
LECTURE 15

Date of Lecture: October 10, 2019

Unless otherwise specified, K is a complete non-archimedean field, and to avoid
annoying trivialities we assume the absolute value | | on K is non-trivial. As before
N = {0, 1, 2, . . . ,m, . . . }. Rings mean commutative rings with 1.

The symbol � is for flagging a cautionary comment or a tricky argument. It
occurs in the margins and is Knuth’s version of Bourbaki’s “dangerous bend sym-
bol”.

1. Various topologies and morphisms

1.1. The Zariski topology on Sp(A). Let A be a affinoid algebra. For a ⊂ A an
ideal of A, set

V (a) = {x ∈ Sp(A) | f(x) = 0, f ∈ a}
= {x ∈ Sp(A) | a ⊂ mx}.

One has the following easily proved properties.

(i) a ⊂ b =⇒ V (a) ⊃ V (b).
(ii) V (

∑
i∈I ai) = ∩i∈IV (ai).

(ii) V (ab) = V (a) ∩ V (f).

The Zariski topology on Sp(A) is the topology for which the closed subsets are
the V (a). The above properties show that this gives a topology. For f ∈ A, let
D(f) = {f 6= 0} = Sp(A) r V (f) is an open set. The collection {D(f)}f∈A forms
a basis for the Zariski topology on Sp(A). For Y ⊂ Sp(A), set I(Y ) = {f ∈ A |
f(x) = 0x ∈ Y }. Then I(Y ) is an ideal and V (I(Y ) is the closure of Y in the
Zariski topology. Since A is Jacobson, it is clear that I(V (a)) =

√
a. Thus radical

ideals of A are in one-to-one correspondence with closed subsets of Sp(A).

1.2. Morphism of affinoid spaces. We call sets of the form Sp(A) with A an
affinoid K-algebra, an affinoid K-space, or simply an affinoid space.

Suppose σ : A → B is a map of affinoid algebras. If m ∈ Max(B) = Sp(B),
then we have K ⊂ A/σ1(m) ↪→ B/fm. Since dimK B/m <∞, the integral domain
A/σ−1(m) is a field, and σ−1(m) is a maximal ideal of A. Define

(1.2.1) aσ : Sp(B)→ Sp(A)

to be the map m 7→ σ−1(m).

Definition 1.2.2. Let A and B be K-affinoid algebras. A morphsim from Sp(B)
to Sp(A) is a pair (ϕ, σ) with ϕ : Sp(B)→ Sp(A) a set-theoretic map, σ : A→ B a
map of K-affinoid algebras such that ϕ = aσ.

It is clear that ϕ is redundant information in the definition of a morphism of affi-
noid spaces, and really we are defining category of affinoid K-spaces as the opposite
category of the category of affinoid algebras. Be that as it may, for psychological
reasons, we keep ϕ in the definition. And then abuse notation and write ϕ for
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(ϕ, σ). In this case we write σ = ϕ∗. Thus (ϕ, σ) = (aσ, σ) = (ϕ,ϕ∗). Note that
with this convention (of writing ϕ as a short hand for (ϕ, σ) etc.), ϕ = ψ if and
only if ϕ∗ = ψ∗.

1.3. The canonical topology. Let X = Sp(A), with A an affinoid algebra. As in
[Lecture 14, §§1.1], define the canonical topology on X to be the topology generated
by sets of the form

X(f, ε) = {x ∈ X | |f(x)| ≤ ε},
with f ∈ A and ε > 0. Note that if U is open in the canonical topology, it is a
union of sets of the form X(f1, ε1) ∩ · · · ∩X(fn, εn).

For f, f1, . . . , fr ∈ A we write

X(f) = X(f, 1)

and

X(f1, . . . , fr) = X(f1) ∩ · · · ∩X(fr).

Proposition 1.3.1. The canonical topology on X is generated by sets of the form
X(f) f ∈ A. In particular, U is open for the canonical topology if and only if it a
union of sets of the form X(f1, . . . , fr), f1, . . . , fr ∈ A, r ∈ N.

Proof. First note that if ε ∈ |K∗| then there is a c ∈ K∗ and a positive integer

s such that εs = |c|. Indeed, suppose ε = |θ| with θ ∈ K∗, and suppose g is the
minimal polynomial of θ over K. Set s = deg g. Then g = ζs + c1ζ

s−1 + · · · + cs
with ci ∈ K. If α1, . . . , αs are the roots of s (counted with appropriate repetition),
then the αi are conjugates of θ and hence |θ| = |αi| for every i. It follows that
|cs| = εs.

Let f ∈ A and ε > 0 be given. We have

X(f, ε) =
⋃

δ∈|K∗|
δ≤ε

X(f, δ).

Fix δ ∈ (0, ε] ∩ |K∗|. We have c ∈ K∗ and a positive integer s such that |c| = δs.
Then

X(f, δ) = X(fs, δs) = X(c−1fs).

�

Lemma 1.3.2. Let f ∈ A and x ∈ X, and suppose |f(x)| = ε > 0. Then there
exists g ∈ A such that g(x) = 0 and such that |f | = ε for every y ∈ X(g). In
particular {y ∈ X | |f(y)| = ε} is open in X.

Proof. Let L = A/mx and K an algebraic closure of K. Let

P = ζn + c1ζ
n−1 + · · ·+ cn ∈ K[ζ]

be the minimal polynomial of f(x) over K. Set g = P (f). Then g(x) = 0.
Let α1, . . . , αn ∈ K be the roots of P so that

P (ζ) =

n∏
i=1

(ζ − αi).
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Here the roots are repeated as many times as is necessary for the above equality of
polynomials to hold in K[ζ]. Now

(∗) g(y) =

n∏
i=1

(
f(y)− αi) (y ∈ X).

Since P (f(x)) = 0, we must have |αi| = |f(x)| = ε for i = 1, . . . , n. Suppose y ∈ X
is such that |f(y)| 6= ε. The following chain of relations follow from (∗) and the fact
that |f(y)| 6= |αi| for any i.

|g(y)| =
n∏
i=1

|f(y)− αi| =
n∏
i=1

max {|f(x)|, |αi|}

≥
n∏
i=1

|αi|

= εn

It follows that

|g(y)| < εn =⇒ |f(y)| = ε.

Since | | is non-trivial on K, we can find c ∈ K∗ such that |c| < εn and hence
|f(y)| = ε for y ∈ X(c−1g). �

Proposition 1.3.3. For f ∈ A and ε > 0, the sets {f 6= 0}, {|f | ≤ ε}, {|f | = ε},
{|f | ≥ ε}, {|f | < ε}, {|f | > ε} are all open in the canonical topology.

Proof. By definition of the canonical topology, the set {|f | ≤ ε} is open in the
canonical topology. By Lemma 1.3.2, {|f | = ε} is open. Since

{f 6= 0} =
⋃
δ>0

{|f | = δ},

{|f | ≥ ε} =
⋃
δ≥ε

{|f | = δ},

{|f | < ε} =
⋃
δ<ε

{|f | = δ},

{|f | > ε} =
⋃
δ>ε

{|f | = δ},

the Proposition follows from Lemma 1.3.2. �

The following two results are fairly obvious, and we state them without proof.

Proposition 1.3.4. Let x ∈ X. Then {X(f1, . . . , fr) | f1, . . . , fr ∈ mx, r ∈ N}
forms a neighbourhood basis for x.

Proposition 1.3.5. Let ϕ∗ : A→ B be a map of affinoid algbras, and ϕ : Sp(B)→
Sp(A) the corresponding map of affinoid spaces. Then for f1, . . . , fr ∈ A,

ϕ−1(Sp(A)(f1, . . . , fr)) = Sp(B)(ϕ∗(f1), . . . , ϕ∗(fr)).

2. Special affinoid domains

Fix X = Sp(A), where A is an affinoid K-algebra.
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2.1. Weierstrass, Laurent, and rational domains. For g ∈ A, set X(1/g) =
{x ∈ X | |g(x)| ≥ 1}. By Proposition 1.3.3, X(1/g) is open in the canonical
topology. For f1, . . . , fr, g1, . . . , gs ∈ A, set

X
(
f1, . . . , fr,

1

g1
, . . . ,

1

gs

)
= X(f1, . . . , fr) ∩

s⋂
j=1

X
( 1

gj

)
.

The following three classes of domains are called special affinoid subdomians of
X. The term affinoid subdomain has a technical meaning which we will give later
in Lecture 16, and it will turn out that the doamins we defined are indeed affinoid
subdomains.

(1) Weierstrass domains. These are domains of the form X(f1, . . . , fr) with
f1, . . . , fr ∈ A.

(2) Laurent domains. These are domains of the formX(f1, . . . , fr, 1/g1, . . . , 1/gs)
for f1, . . . , fr, g1, . . . , gs ∈ A.

(3) Rational domains. These are the domains defined in [Lecture 14, (1.1.1)],
i.e. domains of the form

X
(f1
f0
, . . . ,

fn
f0

)
= {x ∈ X

|fi(x)| ≤ |f0(x)|, i = 1, . . . , n}

for f0, . . . , fr ∈ A such that the fi have no common zero.

Lemma 2.1.1. Weierstrass, Laurent, and rational domains are open in the canon-
ical topology. Moroever the Weierstrass domains form a basis for the canonical
topology.

Proof. Weierstrass domains are open by definition, and Laurent by Proposition 1.3.3.
Moreover, by Lemma 1.3.2, Weierstrass domains form a basis for the canonical
topology. It remains to show that given f0, . . . , fr ∈ A which generate the unit
ideal in A, the set X(f/f0) is open in the canonical topology. First note that if
x ∈ X(f/f0) then f0(x) 6= 0, since f0, . . . , fr have no common zero. Hence

X
(f1
f0
, . . . ,

fn
f0

)
=
⋃
ε>0

[
X(f1, ε) ∩ · · · ∩X(fr, ε) ∩ {x | |f0(x)| = ε}

]
,

i.e. X(f/f0) is open in the canonical topology. �
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