LECTURE 12

Date of Lecture: September 19, 2019

K is a complete non-archimedean field, and to avoid annoying trivialities we assume the absolute value $|\;|$ on K is non-trivial.

As before $\mathbf{N} = \{0, 1, 2, \dots, m, \dots\}$. Rings mean commutative rings with 1.

The symbol \bigotimes is for flagging a cautionary comment or a tricky argument. It occurs in the margins and is Knuth's version of Bourbaki's "dangerous bend symbol".

1. Finitely generated modules over affinoid algebras

1.1. Finite modules. Let A be an affinoid algebra, and let $|| ||_A$ be one of the equivalent norms of the form $|| ||_{\alpha}$ on A, where $\alpha \colon T_n \twoheadrightarrow A$ is a surjective K-algebra homomorphism. Let $(M, || ||_M)$ be a Banach module over $(A, || ||_A)$.

Proposition 1.1.1. If M is finitely generated as an A-module, then every submodule of M is closed in M.

Proof. Let $N \subset M$ be a sub-module and X its closure in M. Since A is noetherian, X is finitely generated over A, say by x_1, \ldots, x_r . We have a surjective A-module map

$$\pi \colon A^r \longrightarrow X$$

given by $(a_1, \ldots, a_r) \mapsto \sum a_i x_i$. The free module A^r has the obvious norm || ||' namely

$$||(a_1,\ldots,a_r)||' = \max_{i=1,\ldots,r} ||a_i||_A.$$

Let $D = \max_i ||x_i||_M$. Then

$$\left\|\sum_{i} a_{i} x_{i}\right\|_{M} \leq \max_{i} \|a_{i} x_{i}\|_{M} \leq \max_{i} \|a_{i}\|_{A} \max_{i} \|x_{i}\|_{M} \leq D\|(a_{1}, \dots, a_{r})\|',$$

i.e. π is continuous. It follows that ker π is closed in A^r , and we have, by the open mapping theorem, an isomorphism of Banach spaces $\bar{\pi}: A^r/\ker \pi \longrightarrow X$ such that π is the composite $A^r \to A^r/\ker \pi \xrightarrow{\bar{\pi}} X$. By the definition of the norm on $A^r/\ker \pi$ and the continuity of $\bar{\pi}^{-1}$ we can find C > 1 such that

$$\inf_{\mathbf{a} \in \pi^{-1}(x)} \|\mathbf{a}\|' < C \|x\|_M \qquad (x \in X).$$

Set $c := \frac{1}{C}$ and note that 0 < c < 1. We have shown that for every $x \in X$ there exists $(a_1, \ldots, a_r) \in A^r$ with $x = \sum_{i=1}^r a_i x_i$ and such that

$$c \|(a_1, \dots, a_r)\|' \le \|x\|_M.$$

Pick $n_1, \ldots, n_r \in N$ such that $||n_i - x_i||_M \leq c^2$, $i = 1, \ldots, r$. We claim that n_1, \ldots, n_r also generate X. This will prove that N = X, whence N is closed.

Let $y \in X$. Pick $\mathbf{a}^{(0)} = (a_1^{(0)}, \dots, a_r^{(0)}) \in A^r$ such that $y = \sum_i a_i^{(0)} x_i$ and such that $c \|\mathbf{a}^{(0)}\|' \le \|y\|_M$. Then

$$y = \sum_{i=1}^{r} a_i^{(0)} n_i + y_1$$

where $y_1 = \sum_i a_i^{(0)}(x_i - n_i)$. Now $||y_1||_M \le ||a^{(0)}||' \cdot \max_i ||x_i - n_i||_M \le c^{-1} ||y||_M c^2 = c||y||_M$, i.e.,

 $||y_1||_M \le c ||y||_M.$

For y_1 we can find $\mathbf{a}^{(1)} = (a_1^{(1)}, \dots, a_r^{(1)})$ such that $y_1 = \sum_{i=1}^r a_i^{(1)} x_i$ and $c \| \mathbf{a}^{(1)} \|' \le \| y_1 \|_M$. Then reasoning as before we have $y_1 = \sum_{i=1}^r a_i^{(1)} n_i + y_2$ with $y_2 = \sum_i a_i^{(1)} (x_i - n_i)$ and $\| y_2 \|_M \le c \| y_1 \|_M$. Continuing this process, for each $m \in \mathbf{N}$ we can find elements $y_m \in X$, $\mathbf{a}^{(m)} = (a_1^{(m)}, \dots, a_r^{(m)}) \in A^r$ such that $y_m = \sum_{i=1}^r a_i^{(m)} n_i + y_{m+1}$ with $c \| \mathbf{a}^{(m)} \|' \le \| y_m \|_M$ and $\| y_{m+1} \|_M \le c \| y_m \|_M$.

 $\sum_{i=1}^{r} a_i^{(m)} n_i + y_{m+1} \text{ with } c \|\boldsymbol{a}^{(m)}\|' \leq \|y_m\|_M \text{ and } \|y_{m+1}\|_M \leq c \|y_m\|_M.$ Since $\|y_m\|_M \leq c^m \|y\|_M$ and since $\|a_i^{(m)}\|_A \leq c^{-1} \|y_m\|_M \leq c^{m-1} \|y\|_M$, we see that the infinite sums $\sum_{m\geq 1} y_m$ and $\sum_{m\geq 0} a_i^{(m)}$ converge for $i = 1, \ldots r$. From the construction of y_m and $a_i^{(m)}$ we see that

$$y + \sum_{m \ge 1} y_m = \sum_{i=1}^r \left(\sum_{m \ge 0} a_i^{(m)} \right) n_i + \sum_{m \ge 1} y_m.$$
$$y = \sum_{i=1}^r \left(\sum_{m \ge 0} a_i^{(m)} \right) n_i.$$

Proposition 1.1.2. Let $(A, || ||_A)$ be as above. Then every finitely generated A-module has the structure of a Banach A-module. Furthermore, any A-linear map between finitely generated Banach A-modules is continuous.

Proof. If M is a finitely generated A-module then we have a surjective map $\varphi \colon A^r \to M$. According to Proposition 1.1.1, the kernel of φ is closed, and hence the residue norm on $A^r / \ker \varphi$ makes the latter into a Banach-module over A. Since M is isomorphic as an A-module to $A^r / \ker \varphi$, M acquires a Banach A-module structure.

Next, suppose M and N are Banach A-modules and $\phi: M \to N$ an A-module map. To show ϕ is continuous, it is enough to assume $M = A^r$ with the standard norm on A^r . To simplify notations, we will use the symbol $\| \|$ to denote all norms, it being obvious from the context on which modules the norms occur. Let e_1, \ldots, e_r be the standard basis of A^r , and let $\mathbf{a} = (a_1, \ldots, a_r) \in A^r$. We have

$$\|\phi(\boldsymbol{a})\| \le \max_i \|\phi(\boldsymbol{e}_i)\|\|\boldsymbol{a}\|$$

proving that ϕ is continuous.

It follows that

1.2. Finite algebras. Let A as before be an affinoid algebra and $A \to B$ a finite A-algebra, i.e. $A \to B$ is a K-algebra homomorphism and as an A-module, B is finitely generates, say by b_1, \ldots, b_r . From Proposition 1.1.2, one has a norm $|| ||_*$ on B, which makes B a Banach A-module. By the construction of $|| ||_*$ as the residue norm from the surjection $A^r \to B$, we see that $||b_i||_* \leq 1$ for every $i = 1, \ldots, r$. Let $M = \max_{i,j} ||b_ib_j||_*$. Now let $x, y \in A$. We can find $\mathbf{a} = (a_1, \ldots, a_r)$ and

 $\pmb{a}'=(a_1',\ldots,a_r')$ in A^r such that $x=\sum_i a_i b_i,\ y=\sum_i a_i' b_i$ and such that the inequalities

$$\|\boldsymbol{a}\| \le 2\|\boldsymbol{x}\|_*$$
 and $\|\boldsymbol{a}'\| \le 2\|\boldsymbol{y}\|_*$

are satisfied. This follows from the definition of the norm $\| \|_*$ on B. With this choice of representations of x and y as A-linear combinations of b_1, \ldots, b_r , we claim that

$$(1.2.1) ||xy||_* \le 4M ||x||_* ||y||_*.$$

Indeed, we have the following chain of relations

$$\|xy\|_{*} = \left\|\sum_{i,j} a_{i}a'_{j}b_{i}b_{j}\right\|_{*} = \max_{i,j} \|a_{i}a'_{j}\| \|b_{i}b_{j}\|_{*}$$

$$\leq M \max_{i,j} \|a_{i}a'_{j}\|$$

$$\leq M \max_{i} \|a_{j}\| \max_{j} \|a'_{j}\|$$

$$= M \|a\| \|a'\|$$

$$\leq 4M \|x\|_{*} \|y\|_{*}$$

giving (1.2.1). One immediate consequence is that for fixed $b \in B$, the *B*-module map $\mu_b \colon B \to B$ given by $x \mapsto bx$ is continuous. If we define

$$\| \|_B \colon B \to \mathbf{R}_+$$

by the formula

(1.2.2)
$$\|b\|_B = \sup_{x \neq 0} \frac{\|bx\|_*}{\|x\|_*}$$

then $|| ||_B$ is a norm on *B*—namely $||b||_B$ is the operator norm of the bounded operator μ_b —and further

$$(1.2.3) ||bc||_B \le ||b||_B ||c||_B$$

By (1.2.1) $\|\mu_b\| \le 4M \|b\|_*$. On the other hand $\|b\|_*/\|1\|_* = \|b \cdot 1\|_*/\|1\|_* \le \|\mu_b\|$. Thus

 $||b||_B \le 4M ||b||_*$ and $||b||_* \le ||1||_* ||b||_B$

for every $b \in B$. In other words, $|| ||_B$ and $|| ||_*$ are equivalent norms. It follows that $(B, || ||_B)$ complete and hence, by (1.2.3), is a Banach A-algebra.¹ We have thus proven:

Lemma 1.2.4. Let A be an affinoid K-algebra and B a finite A-algebra. Then B has a natural structure of a Banach A-algebra.

In fact one can prove more. Recall that if A is a finitely generated algebra over K and B is a finite A-algebra (i.e. as an A-module, B is finitely generated), then B is also a finitely generated K-algebra. The analogue for affinoid algebras is the following theorem.

Theorem 1.2.5. Let A be an affinoid K-algebra and B a finite A-algebra. Then B is an affinoid K-algebra.

¹It is obvious that $||1||_B = 1$.

Proof. Since A is affinoid, we have a surjective K-algebra map $T_n \to A$ for some $n \in \mathbb{N}$, and since this is a finite map, the composite $T_n \to A \to B$ is also a finite K-algebra homomorphism. We may therefore assume without loss of generality that $A = T_n$. In what follows $\| \|_B$ is the Banach A-algebra norm on B defined by (1.2.2).

Let $b_1, \ldots, b_r \in B$ be T_n -module generators of B. We may assume without loss of generality that $||b_i||_B \leq 1$ for $i = 1, \ldots, r$. Now b_1, \ldots, b_r are also T_n -algebra generators and we have a natural surjective T_n -algebra homomorphism

(1.2.6)
$$T_n[\zeta_1, \dots, \zeta_r] \longrightarrow B$$
$$\zeta_i \longmapsto b_i \qquad (i = 1, \dots, r).$$

let $T_n\langle\zeta_1,\ldots,\zeta_r\rangle$ be the T_n -subalgebra of $T_n[[\zeta_1,\ldots,\zeta_r]]$ consisting of formal power series $\sum_{\boldsymbol{\nu}\in\mathbf{N}^r} f_{\nu_1\ldots\nu_r}\zeta_1^{\nu_1}\ldots\zeta_r^{\nu_r}, f_{\boldsymbol{\nu}}\in T_n$, such that $\|f_{\boldsymbol{\nu}}\|\to 0$ as $|\boldsymbol{\nu}|\to\infty$. It is immediate that

$$T_n\langle\zeta_1,\ldots,\zeta_r\rangle = T_{n+r}$$

The polynomial ring $T_n[\zeta_1, \ldots, \zeta_r]$ is dense in $T_n\langle \zeta_1, \ldots, \zeta_r \rangle = T_{n+r}$. The map (1.2.6) is continuous. Indeed

$$\left\|\sum_{\boldsymbol{\nu}} f_{\boldsymbol{\nu}} b_1^{\nu_1} \dots b_r^{\nu_r}\right\|_B \le \max_{\boldsymbol{\nu}} \|f_{\boldsymbol{\nu}}\| = \left\|\sum_{\boldsymbol{\nu}} f_{\boldsymbol{\nu}} \boldsymbol{\zeta}^{\boldsymbol{\nu}}\right\|$$

for every polynomial $\sum_{\nu} f_{\nu} \zeta^{\nu} \in T_n[\zeta]$. We have used the fact that $\|b_i\|_B \leq 1$ for $i = 1, \ldots, r$ to establish the inequality above. Since $T_n[\zeta]$ is dense in $T_n\langle\zeta\rangle$ and (1.2.6) is uniformly continuous (being a linear continuous map), (1.2.6) extends uniquely to a surjective map $T_{n+r} = T_n\langle\zeta\rangle \twoheadrightarrow B$. It is easy to see this is a T_n -algebra homomorphism (in particular, a K-algebra homomorphism). Thus B is affinoid.

1.3. Spectral values. Let (A, || ||) be a semi-normed K-algebra. Let $p \in A[\zeta]$ be a monic polynomial, say

$$p = \zeta^r + c_1 \zeta^{r-1} + \dots + c_r$$

with $c_i \in A$. The spectral value $\sigma(p)$ of p is defined to be

(1.3.1)
$$\sigma(p) = \max_{i=1, r} \|c_i\|^{\frac{1}{i}}$$

If A = K, there is a nice formula for the spectral value of p.

Lemma 1.3.2. Suppose $p = \zeta^r + c_1 \zeta^{r-1} + \cdots + c_r \in K[\zeta]$ is a polynomial which factors in $\overline{K}[\zeta]$ as

$$p = \zeta^r + c_1 \zeta^{r-1} + \dots + c_r = \prod_{j=1}^r (\zeta - \alpha_j).$$

Then

$$\sigma(p) = \max_{j=1\dots r} |\alpha_j|.$$

Proof. Let $\sigma_i(X_1, \ldots, X_r)$ be the *i*th-symmetric polynomial in *r* variables. Then $c_i = \pm \sigma_i(\alpha_1, \ldots, \alpha_r)$. It follows that for every $i \in \{1, \ldots, r\}$ we have

$$|c_i| = |\sigma_i(\alpha_1, \dots, \alpha_r)| \le \max_{j=1\dots r} |\alpha_j|^i.$$

On the other hand if $m = \max_{j=1...r} |\alpha_j|$ and $\alpha_{j_1}, \ldots, \alpha_{j_i}$ are the roots of p such that $|\alpha_j| = m$, then exactly one of the summands of $\sigma_i(\alpha_r, \ldots, \alpha_r)$ (in its representation as the signed sum of monomials of degree i in the α_j) has absolute value m^i . All the rest have absolute value strictly less than m^i . It follows that

$$|c_i| = m^i.$$

The following result was stated, and we will prove it in the next lecture:

Lemma 1.3.3. Let (A, || ||) be a semi-normed ring. Let $p, q \in A[\zeta]$ be polynomials. Then $\sigma(pq) \leq \max \{\sigma(p), \sigma(q)\}.$