
LECTURE 16

Date of Lecture: October 15, 2019

Unless otherwise specified, K is a complete non-archimedean field, and to avoid
annoying trivialities we assume the absolute value | | on K is non-trivial. As before
N = {0, 1, 2, . . . ,m, . . . }. Rings mean commutative rings with 1.

The symbol � is for flagging a cautionary comment or a tricky argument. It
occurs in the margins and is Knuth’s version of Bourbaki’s “dangerous bend sym-
bol”.

1. Restricted power series

1.1. The rings A〈ζ〉 and A〈f〉. Suppose (R, ‖ ‖) is a Banach ring with ‖x+ y‖ ≤
max {‖x‖, ‖y‖} for x, y ∈ R. Then one defines the ring of restricted power series
R〈ζ1, . . . , ζn〉(= R〈ζ〉) in essentially the same way as the Tate algebra Tn over
(K, | |) was defined, namely R〈ζ〉 consists of formal power series

∑
ν∈Nn cνζ

ν with
coefficients cν in R such that ‖cν‖ → 0 as |ν| → ∞. And one can give R〈ζ〉 the
Gauss norm arising from ‖ ‖.

If A is an affinoid K-algebra, since all residue norms ‖ ‖α arising from surjective
maps α from Tate algebras to A are equivalent, the algebra A〈ζ〉 makes sense
independent of ‖ ‖α. Moreover there is an equivalent description of A〈ζ〉, namely
the following. Suppose α : K〈ξ1, . . . , ξr〉 � A is a surjection from a Tate algebra
Tr to A with kernel a. Now Tn+r = K〈ξ1, . . . , ξr, ζ1, . . . , ζn〉 and Tr = K〈ξ〉 is a
sub-algebra of Tn+r = K〈ξ, ζ〉 in an obvious way. Then clearly, by definition of
‖ ‖α and of restricted power series we have

(1.1.1) A〈ζ1, . . . , ζn〉 =
Tn+r
aTn+r

.

Seen this way A〈ζ〉 is clearly an affinoid K-algebra.
For f1, . . . , fn ∈ A, we define A〈f1, . . . , fn〉 = A〈f〉 as the A-algebra:

(1.1.2) A〈f1, . . . , fn〉 :=
A〈ζ1, . . . , ζn〉

(ζ1 − f1, . . . , ζn − fn)
.

Note that A〈f〉 is an affinoid K-algebra,1 since it is the quotient of one by an ideal.
We will see later that Sp(A〈f〉) can be identified with the Weierstrass domain X(f).

For sequences f = (fi)
r
i=1, g = (gj)

s
j=1 in A, the we define an A-algebra which

“inverts” the gj ’s, denoted A〈f1, . . . , fr, 1/g1, . . . , 1/gs〉, or in a more compact nio-
tation A〈f ,1/g〉, as follows:

(1.1.3) A〈f ,1/g〉 := A〈ζ1, . . . , ζr, ξ1, . . . , ξs〉
(ζ1 − f1, . . . , ζr − fr, 1− ξ1g1, . . . , 1− ξsgs)

.

Once again, note thatA〈f ,1/g〉 is an affinoidK-algebra. It turns out that Sp(A〈f ,1/g〉)
can be identified with the Laurent domain X(f ,1/g).

1(1.1.2) is actually a slight abuse of notation. We should write A〈σ(f1), . . . , σ(fn)〉 for

A〈ζ1, . . . , ζn〉/(ζ1 − f1, . . . , ζn − fn) where σ is the natural map from A to the right side of

(1.1.2).
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Finally the affinoid algebras which (as we will see) corresponds to rational do-
mains are defined as follows. Let f0, f1, . . . , fn be elements in A such that the fj ’s
generate the unit ideal in A. Then A〈f/f0〉 = A〈f1/f0, . . . , fn/f0〉 is defined as an
A-algebra by the formula

(1.1.4) A〈f/f0〉 :=
A〈ζ0, ζ1, . . . , ζn〉

(ζ1f0 − ζ0f1, . . . , ζnf0 − ζ0fn)
.

A〈f/f0〉 is clearly an affinoid K-algebra. As one can guess, it turns out that
Sp(A〈f/f0〉) can be identified with the rational domain X(f1/f0, . . . , fn/f0).

2. Affinoid subdomains

2.1. In the last lecture, we defined certain special open subsets of Sp(A), where A is
an affinoid K-algebra, namely the Weierstrass, Laurent, and rational subdomains.
These turn out to be affinoid subdomains in the sense of the following definition.

Definition 2.1.1. Let X = Sp(A), where A is an affinoid K-algebra. An affinoid
subdomain of X is a subset U of X together with a map of affinoid K-spaces
ı : X ′ = Sp(A′)→ X having the following properties:

(i) ı(X ′) ⊂ U .
(ii) Given a map ϕ : Sp(B)→ X of affinoid K-spaces with ϕ(Sp(B)) ⊂ U , there

exists a unique map of affinoid spaces ψ : Sp(B)→ X ′ such that the broken
arrow in the diagram below can be filled to make it commute.

Sp(B)

∃!ψ
���
�
�

ϕ

!!DDDDDDDDD
// U
� _

X ′
ı
//

zzzz

==zzzz

X

We say that an affinoid subdomain (U, ı) is an open affinoid subdomain of X if U
is open in X. (We will show later in the course that all affinoid subdomains are in
fact open affinoid subdomains.)

Proposition 2.1.2. Let X = Sp(A) be an affinoid K-space (U, ı : Sp(A′)→ X) an
affinoid subdomain of X and ı∗ : A→ A′ the resulting map of K-affinoid algebras.
Let X ′ = Sp(A′), x ∈ U , and m = mx. Then:

(i) The fibre ı−1(x) consists of a single point x′ ∈ X ′. Thus ı(X ′) = U , and
ı : X ′ −→∼ U is a set-theoretic bijection.

(ii) Let x′ be as in (i). Then mx′ = mA′.
(iii) The map ı∗ : A → A′ induces isomorphisms A/mn −→∼ A′/mnA′, one for

each n ∈ N.

Proof. For n ∈ N we have a commutative diagram

A
ı∗ //

π

��

A′

π′

��
A/mn

σ
// A′/mnA′
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with π and π′ being the natural surjections and σ the map induced by ı. Since
aπ(Sp(A/mn)) = {x} ⊂ U , the universal property of (ı,X ′) gives us a map

α : A′ → A/mn

such that π = α ◦ ı∗. Consider the diagram

A
ı∗ //

π

��

A′

π′

��

α

�����������������

A/mn
σ
// A′/mnA′

Since π = α ◦ ı∗, the top triangle commutes. The outer rectangle commutes. We
claim that the bottom triangle also commutes. By the universal property of (ı,X ′),
p = π′ is the only solution of the equation

(∗) σ ◦π = p ◦ ı∗.

On the other hand σ ◦π = σ ◦ (α ◦ ı∗) = (σ ◦α) ◦ ı∗, and hence p = σ ◦α is also a
solution to (∗). By the uniqueness of solutions to (∗), we have π′ = σ ◦α, and hence
the lower triangle commutes. Note that α is surjective since π is, and σ is surjective
since π′ is.

Since π = α ◦ ı∗, ı∗(mn) ⊂ kerα and this in turn implies that mnA′ ⊂ kerα.
On the other hand, the relation π′ = σ ◦α implies that kerα ⊂ mnA′. Thus
mnA′ = kerα, implying (since α and π′ are surjective) that σ is an isomorphism.
This proves (iii). Moroever, this shows that A′/mnA′ is an artin local ring, whence
ı−1(x) consists of exactly one point, say x′. This proves (i). Setting n = 1, we see
that mA′ is a maximal ideal. Since mx′ ⊃ mA′, we therefore have mx′ = mA′. This
proves (ii) and we are done. �

Proposition 2.1.3. Let A be a K-affinoid algebra. Then Weierstrass, Laurent,
and rational domains in X = Sp(A) are open affinoid subdomains.

Proof. By Lemma 2.1.1 of Lecture 15, Weierstrass, Laurent, and rational domains
are open in the canonical topology. It remains to prove the universal property of
affinoid subdomains for them.

We will prove the result for Weierstrass domains. The proofs for other domains
are similar and we indicate briefly how one proceeds in those cases. So suppose
U = X(f1, . . . , fn)(= X(f)).

Let A′ = A〈f1, . . . , fn〉 where A〈f1, . . . , fn〉(= A〈f〉) is as in (1.1.2).
Let ı∗ : A→ A′ be the natural map, X ′ = Sp(A′), and ı : X ′ → X the resulting

map of affinoid spaces.
We have to show that ı(X ′) ⊂ X(f) and that ı has the required universal

property. To that end suppose ϕ∗ : A→ B is a map of affinoid algebras, Y = Sp(B),
and ϕ : Y → X the resulting map of afinoid spaces. Since K(ϕ(y)) = A/mϕ(y) ↪→
B/my = K(y) is a finite extension of fields for every y ∈ Y , we have

|ϕ∗(fi)(y)| = |fi(ϕ(y))| (i = 1, . . . , n, y ∈ Y ).
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It follows that ϕ(Y ) ⊂ X(f) if and only if ‖ϕ∗(fi)‖sup ≤ 1 for i = 1, . . . , n. Since
ı∗(fi) is the residue of ζi under the identification A′ = A〈ζ〉/(ζi − fi | i = 1, . . . , n)
of (1.1.2), it follows that ‖ı∗(fi)‖sup ≤ ‖ζi‖ = 1. Hence ı∗(Y ) ⊂ X(f).

Let Y , B, ϕ be as above. Suppose ϕ(Y ) ⊂ X(f). Let bi = ϕ∗(fi), i = 1, . . . , n.
Then ‖bi‖ ≤ 1 from our discussion above. It follows that the series

∑
ν∈Nr cνb

ν con-
verges whenever

∑
ν∈Nr cνζ

ν ∈ A〈ζ〉. This gives a homomorphism of K-algebras
A〈ζ〉 → B, namely

∑
ν∈Nr cνζ

ν 7→
∑

ν∈Nr cνb
ν , and since ζi − fi maps to zero

for every i under this map, we get a unique K-algebra map λ : A′ → B such that
λ ◦ ı = ϕ∗. This proves the result for Weierstrass domains.

For a Laurent domain X(f ,1/g) one does something similar, replacing, in the
proof above, the affinoid algebra A〈f〉 by the affinoid algebra A〈f ,1/g〉 defined in
(1.1.3). For rational domains X(f/f0) associated with unit ideals (f0, f1, . . . , fr)
one uses the algebra A〈f/f0〉 of (1.1.4) instead of A〈f〉. The details are left to
you. �
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