
LECTURE 13

Date of Lecture: October 1, 2019

Unless otherwise specified, K is a complete non-archimedean field, and to avoid
annoying trivialities we assume the absolute value | | on K is non-trivial. As before
N = {0, 1, 2, . . . ,m, . . . }. Rings mean commutative rings with 1.

The symbol � is for flagging a cautionary comment or a tricky argument. It
occurs in the margins and is Knuth’s version of Bourbaki’s “dangerous bend sym-
bol”.

1. The supremum norm and spectral values

The definition of a spectral value was given in [Lecture 12, (1.3.1)] and we proved
an important property of it in Lemma 1.3.2 of ibid. We recall these below in (1.1.1)
and Lemma 1.1.3.

1.1. Spectral values. Let (A, ‖ ‖) be a semi-normed ring. Let p ∈ A[ζ] be a monic
polynomial, say

p = ζr + c1ζ
r−1 + · · ·+ cr

with ci ∈ A. The spectral value σ(p) of p is defined to be

(1.1.1) σ(p) = max
i=1...r

‖ci‖
1
i .

Lemma 1.1.2. Let (A, ‖ ‖) be a semi-normed ring. Let p, q ∈ A[ζ] be monic
polynomials. Then σ(pq) ≤ max {σ(p), σ(q)}.

Proof. If p = ζr + a1ζ
r−1 + · · ·+ ar and q = ζs + b1ζ

s−1 + · · ·+ bs then

pq = ζr+s +

r+s∑
λ=1

cλζ
r+s−λ

where cλ =
∑
i+j=λ ajbj . Now,

‖cλ‖ ≤ max
i+j=λ

‖ai‖‖bj‖ ≤ max
i+j=λ

σ(p)iσ(q)j ≤ max {σ(p), σ(q)}λ.

�

If A = K, there is a nice formula for the spectral value of p.

Lemma 1.1.3. Suppose p = ζr + c1ζ
r−1 + · · · + cr ∈ K[ζ] is a polynomial which

factors in K[ζ] as

p = ζr + c1ζ
r−1 + · · ·+ cr =

r∏
j=1

(ζ − αj).

Then
σ(p) = max

j=1...r
|αj |.

Proof. See [Lecture 12, Lemma 1.3.2] �
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1.2. Finite maps over Tate algebras. Let

Td ↪→ B

be a finite monomorphism of K-algebras such that B is torsion-free as a module
over Td. Fix b ∈ B. Then b is integral over Td. Actually more can be said. Since
Td is a UFD, an easy application of Gauss’ Lemma shows that if 0 6= b ∈ B, then
the element b has a minimal polynomial pb ∈ Td[ζ], i.e., pb is monic and generates
the kernel of the Td-algebra map Td[ζ]→ B, g 7→ g(b).

We have a composite of finite monomorphisms Td ↪→ Td[b] ⊂ B. We have a sur-
jection MaxB � Max (Td[b]) (from the “lying over” part of the Cohen-Seidenberg
theorem). Moreover, if y′ ∈ MaxB maps to y ∈ Max (Td[b]), we have

|b(y)| = |b(y′)|

since K(y) ↪→ K(y′).1

Let x ∈ MaxTd and let p̄b ∈ K(x)[ζ] be the reduction of pb ∈ Td[ζ]. If z1, . . . , zr ∈
Max (Td[b]) and y1, . . . , ys ∈ MaxB are the points lying over x (these are non-empty
collections by the “lying over” part of the Cohen-Seidenberg theorem) then our
observation above and Lemma 1.1.3 shows that

(1.2.1) σ(p̄b) = max
j=1...r

|b(zj)| = max
i=1...s

|b(yi)|.

The first equality follows from the fact that if ϕ : K(zj) ↪→ K is any embedding of

K(zj) into an algebraic closure K of K, then all conjugates of ϕ(b(zj)) have the
same absolute value.

Lemma 1.2.2. Let Td ↪→ B be a finite monomorphism of K-algebras so that B
is affinoid by [Lecture 12, Lemma 1.2.4], and suppose B is torsion free as an Td-
module. Let 0 6= b ∈ B be an element and

pb = ζr + f1ζ
r−1 + · · ·+ fr

be its minimal polynomial over Td (so that fi ∈ Td).

(a) Let x ∈ MaxTd and suppose y1, . . . , ys ∈ MaxB are the elements lying over
x. Let p̄b ∈ K(x)[ζ] be the reduction of pb in K(x)[ζ]. Then

max
i=1...s

|b(yi)| = σ(p̄b) = max
j=1...r

|fj(x)|
1
j .

(b) The supremum semi-norm of b is given by

‖b‖sup = σ(pb).

Proof. Part (a) is simply (1.2.1). Part (b) follows from (a) using the fact that
‖ ‖ = ‖ ‖sup on Td, and the fact that as x varies over MaxTd, the yi exhaust
MaxB. �

1.2.3. Let ϕ : A → B be a finite map of affinoid K-algebras. How far can we
take the arguments in Lemma 1.2.2? Assume (temporarily) that B is an integral
domain. Let Tn � A be surjective K-algebra map, so that A/ kerϕ ∼= Tn/a for
some ideal a of Tn. The proof of Noether normalisation [Lecture 7, Theorem 1.2.4]
shows that we have an inclusion Td ↪→ Tn such that the composite Td → A/ kerϕ is

1Here, as always, if A is an affinoid algebra over K and x ∈ MaxA, then K(x) := A/mx.
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a finite monomorphism.2 Note that Td ↪→ A/ kerϕ factors through A → A/ kerϕ.
Now, for any f ∈ Td, if a ∈ A is its image, then

(∗) ‖f‖sup ≥ ‖a‖sup.

Indeed, if x ∈ MaxA and if y ∈ MaxTd is its image (i.e. its contraction in Td), then
|f(y)| = |a(x)|, giving the above inequality.

Since B is torsion free over Td, being a domain, it follows that every b ∈ B has
a minimal polynomial pb ∈ Td[ζ] over Td. Suppose pb =

∑r
i=0 fiζ

r−i, with f0 = 1,
and fi ∈ Td. Let ai ∈ A be the images of fi in A. Then

br + a1b
r−1 + · · ·+ ar−1b+ ar = 0.

Since ‖fi‖ = ‖fi‖sup ≥ ‖ai‖sup by (∗), we have

‖b‖sup = σ(pb) = max
i=1...r

‖fi‖
1
i ≥ max

i=1...r
‖ai‖

1
i
sup.

On the other hand, since br = −
∑r
i=1 aib

r−i, we have ‖b‖rsup = ‖br‖sup ≤ max1≤i≤r‖aibr−i‖sup.
Hence there exists an index i such that

(1.2.3.1) ‖b‖rsup ≤ ‖aibr−i‖sup ≤ ‖ai‖sup‖b‖r−isup

giving ‖b‖sup ≤ ‖ai‖
1
i
sup. Thus

(1.2.3.2) ‖b‖sup = max
i=1...r

‖ai‖
1
i
sup.

We have more or less proved the following result:

Lemma 1.2.4. Let ϕ : A→ B be a finite K-algebra map between affinoid algebras.
For each b ∈ B exists an integral equation

br + a1b
r−1 + · · ·+ ar−1b+ ar = 0

with ai ∈ A such that ‖b‖sup = maxi=1...r‖ai‖
1
i
sup.

Proof. When B is an integral domain, (1.2.3.2) gives the result. Otherwise, let
p1, . . . , ps be the minimal primes of the noetherian ring B. Let bi be the image
of b in B/pi. Then ‖b‖sup = maxi=1...s‖bi‖sup. Since the rings B/pi are integral
domains, we have monic polynomials q1, . . . , qs ∈ A[ζ] such that qi(bi) = 0 and
‖bi‖sup = σ(qi) for every i ∈ {1, . . . , s}. Since (q1(b)q2(b) . . . qs(b))(x) = 0 for every

x ∈ MaxB, and since B is Jacobson, we have q1(b)q2(b) . . . qs(b) ∈
√

(0) ⊂ B.
Hence there exists a power q of q1q2 . . . qs such that q(b) = 0 in B. Moreover

‖b‖sup = max
i=1...s

‖bi‖sup = max
i=1...s

σ(qi) ≥ σ(q).

Arguing as we did to obtain the inequality (1.2.3.1), we see that in fact we have an
equality, namely ‖b‖sup = σ(q). �

Theorem 1.2.5. (The Maximum Principle) Let A be an affinoid K algebra, and
let a be an element of A. There exists y ∈ Max (A) such that ‖a‖sup = |a(y)|.

2See also the proof of Lemma 1.1.1 in Lecture 7 and the Remark 1.1.2 that follows it.
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Proof. The case a = 0 is trivial and so let us assume a 6= 0. Let p1, . . . , ps be
the minimal primes of A, and let aj be the image of a in A/pj . Since ‖a‖sup =
maxj=1...s‖aj‖sup there exists an index j such that ‖a‖sup = ‖aj‖sup. So with-
out loss of generality we will assume A is a domain. Let Td ↪→ A be a Noether
normalisation and

pa = ζr + f1ζ
r−1 + · · ·+ fr

the minimal polynomial of a over Td (so that fi ∈ Td). Set

f := f1f2 . . . fr.

By the Maximum Principle for Td (see [Lecture 4, Theorem 3.2.1] and [Lecture 7,
Theorem 1.3.1]) we can find x ∈ Max (Td) such that ‖f‖sup = |f(x)|. Now ‖ ‖sup
is multiplicative on Td, being equal to ‖ ‖ there. Hence

‖f1‖sup . . . ‖fr‖sup = ‖f‖sup = |f(x)| = |f1(x)| . . . |fr(x)|.

It follows that for each j we have ‖fj‖sup = |fj(x)|. If y1, . . . , ys are the points in
MaxA lying over x ∈ Max (Td), then by Lemma 1.2.2 we have

‖a‖sup = max
j=1...r

‖fj‖
1
j
sup = max

j
|fj(x)|

1
j = max

i=1...s
|a(yi)|.

There is a y ∈ {y1, . . . , ys} such that |a(y)| = maxi=1...s |a(yi)|, since we are dealing
with a finite set of numbers. This proves the assertion. �

2. Complete norms on Banach K-algebras

2.1. For a commutative ring R, we set j(R) equal to ∩m∈MaxRm, i.e. j(R) is the
Jacobson radical of R. Recall that if R is a K-algebra, then a K-algebra norm ‖ ‖
on R is a sub-multiplicative norm on the K-vector space R and if further ‖ ‖ is
complete, then (R, ‖ ‖) is a Banach K-algebra.

Theorem 2.1.1. Let B be a K-algebra such that dimK(B/m) < ∞ for every
m ∈ MaxB and such that j(B) = 0.

(a) Let (A, ‖ ‖A) be a Banach K-algebra and ϕ : A → B a K-algebra homo-
morphism such that ϕ−1(m) is closed in A for every m ∈ MaxB. Then ϕ
is continuous for every complete K-algebra norm on B.

(b) Any two complete K-algebra norms on B are equivalent.

Proof. We use the closed graph theorem for part (a). Suppose ‖ ‖ is a complete
K-algebra norm on B. Let {an} be a null sequence in A, i.e. an → 0 as n → ∞,
and suppose there exists b ∈ B such that limn→∞ ϕ(an) = b. To prove (a), we
have to show that b = 0. Let m ∈ MaxB and let p = ϕ−1(m). Then p is closed in
A, by hypothesis. Since ‖ ‖ is complete, therefore m is closed in B (by Problem 5
of HW 3). The natural surjections µ : A � A/p and ν : B � B/m are therefore
continuous with respect to the residue norms on A/p and B/m respectively. Let
ψ : A/p ↪→ B/m be the map induced by ϕ. We have a commutative diagram

A
ϕ //

µ
����

B

ν
����

A/p �
�

ψ
// B/m
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By hypothesis B/m is finite-dimensional over K, whence so is A/p since ψ is injec-
tive. By Corollary 1.1.8 of Lecture 11, ψ is therefore continuous. Thus

ν(b) = ν( lim
n→∞

ν(ϕ(an)) = lim
n→∞

ν(ϕ(an)) = lim
n→∞

ψ(µ(an)) = 0.

We have used the continuity of µ, ν and ψ in the above chain of equalities. It
follows that b ∈ m, and since m was an arbitrary maximal ideal, b ∈ j(B) = 0.
Thus b = 0, and ϕ is continuous.

Part (b) follows from part (a). Indeed, let ‖ ‖1 and ‖ ‖2 be two complete K-
algebra norms on B. Apply part (a) to (A, ‖ ‖A) = (B, ‖ ‖1) and ϕ : B → B the
identity map, with ‖ ‖2 the complete norm on the target. The conclusion of part
(a) shows that ‖ ‖2 ≤ C‖ ‖1 for some C > 0. Reversing the roles of ‖ ‖1 and ‖ ‖2
produces the result. We are once again using the result that every maximal ideal
in a Banach K-algebra is closed. �

We have an immediate and very useful corollary.

Corollary 2.1.2. All complete K-algebra norms on a reduced affinoid K-algebra
are equivalent.

Proof. This follows from part (b) of the theorem. Indeed if A is an affinoid algebra,
then it is Jacobson, and if further it is reduced, then j(A) = 0. Other hypotheses
for applying Theorem 2.1.1 (b) are clearly satsified by A from results in earlier
lectures. �

2.2. The supremum norm on a reduced affinoid algebra. Suppose A is
a reduced affinoid K-algebra. Then the semi-norm ‖ ‖sup is a norm on A. We
also know that all norms of the form ‖ ‖α are equivalent, where α is a surjective K-
algebra map from a Tate algebra. Indeed each ‖ ‖α is complete, and Corollary 2.1.2
gives the result (the earlier proof of the equivalence of the various ‖ ‖α is more or
less the proof given in the corollary above). If we show ‖ ‖sup is complete, then by
Corollary 2.1.2, ‖ ‖sup would be equivalent to ‖ ‖α for every α.

In fact ‖ ‖sup is complete on the reduced algebra A. The proof is somewhat in-
volved. The first steps are straightforward enough. One reduces readily to the case
where A is a domain. Indeed, returning to a familiar argument, used for example
in the proof of Theorem 1.2.5, we note that for f ∈ A, ‖f‖sup = maxi=1...s‖fi‖sup,
where fi is the residue of f in A/pi, with p1, . . . , ps the minimal primes of A. If
‖ ‖sup is complete on each of the A/pi, then clearly ‖ ‖sup is complete on A.

Let us the assume A is a domain. Let Td ↪→ A be a Noether normalisation.
On Td the norm ‖ ‖sup is complete since it equals the Gauss norm there. One
would like to relate ‖ ‖sup on Td to ‖ ‖sup on A using the fact that Td → A is
a finite extension, hoping that some of the results on the extensions of norms
and completeness on finite extensions of complete fields hold in this more general
case, perhaps by mimicking the proofs in the field case. This does not work in a
straightforward way, and one has work with fields with absolute values which are
not complete. What follows is a discussion of the pitfalls along the way, and a
strategy to overcome these.

2.2.1. Let

F = Q(Td) and Q = Q(A)

be the quotient fields of Td and A respectively. Recall we are assuming A is an
integral domain and Td ↪→ A is a Noether normalisation. Then Q = A ⊗Td

F and
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hence we have a finite field extension F → Q. For good book-keeping let us write
‖ ‖gs for the Gauss norm (= the supremum norm) on Td and ‖ ‖sp for the spectral
norm (= supremum norm) on A, i.e. ‖a‖sp = σ(pa) for a ∈ A, and pa ∈ Td[ζ] the
minimal polynomial of a over Td, and σ : A[ζ]→ R+ the spectral value function as
in (1.1.1).

Since ‖ ‖gs is multiplicative on Td, one extends ‖ ‖gs to F in an obvious way,
namely via the formula

(2.2.1.1)
∥∥∥f
g

∥∥∥
gs

=
‖f‖gs
‖g‖gs

(f, g ∈ Td, g 6= 0)

making (F, ‖ ‖gs) a normed field with valuation ring T ◦d .
The norm ‖ ‖sp is not (necessarily) multiplicative onA and therefore the analogue

of (2.2.1.1) need not give us a norm on A, or for that matter be well-defined.
However, the spectral norm for the field extension F → Q, with ‖ ‖gs the norm on
F , makes sense on Q and a little thought (essentially Gauss’ Lemma) shows that
the resulting spectral norm agrees with ‖ ‖sp on A. Thus we define

(2.2.1.2) ‖ ‖sp : Q→ R+

by the formula

(2.2.1.3) ‖x‖sp = σ(px)

where px is the minimal polynomial for x over F , and σ : Q[ζ] → R+ the spectral
value function as in (1.1.1). This extends the norm ‖ ‖sp on A. Note that ‖x‖sp =
‖x‖gs if x is in the subring Td of A and that ‖fx‖sp = ‖f‖gs‖x‖sp for f ∈ Td and
x ∈ A. It is not hard to show that ‖ ‖sp is a (non-archimedean) norm on Q, and in
fact a F -algebra norm.

2.2.2. The fact that Q is a finite dimensional F -vector space allows us to define
other norms on Q, one for each F -basis of Q. Let e1, . . . , en be a basis for Q. For
x = x1e1 + · · · + xnen ∈ Q, xi ∈ F , set ‖x‖c = maxi=1...n‖xi‖gs. Then ‖ ‖c is a
F -norm on Q, and it is the cartesian norm on Q in the following sense. The basis
e1, . . . , en of Q gives us a canonical isomorphism Fn −→∼ Q, and on Fn, the product
topology is induced by the product norm ‖ ‖p : Fn → R+ given by the standard
formula ‖(x1, . . . , xn)‖p = maxi=1...n‖xi‖gs. Clearly ‖ ‖c is simply the transplant
of ‖ ‖p under the isomorphism Fn −→∼ Q induced by the basis e1, . . . , en.

While the norm ‖ ‖c on Q depends upon the basis chosen, the induced topology
doesn’t. This is seen as follows. First, any F -linear map φ : Fn → V , where V is a
F -normed space, is continuous. Here, as always, Fn has ‖ ‖p as its norm. Indeed,
if M = maxi=1...n‖φ(ei)‖V , where ‖ ‖V is the norm on V , then ‖φ(

∑n
i=1 xiei)‖V =

‖
∑n
i=1 xiφ(ei)‖V = M maxi=1...n‖xi‖gs ≤ M‖

∑n
i=1 xiei‖c. It follows that every

automorphism of Fn is continuous, and this amounts to saying that the norms of
the form ‖ ‖c on Q are all equivalent, even if they do depend on a chosen basis.

2.2.3. As a matter of fact one can choose a basis {ei}ni=1 for Q with ei = ai
f ,

ai ∈ A, and 0 6= f ∈ Td such that A ⊂
⊕n

i=1 Td
ai
f . To see this, first note that we

can find a basis of Q from elements in A, say a1, . . . , an is a basis of Q with ai ∈ A.
Let α1, . . . , αm be Td-module generators of A. Then we have φij ∈ Q such that
αi =

∑
j φijaj . We can find a “common denominator” f ∈ Td r {0} for the φij

and write φij =
aij
f , aij ∈ A, 0 6= f ∈ Td. Then a1

f , . . . ,
an
f is an F -basis for Q and
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clearly

A ⊂
n⊕
i=1

Td
ai
f
⊂

n⊕
i=1

F
ai
f

= Q.

Since the norm ‖ ‖p on Fn is complete on Tnd (it need not be complete on Fn),
therefore the norm ‖ ‖c is complete on

⊕n
i=1 Td

ai
f . By Proposition 1.1.1 of Lecture

12, A is a closed subspace of (
⊕n

i=1 Td
ai
f , ‖ ‖c) and hence ‖ ‖c is complete on A.

2.2.4. If one could show that ‖ ‖sp is equivalent to ‖ ‖c on A as a Td-module norm,
then ‖ ‖sp would be complete and we are done by Corollary 2.1.2. One strategy for
showing this would be to show that F -norms ‖ ‖sp and ‖ ‖c are equivalent on Q,
and since Q is finite dimensional over F , this seems quite likely given Theorem 1.1.7
of Lecture 11. However loc.cit. required the underlying field to be complete. We
are working with vector spaces over (F, ‖ ‖gs), and ‖ ‖gs is not complete on F (even
though it is on the subring Td). We cannot assume ‖ ‖sp and ‖ ‖c are equivalent
on F without proof as the following example shows.

Example: Let F̂ be the completion of F with respect to ‖ ‖gs and pick x ∈ F̂rF .

Consider the V = F + Fx ⊂ F̂ . Then V is a two-dimensional vector space over F

and it has a norm coming from the extension of ‖ ‖gs to F̂ . One checks that the
F -vector space isomorphism V −→∼ F 2 given by f + gx 7→ (f, g) is not continuous
where the norm on F 2 is ‖ ‖p.

2.2.5. However, it does turn out that ‖ ‖sp and ‖ ‖c are equivalent on Q, despite
the example in 2.2.4 (see Theorem 2.2.7 below). The key result is the following:

Theorem 2.2.6. Given a non-zero element x ∈ Q, there exists a bounded F -linear
functional λ : (Q, ‖ ‖sp)→ (F, ‖ ‖gs) such that λ(x) 6= 0.

We will prove this a little later in this lecture when F is perfect and the proof
when F is imperfect will be developed in HW problems. Here are some conse-
quences.

Theorem 2.2.7. Let F be given the Gauss norm ‖ ‖gs and Q the spectral norm
‖ ‖sp.

(a) All F -functionals on Q are bounded.
(b) There is an F -linear homeomorphism Q −→∼ Fn.
(c) Given any basis e1, . . . , en of Q over F , the induced cartesian norm ‖ ‖c on

Q is equivalent to the spectral norm ‖ ‖sp on Q.

Proof. To prove all functionals on Q are bounded, it is enough to prove that there
exist n linearly independent bounded functionals λ1, . . . , λn. We do this by induc-
tion. Pick an arbitrary non-zero bounded functional λ1. There exists at least one
by Theorem 2.2.6. By way of induction, suppose we have a set of linearly indepen-
dent bounded functionals λ1, . . . , λj on Q with 1 ≤ j < n. Since j < n = dimF Q,

therefore ∩ji=1 kerλi 6= 0. Pick 0 6= x ∈ ∩ji=1 kerλi. By Theorem 2.2.6 there exists
a bounded linear functional λj+1 on Q such that λj+1(x) 6= 0. If

c1λ1 + · · ·+ cjλj + cj+1λj+1 = 0

with ci ∈ F , then c1λ1(x) + · · ·+ cjλj(x) + cj+1λj+1(x) = 0. Since x ∈ ∩ji=1 kerλi,
this means λi(x) = 0 for i = 1, . . . , j, and hence cj+1 = 0. Since λ1, . . . , λj
are linearly independent, ci = 0 for 1 ≤ i ≤ j. It follows that λ1, . . . , λj , λj+1 is
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linearly independent. By induction we can find a basis of bounded linear functionals
λ1, . . . , λn on Q. This proves that every linear functional on Q is bounded.

For the part (b) pick a linearly independent set λ1, . . . , λn of linear functionals
on Q, i.e a basis for the dual space of Q. Each λj is continuous by part (a).
We therefore get a continous F -linear isomorphism (λ1, . . . , λn) : Q −→∼ Fn. The
inverse is also continuous by the discussion in §§§2.2.2.

Since the proof of part (b) involved an arbitrary basis for the dual of Q, part (c)
follows from (b) by picking λ1, . . . , λn to be the basis dual to e1, . . . , en, i.e. λi is
defined by λi(ej) = δij , i, j ∈ {1, . . . , n}. �

We have therefore, granting Theorem 2.2.6, proven that ‖ ‖sup (which is equal
to ‖ ‖sp since A is a domain) is complete on A and hence is equivalent to ‖ ‖α for
any K-algebra surjection α from a Tate algebra to A. In fact, we have proven the
result for A reduced not merely an integral domain. We state the result for the
record.

Theorem 2.2.8. If A is a reduced K-affinoid algebra then ‖ ‖sup is equivalent to
every norm of the form ‖ ‖α where α is a surjective K-algebra homomorphism from
a Tate algebra onto A.

Proof. This follows from the discussion in §§§2.2.3, Theorem 2.2.7 (c), and Corol-
lary 2.1.2. �

It remains to prove Theorem 2.2.6. As we mentioned earlier, we will only prove
it when F is perfect. The case where F is imperfect will be proven by you in your
homework exercises.

Proof of Theorem 2.2.6 when F is perfect. Since F is perfect, the finite extension
F → Q is separable. It follows that the trace map

Tr = TrQ/F : Q→ F

is a non-zero functional. We claim that Tr is continuous. Let x ∈ Q. Let

Φ = ζn + f1ζ
n−1 + f2ζ

n−2 + · · ·+ fn

be the characteristic polynomial of the F -linear endomorphism on Q given by y 7→
xy and let Ψ be the minimal polynomial of x over F . Then Φ = Ψm for some
positive integer m. Let s = n

m , so that s = deg Ψ. If Ψ = ζs + g1ζ
s−1 + · · · + gs,

then f1 = mg1. Now Tr(x) = −f1 = −mg1. Since K is non-archimedean |m| ≤ 1,
where we write m for the image of m in K for convenience. We have the following
chain of inequalities

‖Tr(x)‖gs = ‖f1‖gs = ‖mg1‖gs ≤ ‖g1‖gs ≤ max
i=1...s

‖gi‖
1
i
gs = ‖x‖sp,

whence Tr is continuous. Now

dimQ HomF (Q, F ) = 1.

and since Tr 6= 0 we must have

HomF (Q, F ) = Q · Tr ∼= Q.

Let 0 6= x ∈ Q. Then xTr 6= 0. Therefore there exists y ∈ Q such that xTr(y) 6= 0,
i.e. Tr(xy) 6= 0. Let λ = yTr. Then λ is continuous, since Tr is continuous on Q
and the multiplication map Q×Q→ Q is continous. Now λ(x) = Tr(xy) 6= 0 and
hence we are done. �
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