A) be an affinoid space. It has the canonical topology on it. In
Lecture 14, §§1.2 we defined the notion of a G-topology on a topological space.
There are three G-topologies that can be defined on X with its canonical topology,
the one coming from the canonical topology, the weak G-topology, and the strong
G-topology.

In the discussion that follows we fix X = Sp(A).

2.1. We set (T̃ , C̃ov) equal to the canonical topology on X. In greater detail

T̃ = {U | U is a canonical open subset of X}

and for U ∈ T̃

C̃ov(U) =
{
{Uα}α∈I

Uα ∈ T̃ for every α ∈ I and
⋃
α∈I

Uα = U
}
.

2.2. The weak G-topology on Sp(A). Set

Tw = {U | U is an affinoid subdomain of X}.

Note that by (ii) of Theorem 1.2.1, if U ∈ Tw then U is open in the canonical
topology. For each U ∈ Tw let

Covw(U) =
{
{Uα}α∈I ∈ C̃ov(U)

Uα ∈ Tw for every α ∈ I and I is a finite set
}
.

One checks easily that (Tw,Covw) is a G-topology on X. It is called the weak
G-topology or simply the weak topology on X.
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2.3. The strong G-topology on Sp(A). This is the topology (T ,Cov) defined
as follows: U ∈ T if

• U ∈ T̃ , and

• there exists U = {Uα}α∈I ∈ C̃ov(U) (I not necessarily finite) such that
Uα ∈ Tw for each α ∈ I, and whenever ϕ : Z → X is a morphism of
affinoid K-spaces with ϕ(Z) ⊂ U , there is a refinement V of ϕ−1(U ) with
V ∈ Covw(ϕ−1(U)).

For U ∈ T , U = {Uα}α∈I ∈ Cov(U) if

• U ∈ C̃ov(U), and
• Uα ∈ T for each α ∈ I, and
• whenever ϕ : Z → X is a morphism of affinoid K-spaces with ϕ(Z) ⊂ U ,

there is a refinement V of ϕ−1(U ) with V ∈ Covw(ϕ−1(U)).

Once again, one checks easily that (T ,Cov) is a G-topology on X. It is called
the strong G-topology or simply the strong topology on X.

One can show more. It turns out that sheaves on (Tw,Covw) have a unique
extension to sheaves on (T ,Cov), and further the strong topology enjoys certain
completeness properties. More on this in later lectures.
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