LECTURE 14

Date of Lecture: October 3, 2019

Unless otherwise specified, K is a complete non-archimedean field, and to avoid
annoying trivialities we assume the absolute value | | on K is non-trivial. As before
N ={0,1,2,...,m,...}. Rings mean commutative rings with 1.

The symbol @ is for flagging a cautionary comment or a tricky argument. It
occurs in the margins and is Knuth’s version of Bourbaki’s “dangerous bend sym-
bol”.

The lecture is an overview of how the rigid analytic spaces are constructed.
Details will be in subsequent lectures.

For an affinoid K-algebra A, we often write Sp A for Max A, especially if we wish
to think of Max A as a space. As before, if z € Sp A, we often write m,, for  when
we wish to think of it as a maximal ideal of A. So while A/x makes perfect logical
sense for x € Sp A, we will generally prefer to write A/m, for A/x.

1. Rational Subdomains and G-topologies

1.1. Rational subdomains. Let A be an affinoid K-algebra, endowed with any
residue norm || || on A induced by a Gauss norm on a Tate algebra. Let X = Sp A.

Consider a sequence of elements fy, ..., f, in A such that f; have no common zeros
in X. Set

f fn .
(1.1.1) X(—l,...,—) —{reX ‘ (@) < |fo(@)],i =1,...,n}.

Jo fo

There is a bijective correspondence between X (f1/fo,..., fn/fo) and Sp (A¢/s,)
where

Agsgy = ADKK (1o, G /(L = Cifor- s fu — Cafo)-

The symbol & represents the complete tensor product obtained by completing the
usual tensor product with the norm on it arising from the norms on A and T,, =
K<<1a"'a<n>'

In fact the relationship between Sp (Ag,z, ) and X (f/fo):= X (f1/fo,. .-, fn/fo)
is quite close. First note that the natural map Sp (Ag/f,) — X has its image in
X(f/fo). It turns out that one has the following universal property: If A — B is
a map of affinoid algebras, and p: Sp B — Sp A = X the resulting map on spaces
is such that ©(Sp B) C X (f1/f/fo), then there is a unique map of affinoid algebras
Ag/, — B such that A — B is the composite A — Ag;y, — B.

Sp B ——— X(f/ fo)
! et

3t

v N

Sp A/ 1o X

We identify X (f/fo) with Sp Ag/y,. It turns out that X (f/fo) is an open set for
the so-called canonical topology on X, namely the topology generated by sets of
the form X (f,e) ={z € X ||f(x)| <€}, f€ A, e>0.
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Definition 1.1.2. Subspaces of X of the form X (f/fy) are called rational subdo-
mains of X.

It turns out that if U and V' are two rational subdomains of X then UNV is a
rational subdomain of X. Further, a rational subdomain U of a rational subdomain
V of X is a rational subdomain of X.

For any set of m + n elements f1,..., fn, 91,---,gm of A we write

X(£,1/g)=X(f1,---, fns Vg1, Y gm)={z € X | |fi] <1,|g;| > 1}.

Since
X(£,1/g) = X(fi/1,..., fu/1) N _ﬂ X(1/95),

the set X (f,1/g) is a rational subdomain of X. For the same reason

X =(1/g) = X(1/g1,..,1/gm):= [ ) X(1/g))-

=1
is a rational subdomain of X.

Examples 1.1.3. We identify B" := Sp T}, with the unit polydisc B"(K) at least
when K = K. Here are some standard rational subdomains of B".

1. Closed Polydisc. Let m,...,m, € K be such that |m;| < 1,i=1,...,n, ie.
m € Ok for i =1,...,n. Recall B" = SpT,,. We have

B"(C1/71, .+, Cn /) = Sp {K<<1, . C">}

)
1 T,

We regard the “K-rational points” of B"((y/m1, .. .,(n/Ts) as the subset of B"(K)
given by points © = (z1,...,x,) such that |z;| < |m|,i=1,...,n.

2. Annulus. Let mq,...,m, and wq,...,w, be elements Ok with |m;| < |w;| for
every ¢. The annulus

{(azl,...,mn) e BY(K) | |mi| < |zi| < |wi,i = 1n}

is represented as a rational subdomain of B™ by

" _ ™o G e
B (Trl/cla'"77T1’L/Cnacl/w1a"'7Cn/30n) _Sp{K<Cl7a Cn’wl,“.7wn>}.
1.2. G-topologies. We need the following mild version of a Grothendieck topology.
Let X be a topological space. A G-topology is a pair (T, €ov) where:
e 7 is a collection of open sets of X,
e For each U € T, $ov(U) is a collection of coverings of U by members of
T 1
satisfying the following conditions:
() VeT;ifU,VeTthenUNVeT.
(2) U € T then {U} € ov(U).
(3) U €T, {Usr}rea € Gov(U), and V € T, then {Ux N V}rea € Gov(V).
(4) Coverings of a covering give a covering, i.e. if U € T, {Uy}aca € Gov(U),
{Vaglpen, € €ov(Uy), then {Vaglsen, aca € Gov(U).

INote that %ov: T — Z(T) is a map from T to the power set 2(T) of T.
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Definition 1.2.1. If (7, %0ov) is a G-topology on a topological space X, we call
members of T admissible open sets of X, and for U € T, an open covering {U)} in
%ov(U) is called an admissible open covering of U.

1.2.2. For completeness, we give the general definition of a Grothendieck topology.

Let € be a category. A Grothendieck topology on € is an assignment, for each
object U of €, of a collection Gov(U) of sets of arrows? {U; — U} called coverings
(of U) such that:

(1) f V — U is an isomorphism in %, then the singleton set {V — U} is a
covering of U.

(2) If {U; — U} is a covering and V' — U is an arrow in %, then the fiber
products V Xy U; exist in €, and the set of projections {V xy U; — V'} is
also a covering.

(3) If {U; — U} is a covering and for each i, {U;; — U;} is a covering of Uj,
then the set of composites {U;; — U; — U} (as i and j vary) is a covering
of U.

A site is a category € together with a Grothendieck topology on it. A Grothendieck
topology is often represented as a pair (¢, €ov).

The standard example is that of a topological space X. Let X be the category
whose objects are the open sets of X and whose morphisms are given by

Hom o (U, V) = {(ZJ HUgv.
U C V otherwise

for two objects U and V in X. For U an object in X a covering is a collection
{Us — U} where the U, give a covering (in the usual, set theoretic, sense) of U.
Note that in this case each U, is an open subset of U, whence {U,} is an open
covering (in the usual classical sense) of U. One checks easily that this notion of
coverings defines a Grothendieck topology on X. Indeed, if U € X , then the only
isomorphism in X with target U is the identity map, and this is clearly a covering.
Next note that if U and U’ are open subsets of V' (V' an open subset of X), then
U xy U’ exists. In fact U xy U’ = UNU’. From this observation, (2) is immediate.
The third axiom is equally trivial to verify.

Note that the notion of a G-topology given above is also a Grothendieck topology,
but it is not the classical topology.

1.3. The G-topology on Sp A. Let X = Sp A where A is an affinoid K-algebra.
Give X the canonical topology. Recall from §§1.1 that this is the topology on X (in
the classical sense) generated by sets of the form X (f,e) = {z € X | |f(z)| < €},
f € A e > 0. Enrich X with a G-topology in the sense of §§1.2 cooked up as
follows.

e Admissible open sets are decreed to be the rational subdomains of X.
e Admissible coverings of a rational subdomain X (f1/fo,..., fn/fo) of X are
finite coverings of X (f1/fo,-.., fn/fo) by rational subdomains.

One checks easily that the above recipe does indeed give a G-topology on X.

2arrows = morphisms



2. Rigid Analytic Spaces

2.1. The sheaf 0x on X = Sp A. Let X = Sp A be an affinoid K-space. If U C X

is a rational subdomain, say U = X (f1/fo,--., fn/fo), we write Ay for Ay 4.
For T
We define a pre-sheaf @x on the G-topology on X by setting Ox (U) :DAU Eor

each rational subdomain U of X. It turns out that & is a sheaf in the G-topology
on X. This is weak form of Tate’s acyclicity theorem which we will prove later in
the course. Moroever (X, Ox) is a locally ringed space.

2.2. Rigid Analytic spaces. Here is the main object of study for this course:

Definition 2.2.1. A rigid analytic space is a locally ringed space (Y, &y ), equipped
with a G-topology (in the sense of §§1.2) on Y, such that Y admits a (possibly
infinite) open covering {Y;};cr (in the classical sense), with the property that for
each i € I, (Y;, Oyly,) is isomorphic to (Sp A;, Osp 4,) for some affinoid K-algebra
A;.



