LECTURE 11

Date of Lecture: September 17, 2019

K is a complete non-archimedean field, and to avoid annoying trivialities we
assume the absolute value |-| on K is non-trivial.

As before N = {0,1,2,...,m,...}. Rings mean commutative rings with 1.

The symbol g% is for flagging a cautionary comment or a tricky argument. It
occurs in the margins and is Knuth’s version of Bourbaki’s “dangerous bend sym-
bol”.

1. Finite dimensional K-vector spaces

1.1. All norms on a finite dimensional space are equivalent. In this sub-
section we prove a non-archimedean analogue of a well known result on finite di-
mensional vectorspaces over R and C, namely that all norms on such spaces are
equivalent and they are complete with respect to any norm on them.

Let (X, ||-|]) be a finite dimensional normed linear space over K. Let B =
{e1,...,e,} be a basis for X. Define ||-||g: X — Ry by the formula

loner + -+ + anenlB:= mlax|al-\.
It is easy to see that (X, ||-||5) is a K-Banach space using the completeness of K.
If M = max;|e;||, then for € = a1e1 + - - + ape, € X we have

(1.1.1) ] < max |aif[le]| < Ml|z|| .

We will prove that there exists ¢ > 0 such that
(1.1.2) lz|ls < c|x]| (x € X).

This will prove that ||| is equivalent to |||z and also prove that all norms on X
are equivalent and that (X, ||-||) is a Banach space over K (since (X, ||-||5) is). We
will prove the existence of ¢ > 0 satisfying (1.1.2) by induction on n, the dimension
of X.

If n =1, set ¢ = ||e;||~*. Then, for £ = ae; we have

2|z = ol = lallleil/lells = cl|z]l.
Now assume n > 1 and set V = span{ey,...,e,_1}. By way of induction we may
(and do) assume that there exists ¢; > 0 such that
(1.1.3) lvlls < c1v (veV).
In view of the above and (1.1.1), ||-||z and ||| are equivalent on V. Since (V, ||-||5)

is a Banach space, it follows that so is (V, ||-]|). Hence (V,||-]|) is closed in (X, ||-||).
In particular we have
inf |le, — v|| > 0.
veV
Let
llenl

infyey e, — |’
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Then ¢y > 1. Set

(1.1.4) ¢:= max clcg,c—2 .
llenll

We claim that ¢ as defined in (1.1.4) satisfies (1.1.2). Note that since ¢z > 1, we
have ¢ > ¢;. Let & € X. We wish to show ||z||p < c||z|. If z € V, this is true
since ¢; < ¢, and the because of (1.1.3). So assume x ¢ V. Then there exist a
unique v € V and 0 # b € K such that

x =1v+ be,.
Now
]| = [0~ v + e, > |b] inf e, —wl]| = c;|[ben]].
weV
This can be re-written as
(1.1.5) [ben || < cal]|.
Moreover,
[v]l = [lz = bey|| < max{||z[], [[ben |} < max{||z]|, caflx||} = cafl|.

We have used (1.1.5) in the second inequality in the chain above, and the fact that
co > 1 for the last equality. Thus

(1.1.6) [v]| < cofl]|.
Now
|zl = [[v+ben s

= max {[|v 5, |b[}

lex

< max{cl|v|, 'be"”} (by (1.1.3))

< max{clc2||ac||, |22”$c|} (by (1.1.5) and (1.1.6))

= cl||.
This establishes (1.1.2) with ¢ as in (1.1.4).

We have proved the following (with ||-||p showing that the set of norms on X is
non-empty):

Theorem 1.1.7. Let X be a finite dimensional K -vector space. The set of norms
on X 1is non-empty and any two norms on X are equivalent. X is a K-Banach
space with respect to each of these norms.

An immediate corollary is the following:

Corollary 1.1.8. Any K-linear map from X to a normed vector space over K is
bounded.

Proof. 1t is clear from the theorem that an injective map from a finite dimensional

normed space to another normed space is continuous. Now suppose T: X — Y

is K linear with Y a normed linear space. Then ker T is closed (being complete

according to the theorem). Endowing X/ ker T with the resulting residue norm it is
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clear that the canonical map X — X/ker T is continuous. Since T is the composite
X - X/kerT — Y and X/kerT is finite dimensional, we are done. O

Remark 1.1.9. As an example of an annoying triviality alluded to at the be-
ginning of this document, consider the standard method of showing that a linear
transformation T is continuous if and only if only if it is bounded (i.e. if and only
if there exists M > 0 such that ||Txz| < M||x||) given in a standard functional
analysis course. The proof requires one to“re-scale” balls centred at the origin so
that they fit into another such ball. We cannot do that if |-| is the trivial absolute
value on K, i.e. one for which all non-zero elements have absolute value 1. If || is
non-trivial the standard proof goes through.

2. K-algebra homomorphisms between affinoid algebras

2.1. Krull’s intersection theorem. The Krull intersection theorem says that if
(R, m) is a noetherian local ring then

ﬂ m! = 0.
1>1
One consequence is the following:
Lemma 2.1.1. Let A be a noetherian ring. Then
ﬂ ﬂ m! =0.
meMax(A) I>1

Proof. Suppose f lies in the intersection on the left side. It is enough to show that
the annihilator of f, ann(f), equals A, where ann(f) is the collection of elements
t € A such that tf = 0. Pick any m € Max(A). Since f € nmm!, by Krull’s

intersection theorem | = 0 in Ay,. This means there exists ¢ ¢ m such that ¢ f = 0.
It follows that ann(f) is not contained in m. Since ann(f) is not contained in any
maximal ideal of A, it must be all of A. O

2.2. Affinoid algebras. In rigid analytic geometry, affinoid algebras (or more pre-
cisely, affinoid K-algebras) play the role that finitely generated rings over a fixed
field play in algebraic geometry.

Definition 2.2.1. A K-algebra A is called an affinoid K-algebra, or simply an
affinoid algebra if the context is clear, if there is a surjective K-algebra homomor-
phism

a: T, —» A
on to A from some Tate algebra T,.
Given an affinoid algebra A, each isomorphism A 2 T;, /a gives us a residue norm
on A, since all ideals in T, are closed (see [Lecture 8, Theorem 2.2.1]). If a: T}, — A

is a surjective K-algebra hmomprphism, we denote the resulting residue norm on
A by ||||a. In other words

(2:22) Ifllai=inf {ligh|[g € a™ (N} (f € A).

We will show that all the residue norms |-||o on A, as « varies over surjective
homomorphisms to A from Tate algebras, are equivalent. Towards that end we
first prove



Lemma 2.2.3. Let B be an affinoid algebra and m a maximal ideal of B. Then
B/m! is a finite K -alegbra for every I > 1.

Proof. Fix [ > 1 and m € Max(B). Since B/m! has Krull dimension zero we have
a noether normalisation K = Ty < B/m! proving the lemma. (]

Theorem 2.2.4. Let
p:A— B

be a K -algebra homomorphism between affinoid K -algebras. Endow A with a residue
norm ||-||o arising from some surjective map o from a Tate algebra onto A. Let |||
be any K-algebra norm on B making B into a K-Banach space and such that m!
is closed in B for every ! > 1 and every m € Max(B). Then ¢ is continuous.

Proof. By the closed graph theorem we have to prove that if {a,} is a sequence in
A with a, — 0 as n — oo, and lim,_,« ¢(a,) = b, then b = 0. Fix m € Max(B)
and [ > 1. Let v: B — B/ml be the canonical surjection and

@: A— B/m!
the composite A 2B B/m!. Since m' is closed in B, B/m! acquires a residue
norm and with this norm the map v is continuous. Let
w: A— A/ker
be the canonical surjection and
¢: A/ ker g — B/m!

be the induced map, and endow A/ker ¢ with the residue norm from ||-||,. Note
that p is continuous. The data can be arranged in a commutative diagram as below:

A—* B

|

A/ ker @ CT> B/m!

Note that ¢ is injective, and hence A/ker @ is finite dimensional as a K-vector
space since B/m! is by Lemma 2.2.3. By Corollary 1.1.8, v is continuous, and
hence so is ¢ = tpopu. Thus

u(b) = V(nli_)ngo @(an)) (by definition of b)

= lim v(p(a,)) (since v is continuous)
n—oo
= lim @(ay,) (since @ = voy)
n— 00
= 4,27( lim an) (since @ is continuous)
n— o0
=0.

It follows that b € m!. Since m € Max(B) and [ > 1 were arbitrary, Lemma 2.1.1
shows that b = 0. 0

An immediate corollary is:



Corollary 2.2.5. Let A and B be affinoid algebras endowed with residue norms
arising from surjective maps from Tate algebras, and let p: A — B be a K-algebra
homomorphism. Then ¢ is continuous. In particular if we have two surjective
homomorphisms from Tate algebras to A, say a: T, — A and B: T,, — A, then
Il and ||-||g are equivalent.

2.3. The supremum “norm” on an affinoid algebra. Recall from (3.2.1) of
Lecture 8, the Gauss norm on 7T, can also be computed by the fomula:
[fll=""sup |f(=)]  (f€Tn)
xeMax(Ty)
where f(z) is the image of f in the field K (x):= T},/mz.! With this in mind we
define the sup norm ||-||sup on an affinoid algebra A by the formula

(2.3.1) [fllsup:=sup [f(z)]  (f€A).
A)

xeMax(
As before we write m,, for € Max(A) when we think of it as a maximal ideal, and
f(x) is the image of f in K(x):= A/m,. Recall from noether normalisation that
K (x) is finite over K and hence [-| extends uniquely from K to K (x).

It should be remarked that the sup norm need not be a norm. Indeed, it is
not hard to see that ||f"|lsup = | f||%p, and hence if f # 0 is nilpotent, we have
| fllsup = 0. If A is reduced then the sup norm is indeed a norm.

We record this and other fairly obvious facts about the sup norm below.

Proposition 2.3.2. Let A be an affinoid K-algebra. Then
(a) The sup norm ||-||sup on A is a semi-norm.

(b) /™ lsup = [[fl|5up for | € A.

(¢) If a: T,, - A is a surjective K-algebra homomorphism, then

[fllsup < 1 flla - (f € A).

In particular the map (A, ||-||la) = (A, ||"||sup) which is the identity on the
underlying sets, is continuous.

(@) | fllsup = O if and only if f is nilpotent.

) IIllsup s @ norm if and only if A is reduced.

Proof. Only part (d) needs elaboration. The rest follow more or less from the
defining formula (2.3.1). Now ||f|lsup = 0 if and only if f(x) = 0 for every & €
Max(A), i.e. if and only if f € m for every maximal ideal m of A. Since A is
Jacobson by [Lecture 8, Theorem 2.1.1] we have Npm = +/(0). This proves (d). O

1m;,3 is @ when we wish to think of it as a maximal ideal rather than as a point of Max(71h).
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