LECTURE 12

Date of Lecture: September 19, 2019
K is a complete non-archimedean field, and to avoid annoying trivialities we assume the absolute value $|\mid$ on K is non-trivial.

As before $\mathbf{N}=\{0,1,2, \ldots, m, \ldots\}$. Rings mean commutative rings with 1.
The symbol is for flagging a cautionary comment or a tricky argument. It occurs in the margins and is Knuth's version of Bourbaki's "dangerous bend symbol".

1. Finitely generated modules over affinoid algebras

1.1. Finite modules. Let A be an affinoid algebra, and let $\left\|\|_{A}\right.$ be one of the equivalent norms of the form $\left\|\|_{\alpha}\right.$ on A, where $\alpha: T_{n} \rightarrow A$ is a surjective K-algebra homomorphism. Let $\left(M,\| \|_{M}\right)$ be a Banach module over $\left(A,\| \|_{A}\right)$.

Proposition 1.1.1. If M is finitely generated as an A-module, then every submodule of M is closed in M.

Proof. Let $N \subset M$ be a sub-module and X its closure in M. Since A is noetherian, X is finitely generated over A, say by x_{1}, \ldots, x_{r}. We have a surjective A-module map

$$
\pi: A^{r} \longrightarrow X
$$

given by $\left(a_{1}, \ldots, a_{r}\right) \mapsto \sum a_{i} x_{i}$. The free module A^{r} has the obvious norm $\left\|\|^{\prime}\right.$ namely

$$
\left\|\left(a_{1}, \ldots, a_{r}\right)\right\|^{\prime}=\max _{i=1 \ldots . r}\left\|a_{i}\right\|_{A}
$$

Let $D=\max _{i}\left\|x_{i}\right\|_{M}$. Then

$$
\left\|\sum_{i} a_{i} x_{i}\right\|_{M} \leq \max _{i}\left\|a_{i} x_{i}\right\|_{M} \leq \max _{i}\left\|a_{i}\right\|_{A} \max _{i}\left\|x_{i}\right\|_{M} \leq D\left\|\left(a_{1}, \ldots, a_{r}\right)\right\|^{\prime}
$$

i.e. π is continuous. It follows that $\operatorname{ker} \pi$ is closed in A^{r}, and we have, by the open mapping theorem, an isomorphism of Banach spaces $\bar{\pi}: A^{r} / \operatorname{ker} \pi \xrightarrow{\sim} X$ such that π is the composite $A^{r} \rightarrow A^{r} / \operatorname{ker} \pi \xrightarrow{\bar{\pi}} X$. By the definition of the norm on $A^{r} / \operatorname{ker} \pi$ and the continuity of $\bar{\pi}^{-1}$ we can find $C>1$ such that

$$
\inf _{\boldsymbol{a} \in \pi^{-1}(x)}\|\boldsymbol{a}\|^{\prime}<C\|x\|_{M} \quad(x \in X)
$$

Set $c:=\frac{1}{C}$ and note that $0<c<1$. We have shown that for every $x \in X$ there exists $\left(a_{1}, \ldots, a_{r}\right) \in A^{r}$ with $x=\sum_{i=1}^{r} a_{i} x_{i}$ and such that

$$
c\left\|\left(a_{1}, \ldots, a_{r}\right)\right\|^{\prime} \leq\|x\|_{M}
$$

Pick $n_{1}, \ldots, n_{r} \in N$ such that $\left\|n_{i}-x_{i}\right\|_{M} \leq c^{2}, i=1, \ldots, r$. We claim that n_{1}, \ldots, n_{r} also generate X. This will prove that $N=X$, whence N is closed.

Let $y \in X$. Pick $\boldsymbol{a}^{(0)}=\left(a_{1}^{(0)}, \ldots, a_{r}^{(0)}\right) \in A^{r}$ such that that $y=\sum_{i} a_{i}^{(0)} x_{i}$ and such that $c\left\|\boldsymbol{a}^{(0)}\right\|^{\prime} \leq\|y\|_{M}$. Then

$$
y=\sum_{i=1}^{r} a_{i}^{(0)} n_{i}+y_{1}
$$

where $y_{1}=\sum_{i} a_{i}^{(0)}\left(x_{i}-n_{i}\right)$. Now $\left\|y_{1}\right\|_{M} \leq\left\|\boldsymbol{a}^{(0)}\right\|^{\prime} \cdot \max _{i}\left\|x_{i}-n_{i}\right\|_{M} \leq c^{-1}\|y\|_{M} c^{2}=$ $c\|y\|_{M}$, i.e.,

$$
\left\|y_{1}\right\|_{M} \leq c\|y\|_{M} .
$$

For y_{1} we can find $\boldsymbol{a}^{(1)}=\left(a_{1}^{(1)}, \ldots, a_{r}^{(1)}\right)$ such that $y_{1}=\sum_{i=1}^{r} a_{i}^{(1)} x_{i}$ and $c\left\|\boldsymbol{a}^{(1)}\right\|^{\prime} \leq$ $\left\|y_{1}\right\|_{M}$. Then reasoning as before we have $y_{1}=\sum_{i=1}^{r} a_{i}^{(1)} n_{i}+y_{2}$ with $y_{2}=$ $\sum_{i} a_{i}^{(1)}\left(x_{i}-n_{i}\right)$ and $\left\|y_{2}\right\|_{M} \leq c\left\|y_{1}\right\|_{M}$. Continuing this process, for each $m \in \mathbf{N}$ we can find elements $y_{m} \in X, \boldsymbol{a}^{(m)}=\left(a_{1}^{(m)}, \ldots, a_{r}^{(m)}\right) \in A^{r}$ such that $y_{m}=$ $\sum_{i=1}^{r} a_{i}^{(m)} n_{i}+y_{m+1}$ with $c\left\|\boldsymbol{a}^{(m)}\right\|^{\prime} \leq\left\|y_{m}\right\|_{M}$ and $\left\|y_{m+1}\right\|_{M} \leq c\left\|y_{m}\right\|_{M}$.

Since $\left\|y_{m}\right\|_{M} \leq c^{m}\|y\|_{M}$ and since $\left\|a_{i}^{(m)}\right\|_{A} \leq c^{-1}\left\|y_{m}\right\|_{M} \leq c^{m-1}\|y\|_{M}$, we see that the infinite sums $\sum_{m \geq 1} y_{m}$ and $\sum_{m \geq 0} a_{i}^{(m)}$ converge for $i=1, \ldots r$. From the construction of y_{m} and $a_{i}^{(m)}$ we see that

$$
y+\sum_{m \geq 1} y_{m}=\sum_{i=1}^{r}\left(\sum_{m \geq 0} a_{i}^{(m)}\right) n_{i}+\sum_{m \geq 1} y_{m} .
$$

It follows that

$$
y=\sum_{i=1}^{r}\left(\sum_{m \geq 0} a_{i}^{(m)}\right) n_{i} .
$$

Proposition 1.1.2. Let $\left(A,\| \|_{A}\right)$ be as above. Then every finitely generated A module has the structure of a Banach A-module. Furthermore, any A-linear map between finitely generated Banach A-modules is continuous.

Proof. If M is a finitely generated A-module then we have a surjective map $\varphi: A^{r} \rightarrow$ M. According to Proposition 1.1.1, the kernel of φ is closed, and hence the residue norm on $A^{r} / \operatorname{ker} \varphi$ makes the latter into a Banach-module over A. Since M is isomorphic as an A-module to $A^{r} / \operatorname{ker} \varphi, M$ acquires a Banach A-module structure.

Next, suppose M and N are Banach A-modules and $\phi: M \rightarrow N$ an A-module map. To show ϕ is continuous, it is enough to assume $M=A^{r}$ with the standard norm on A^{r}. To simplify notations, we will use the symbol || || to denote all norms, it being obvious from the context on which modules the norms occur. Let $\boldsymbol{e}_{1}, \ldots, \boldsymbol{e}_{r}$ be the standard basis of A^{r}, and let $\boldsymbol{a}=\left(a_{1}, \ldots, a_{r}\right) \in A^{r}$. We have

$$
\|\phi(\boldsymbol{a})\| \leq \max _{i}\left\|\phi\left(\boldsymbol{e}_{i}\right)\right\|\|\boldsymbol{a}\|
$$

proving that ϕ is continuous.
1.2. Finite algebras. Let A as before be an affinoid algebra and $A \rightarrow B$ a finite A-algebra, i.e. $A \rightarrow B$ is a K-algebra homomorphism and as an A-module, B is finitely generates, say by b_{1}, \ldots, b_{r}. From Proposition 1.1.2, one has a norm $\left\|\|_{*}\right.$ on B, which makes B a Banach A-module. By the construction of $\left\|\|_{*}\right.$ as the residue norm from the surjection $A^{r} \rightarrow B$, we see that $\left\|b_{i}\right\|_{*} \leq 1$ for every $i=1, \ldots, r$. Let $M=\max _{i, j}\left\|b_{i} b_{j}\right\|_{*}$. Now let $x, y \in A$. We can find $\boldsymbol{a}=\left(a_{1}, \ldots, a_{r}\right)$ and
$\boldsymbol{a}^{\prime}=\left(a_{1}^{\prime}, \ldots, a_{r}^{\prime}\right)$ in A^{r} such that $x=\sum_{i} a_{i} b_{i}, y=\sum_{i} a_{i}^{\prime} b_{i}$ and such that the inequalities

$$
\|\boldsymbol{a}\| \leq 2\|x\|_{*} \quad \text { and } \quad\left\|\boldsymbol{a}^{\prime}\right\| \leq 2\|y\|_{*}
$$

are satisfied. This follows from the definition of the norm $\left\|\|_{*}\right.$ on B. With this choice of representations of x and y as A-linear combinations of b_{1}, \ldots, b_{r}, we claim that

$$
\begin{equation*}
\|x y\|_{*} \leq 4 M\|x\|_{*}\|y\|_{*} \tag{1.2.1}
\end{equation*}
$$

Indeed, we have the following chain of relations

$$
\begin{aligned}
\|x y\|_{*}=\left\|\sum_{i, j} a_{i} a_{j}^{\prime} b_{i} b_{j}\right\|_{*} & =\max _{i, j}\left\|a_{i} a_{j}^{\prime}\right\|\left\|b_{i} b_{j}\right\|_{*} \\
& \leq M \max _{i, j}\left\|a_{i} a_{j}^{\prime}\right\| \\
& \leq M \max _{i}\left\|a_{j}\right\| \max _{j}\left\|a_{j}^{\prime}\right\| \\
& =M\|\boldsymbol{a}\|\left\|\boldsymbol{a}^{\prime}\right\| \\
& \leq 4 M\|x\|_{*}\|y\|_{*}
\end{aligned}
$$

giving (1.2.1). One immediate consequence is that for fixed $b \in B$, the B-module map $\mu_{b}: B \rightarrow B$ given by $x \mapsto b x$ is continuous. If we define

$$
\left\|\|_{B}: B \rightarrow \mathbf{R}_{+}\right.
$$

by the formula

$$
\begin{equation*}
\|b\|_{B}=\sup _{x \neq 0} \frac{\|b x\|_{*}}{\|x\|_{*}} \tag{1.2.2}
\end{equation*}
$$

then $\left\|\|_{B}\right.$ is a norm on B-namely $\| b \|_{B}$ is the operator norm of the bounded operator μ_{b}-and further

$$
\begin{equation*}
\|b c\|_{B} \leq\|b\|_{B}\|c\|_{B} \tag{1.2.3}
\end{equation*}
$$

By (1.2.1) $\left\|\mu_{b}\right\| \leq 4 M\|b\|_{*}$. On the other hand $\|b\|_{*} /\|1\|_{*}=\|b \cdot 1\|_{*} /\|1\|_{*} \leq\left\|\mu_{b}\right\|$. Thus

$$
\|b\|_{B} \leq 4 M\|b\|_{*} \quad \text { and } \quad\|b\|_{*} \leq\|1\|_{*}\|b\|_{B}
$$

for every $b \in B$. In other words, $\left\|\|_{B}\right.$ and $\| \|_{*}$ are equivalent norms. It follows that $\left(B,\| \|_{B}\right)$ complete and hence, by (1.2.3), is a Banach A-algebra. ${ }^{1}$ We have thus proven:

Lemma 1.2.4. Let A be an affinoid K-algebra and B a finite A-algebra. Then B has a natural structure of a Banach A-algebra.

In fact one can prove more. Recall that if A is a finitely generated algebra over K and B is a finite A-algebra (i.e. as an A-module, B is finitely generated), then B is also a finitely generated K-algebra. The analogue for affinoid algebras is the following theorem.

Theorem 1.2.5. Let A be an affinoid K-algebra and B a finite A-algebra. Then B is an affinoid K-algebra.

[^0]Proof. Since A is affinoid, we have a surjective K-algebra map $T_{n} \rightarrow A$ for some $n \in \mathbf{N}$, and since this is a finite map, the composite $T_{n} \rightarrow A \rightarrow B$ is also a finite K-algebra homomorphism. We may therefore assume without loss of generality that $A=T_{n}$. In what follows $\left\|\|_{B}\right.$ is the Banach A-algebra norm on B defined by (1.2.2).

Let $b_{1}, \ldots, b_{r} \in B$ be T_{n}-module generators of B. We may assume without loss of generality that $\left\|b_{i}\right\|_{B} \leq 1$ for $i=1, \ldots, r$. Now b_{1}, \ldots, b_{r} are also T_{n}-algebra generators and we have a natural surjective T_{n}-algebra homomorphism

$$
\begin{align*}
T_{n}\left[\zeta_{1}, \ldots, \zeta_{r}\right] & \longrightarrow B \tag{1.2.6}\\
\zeta_{i} & \longmapsto b_{i} \quad(i=1, \ldots, r) .
\end{align*}
$$

let $T_{n}\left\langle\zeta_{1}, \ldots, \zeta_{r}\right\rangle$ be the T_{n}-subalgebra of $T_{n}\left[\left[\zeta_{1}, \ldots, \zeta_{r}\right]\right]$ consisting of formal power series $\sum_{\boldsymbol{\nu} \in \mathbf{N}^{r}} f_{\nu_{1} \ldots \nu_{r}} \zeta_{1}^{\nu_{1}} \ldots \zeta_{r}^{\nu_{r}}, f_{\boldsymbol{\nu}} \in T_{n}$, such that $\left\|f_{\boldsymbol{\nu}}\right\| \rightarrow 0$ as $|\boldsymbol{\nu}| \rightarrow \infty$. It is immediate that

$$
T_{n}\left\langle\zeta_{1}, \ldots, \zeta_{r}\right\rangle=T_{n+r}
$$

The polynomial ring $T_{n}\left[\zeta_{1}, \ldots, \zeta_{r}\right]$ is dense in $T_{n}\left\langle\zeta_{1}, \ldots, \zeta_{r}\right\rangle=T_{n+r}$. The map (1.2.6) is continuous. Indeed

$$
\left\|\sum_{\nu} f_{\nu} b_{1}^{\nu_{1}} \ldots b_{r}^{\nu_{r}}\right\|_{B} \leq \max _{\nu}\left\|f_{\nu}\right\|=\left\|\sum_{\nu} f_{\nu} \zeta^{\nu}\right\|
$$

for every polynomial $\sum_{\boldsymbol{\nu}} f_{\boldsymbol{\nu}} \boldsymbol{\zeta}^{\boldsymbol{\nu}} \in T_{n}[\boldsymbol{\zeta}]$. We have used the fact that $\left\|b_{i}\right\|_{B} \leq 1$ for $i=1, \ldots, r$ to establish the inequality above. Since $T_{n}[\boldsymbol{\zeta}]$ is dense in $T_{n}\langle\boldsymbol{\zeta}\rangle$ and (1.2.6) is uniformly continuous (being a linear continuous map), (1.2.6) extends uniquely to a surjective map $T_{n+r}=T_{n}\langle\boldsymbol{\zeta}\rangle \rightarrow B$. It is easy to see this is a $T_{n^{-}}$ algebra homomorphism (in particular, a K-algebra homomorphism). Thus B is affinoid.
1.3. Spectral values. Let $(A,\| \|)$ be a semi-normed K-algebra. Let $p \in A[\zeta]$ be a monic polynomial, say

$$
p=\zeta^{r}+c_{1} \zeta^{r-1}+\cdots+c_{r}
$$

with $c_{i} \in A$. The spectral value $\sigma(p)$ of p is defined to be

$$
\begin{equation*}
\sigma(p)=\max _{i=1 \ldots r}\left\|c_{i}\right\|^{\frac{1}{i}} \tag{1.3.1}
\end{equation*}
$$

If $A=K$, there is a nice formula for the spectral value of p.
Lemma 1.3.2. Suppose $p=\zeta^{r}+c_{1} \zeta^{r-1}+\cdots+c_{r} \in K[\zeta]$ is a polynomial which factors in $\bar{K}[\zeta]$ as

$$
p=\zeta^{r}+c_{1} \zeta^{r-1}+\cdots+c_{r}=\prod_{j=1}^{r}\left(\zeta-\alpha_{j}\right)
$$

Then

$$
\sigma(p)=\max _{j=1 \ldots r}\left|\alpha_{j}\right|
$$

Proof. Let $\sigma_{i}\left(X_{1}, \ldots, X_{r}\right)$ be the $i^{\text {th }}$-symmetric polynomial in r variables. Then $c_{i}= \pm \sigma_{i}\left(\alpha_{1}, \ldots, \alpha_{r}\right)$. It follows that for every $i \in\{1, \ldots, r\}$ we have

$$
\left|c_{i}\right|=\left|\sigma_{i}\left(\alpha_{1}, \ldots, \alpha_{r}\right)\right| \leq \max _{j=1 \ldots r}\left|\alpha_{j}\right|^{i}
$$

On the other hand if $m=\max _{j=1 \ldots r}\left|\alpha_{j}\right|$ and $\alpha_{j_{1}}, \ldots, \alpha_{j_{i}}$ are the roots of p such that $\left|\alpha_{j}\right|=m$, then exactly one of the summands of $\sigma_{i}\left(\alpha_{r}, \ldots, \alpha_{r}\right)$ (in its representation as the signed sum of monomials of degree i in the α_{j}) has absolute value m^{i}. All the rest have absolute value strictly less than m^{i}. It follows that

$$
\left|c_{i}\right|=m^{i}
$$

The following result was stated, and we will prove it in the next lecture:
Lemma 1.3.3. Let $(A,\| \|)$ be a semi-normed ring. Let $p, q \in A[\zeta]$ be polynomials. Then $\sigma(p q) \leq \max \{\sigma(p), \sigma(q)\}$.

[^0]: ${ }^{1}$ It is obvious that $\|1\|_{B}=1$.

