LECTURE 11

Date of Lecture: September 17, 2019

K is a complete non-archimedean field, and to avoid annoying trivialities we assume the absolute value $|\cdot|$ on K is non-trivial.

As before $\mathbf{N} = \{0, 1, 2, \dots, m, \dots\}$. Rings mean commutative rings with 1.

The symbol \diamondsuit is for flagging a cautionary comment or a tricky argument. It occurs in the margins and is Knuth's version of Bourbaki's "dangerous bend symbol".

1. Finite dimensional *K*-vector spaces

1.1. All norms on a finite dimensional space are equivalent. In this subsection we prove a non-archimedean analogue of a well known result on finite dimensional vectorspaces over \mathbf{R} and \mathbf{C} , namely that all norms on such spaces are equivalent and they are complete with respect to any norm on them.

Let $(X, \|\cdot\|)$ be a *finite dimensional* normed linear space over K. Let $B = \{e_1, \ldots, e_n\}$ be a basis for X. Define $\|\cdot\|_B \colon X \to \mathbf{R}_+$ by the formula

$$\|\alpha_1 \boldsymbol{e}_1 + \dots + \alpha_n \boldsymbol{e}_n\|_B := \max |\alpha_i|.$$

It is easy to see that $(X, \|\cdot\|_B)$ is a K-Banach space using the completeness of K. If $M = \max_i \|\boldsymbol{e}_i\|$, then for $\boldsymbol{x} = \alpha_1 \boldsymbol{e}_1 + \cdots + \alpha_n \boldsymbol{e}_n \in X$ we have

(1.1.1)
$$\|\boldsymbol{x}\| \leq \max |\alpha_i| \|\boldsymbol{e}_i\| \leq M \|\boldsymbol{x}\|_B.$$

We will prove that there exists c > 0 such that

$$\|\boldsymbol{x}\|_B \le c \|\boldsymbol{x}\| \qquad (\boldsymbol{x} \in X)$$

This will prove that $\|\cdot\|$ is equivalent to $\|\cdot\|_B$ and also prove that all norms on X are equivalent and that $(X, \|\cdot\|)$ is a Banach space over K (since $(X, \|\cdot\|_B)$ is). We will prove the existence of c > 0 satisfying (1.1.2) by induction on n, the dimension of X.

If n = 1, set $c = ||e_1||^{-1}$. Then, for $\boldsymbol{x} = \alpha \boldsymbol{e}_1$ we have

$$\|\boldsymbol{x}\|_{B} = |\alpha| = |\alpha| \|\boldsymbol{e}_{1}\| / \|\boldsymbol{e}\|_{1} = c \|\boldsymbol{x}\|$$

Now assume n > 1 and set $V = \text{span}\{e_1, \ldots, e_{n-1}\}$. By way of induction we may (and do) assume that there exists $c_1 > 0$ such that

$$\|\boldsymbol{v}\|_B \leq c_1 \boldsymbol{v} \qquad (\boldsymbol{v} \in V).$$

In view of the above and (1.1.1), $\|\cdot\|_B$ and $\|\cdot\|$ are equivalent on V. Since $(V, \|\cdot\|_B)$ is a Banach space, it follows that so is $(V, \|\cdot\|)$. Hence $(V, \|\cdot\|)$ is closed in $(X, \|\cdot\|)$. In particular we have

$$\inf_{\boldsymbol{v}\in V} \|\boldsymbol{e}_n - \boldsymbol{v}\| > 0.$$
$$c_2 = \frac{\|\boldsymbol{e}_n\|}{\inf_{\boldsymbol{v}\in V} \|\boldsymbol{e}_n - \boldsymbol{v}\|}.$$

Let

Then $c_2 \geq 1$. Set

(1.1.4)
$$c := \max\left\{c_1 c_2, \frac{c_2}{\|\boldsymbol{e}_n\|}\right\}.$$

We claim that c as defined in (1.1.4) satisfies (1.1.2). Note that since $c_2 \ge 1$, we have $c \ge c_1$. Let $\boldsymbol{x} \in X$. We wish to show $\|\boldsymbol{x}\|_B \le c\|\boldsymbol{x}\|$. If $\boldsymbol{x} \in V$, this is true since $c_1 \le c$, and the because of (1.1.3). So assume $\boldsymbol{x} \notin V$. Then there exist a unique $\boldsymbol{v} \in V$ and $0 \ne b \in K$ such that

$$\boldsymbol{x} = \boldsymbol{v} + b\boldsymbol{e}_n$$

Now

$$\|\boldsymbol{x}\| = |b| \|b^{-1}\boldsymbol{v} + \boldsymbol{e}_n\| \ge |b| \inf_{\boldsymbol{w} \in V} \|\boldsymbol{e}_n - \boldsymbol{w}\| = c_2^{-1} \|b\boldsymbol{e}_n\|.$$

This can be re-written as

$$(1.1.5) \|b\boldsymbol{e}_n\| \le c_2 \|\boldsymbol{x}\|$$

Moreover,

$$\|v\| = \|x - be_n\| \le \max\{\|x\|, \|be_n\|\} \le \max\{\|x\|, c_2\|x\|\} = c_2\|x\|.$$

We have used (1.1.5) in the second inequality in the chain above, and the fact that $c_2 \ge 1$ for the last equality. Thus

$$(1.1.6) \|\boldsymbol{v}\| \le c_2 \|\boldsymbol{x}\|$$

Now

$$\begin{aligned} \|\boldsymbol{x}\|_{B} &= \|\boldsymbol{v} + b\boldsymbol{e}_{n}\|_{B} \\ &= \max \left\{ \|\boldsymbol{v}\|_{B}, |b| \right\} \\ &\leq \max \left\{ c_{1} \|\boldsymbol{v}\|, \frac{\|b\boldsymbol{e}_{n}\|}{\|\boldsymbol{e}_{n}\|} \right\} \qquad (by \ (1.1.3)) \\ &\leq \max \left\{ c_{1}c_{2} \|\boldsymbol{x}\|, \frac{c_{2}}{\|\boldsymbol{e}_{n}\|} \|\boldsymbol{x}\| \right\} \qquad (by \ (1.1.5) \ \text{and} \ (1.1.6)) \\ &= c \|\boldsymbol{x}\|. \end{aligned}$$

This establishes (1.1.2) with c as in (1.1.4).

We have proved the following (with $\|\cdot\|_B$ showing that the set of norms on X is non-empty):

Theorem 1.1.7. Let X be a finite dimensional K-vector space. The set of norms on X is non-empty and any two norms on X are equivalent. X is a K-Banach space with respect to each of these norms.

An immediate corollary is the following:

Corollary 1.1.8. Any K-linear map from X to a normed vector space over K is bounded.

Proof. It is clear from the theorem that an injective map from a finite dimensional normed space to another normed space is continuous. Now suppose $T: X \to Y$ is K linear with Y a normed linear space. Then ker T is closed (being complete according to the theorem). Endowing $X/\ker T$ with the resulting residue norm it is

clear that the canonical map $X \twoheadrightarrow X/\ker T$ is continuous. Since T is the composite $X \twoheadrightarrow X/\ker T \hookrightarrow Y$ and $X/\ker T$ is finite dimensional, we are done.

Ş

Remark 1.1.9. As an example of an annoying triviality alluded to at the beginning of this document, consider the standard method of showing that a linear transformation T is continuous if and only if only if it is bounded (i.e. if and only if there exists $M \ge 0$ such that $||T\boldsymbol{x}|| \le M||\boldsymbol{x}||$) given in a standard functional analysis course. The proof requires one to "re-scale" balls centred at the origin so that they fit into another such ball. We cannot do that if $|\cdot|$ is the trivial absolute value on K, i.e. one for which all non-zero elements have absolute value 1. If $|\cdot|$ is non-trivial the standard proof goes through.

2. K-algebra homomorphisms between affinoid algebras

2.1. Krull's intersection theorem. The Krull intersection theorem says that if (R, \mathfrak{m}) is a noetherian local ring then

$$\bigcap_{l\geq 1}\mathfrak{m}^l=0.$$

One consequence is the following:

Lemma 2.1.1. Let A be a noetherian ring. Then

$$\bigcap_{\mathfrak{m}\in \operatorname{Max}(A)}\bigcap_{l\geq 1}\mathfrak{m}^l=0.$$

Proof. Suppose f lies in the intersection on the left side. It is enough to show that the annihilator of f, $\operatorname{ann}(f)$, equals A, where $\operatorname{ann}(f)$ is the collection of elements $t \in A$ such that tf = 0. Pick any $\mathfrak{m} \in \operatorname{Max}(A)$. Since $f \in \cap_l \mathfrak{m}^l$, by Krull's intersection theorem $\frac{f}{1} = 0$ in $A_{\mathfrak{m}}$. This means there exists $t \notin \mathfrak{m}$ such that tf = 0. It follows that $\operatorname{ann}(f)$ is not contained in \mathfrak{m} . Since $\operatorname{ann}(f)$ is not contained in any maximal ideal of A, it must be all of A.

2.2. Affinoid algebras. In rigid analytic geometry, affinoid algebras (or more precisely, affinoid K-algebras) play the role that finitely generated rings over a fixed field play in algebraic geometry.

Definition 2.2.1. A K-algebra A is called an *affinoid* K-algebra, or simply an *affinoid algebra* if the context is clear, if there is a surjective K-algebra homomorphism

$$\alpha \colon T_n \longrightarrow A$$

on to A from some Tate algebra T_n .

Given an affinoid algebra A, each isomorphism $A \cong T_n/\mathfrak{a}$ gives us a residue norm on A, since all ideals in T_n are closed (see [Lecture 8, Theorem 2.2.1]). If $\alpha: T_n \twoheadrightarrow A$ is a surjective K-algebra hmomprophism, we denote the resulting residue norm on A by $\|\cdot\|_{\alpha}$. In other words

(2.2.2)
$$||f||_{\alpha} := \inf \left\{ ||g|| \ | g \in \alpha^{-1}(f) \right\} \quad (f \in A).$$

We will show that all the residue norms $\|\cdot\|_{\alpha}$ on A, as α varies over surjective homomorphisms to A from Tate algebras, are equivalent. Towards that end we first prove

Lemma 2.2.3. Let B be an affinoid algebra and \mathfrak{m} a maximal ideal of B. Then B/\mathfrak{m}^l is a finite K-alegbra for every $l \geq 1$.

Proof. Fix $l \ge 1$ and $\mathfrak{m} \in \operatorname{Max}(B)$. Since B/\mathfrak{m}^l has Krull dimension zero we have a noether normalisation $K = T_0 \hookrightarrow B/\mathfrak{m}^l$ proving the lemma.

Theorem 2.2.4. Let

 $\varphi \colon A \longrightarrow B$

be a K-algebra homomorphism between affinoid K-algebras. Endow A with a residue norm $\|\cdot\|_{\alpha}$ arising from some surjective map α from a Tate algebra onto A. Let $\|\cdot\|$ be any K-algebra norm on B making B into a K-Banach space and such that \mathfrak{m}^l is closed in B for every $l \geq 1$ and every $\mathfrak{m} \in \operatorname{Max}(B)$. Then φ is continuous.

Proof. By the closed graph theorem we have to prove that if $\{a_n\}$ is a sequence in A with $a_n \to 0$ as $n \to \infty$, and $\lim_{n\to\infty} \varphi(a_n) = b$, then b = 0. Fix $\mathfrak{m} \in \operatorname{Max}(B)$ and $l \ge 1$. Let $\nu \colon B \twoheadrightarrow B/\mathfrak{m}^l$ be the canonical surjection and

$$\bar{\varphi} \colon A \to B/\mathfrak{m}^l$$

the composite $A \xrightarrow{\varphi} B \xrightarrow{\nu} B/\mathfrak{m}^l$. Since \mathfrak{m}^l is closed in $B, B/\mathfrak{m}^l$ acquires a residue norm and with this norm the map ν is continuous. Let

$$\mu\colon A\longrightarrow A/\ker\bar{\varphi}$$

be the canonical surjection and

$$\psi \colon A / \ker \bar{\varphi} \longrightarrow B / \mathfrak{m}^l$$

be the induced map, and endow $A/\ker \bar{\varphi}$ with the residue norm from $\|\cdot\|_{\alpha}$. Note that μ is continuous. The data can be arranged in a commutative diagram as below:

Note that ψ is injective, and hence $A/\ker \bar{\varphi}$ is finite dimensional as a K-vector space since B/\mathfrak{m}^l is by Lemma 2.2.3. By Corollary 1.1.8, ψ is continuous, and hence so is $\bar{\varphi} = \psi \circ \mu$. Thus

$$\mu(b) = \nu \left(\lim_{n \to \infty} \varphi(a_n) \right) \qquad \text{(by definition of } b)$$
$$= \lim_{n \to \infty} \nu(\varphi(a_n)) \qquad \text{(since } \nu \text{ is continuous)}$$
$$= \lim_{n \to \infty} \bar{\varphi}(a_n) \qquad \text{(since } \bar{\varphi} = \nu \circ \varphi)$$
$$= \bar{\varphi} \left(\lim_{n \to \infty} a_n \right) \qquad \text{(since } \bar{\varphi} \text{ is continuous)}$$
$$= 0.$$

It follows that $b \in \mathfrak{m}^l$. Since $\mathfrak{m} \in Max(B)$ and $l \ge 1$ were arbitrary, Lemma 2.1.1 shows that b = 0.

An immediate corollary is:

Corollary 2.2.5. Let A and B be affinoid algebras endowed with residue norms arising from surjective maps from Tate algebras, and let $\varphi \colon A \to B$ be a K-algebra homomorphism. Then φ is continuous. In particular if we have two surjective homomorphisms from Tate algebras to A, say $\alpha \colon T_n \twoheadrightarrow A$ and $\beta \colon T_m \twoheadrightarrow A$, then $\|\cdot\|_{\alpha}$ and $\|\cdot\|_{\beta}$ are equivalent.

2.3. The supremum "norm" on an affinoid algebra. Recall from (3.2.1) of Lecture 8, the Gauss norm on T_n can also be computed by the fomula:

$$||f|| = \sup_{\boldsymbol{x} \in \operatorname{Max}(T_n)} |f(\boldsymbol{x})| \qquad (f \in T_n)$$

where $f(\boldsymbol{x})$ is the image of f in the field $K(\boldsymbol{x}) := T_n/\mathfrak{m}_{\boldsymbol{x}}$.¹ With this in mind we define the sup norm $\|\cdot\|_{sup}$ on an affinoid algebra A by the formula

(2.3.1)
$$||f||_{\sup} := \sup_{\boldsymbol{x} \in \operatorname{Max}(A)} |f(\boldsymbol{x})| \qquad (f \in A).$$

As before we write $\mathfrak{m}_{\boldsymbol{x}}$ for $\boldsymbol{x} \in \operatorname{Max}(A)$ when we think of it as a maximal ideal, and $f(\boldsymbol{x})$ is the image of f in $K(\boldsymbol{x}) := A/\mathfrak{m}_{\boldsymbol{x}}$. Recall from noether normalisation that $K(\boldsymbol{x})$ is finite over K and hence $|\cdot|$ extends uniquely from K to $K(\boldsymbol{x})$.

It should be remarked that the sup norm need not be a norm. Indeed, it is not hard to see that $||f^n||_{\sup} = ||f||_{\sup}^n$, and hence if $f \neq 0$ is nilpotent, we have $||f||_{\sup} = 0$. If A is reduced then the sup norm is indeed a norm.

We record this and other fairly obvious facts about the sup norm below.

Proposition 2.3.2. Let A be an affinoid K-algebra. Then

- (a) The sup norm $\|\cdot\|_{\sup}$ on A is a semi-norm.
- (b) $||f^n||_{\sup} = ||f||_{\sup}^n$ for $f \in A$.

Ş

(c) If $\alpha: T_n \to A$ is a surjective K-algebra homomorphism, then

$$||f||_{\sup} \le ||f||_{\alpha} \qquad (f \in A)$$

In particular the map $(A, \|\cdot\|_{\alpha}) \to (A, \|\cdot\|_{\sup})$ which is the identity on the underlying sets, is continuous.

- (d) $||f||_{sup} = 0$ if and only if f is nilpotent.
- (e) $\|\cdot\|_{\sup}$ is a norm if and only if A is reduced.

Proof. Only part (d) needs elaboration. The rest follow more or less from the defining formula (2.3.1). Now $||f||_{\sup} = 0$ if and only if $f(\boldsymbol{x}) = 0$ for every $\boldsymbol{x} \in Max(A)$, i.e. if and only if $f \in \mathfrak{m}$ for every maximal ideal \mathfrak{m} of A. Since A is Jacobson by [Lecture 8, Theorem 2.1.1] we have $\cap_{\mathfrak{m}} \mathfrak{m} = \sqrt{(0)}$. This proves (d). \Box

 $^{{}^{1}\}mathfrak{m}_{\boldsymbol{x}}$ is \boldsymbol{x} when we wish to think of it as a maximal ideal rather than as a point of $\operatorname{Max}(T_n)$.