HW 7

Due on Nov 5, 2019 (in class).

Covariant Yoneda.

(1) Let \mathscr{C} be a category and Z_1 and Z_2 be objects in \mathscr{C} . Suppose we have a natural transformation $T: \operatorname{Hom}_{\mathscr{C}}(Z_1, -) \to \operatorname{Hom}_{\mathscr{C}}(Z_2, -)$ of **Sets**-valued functors on \mathscr{C} . Show that there is a unique map $\tau: Z_2 \to Z_1$ in \mathscr{C} such that for any object C in \mathscr{C} , the map $T(C): \operatorname{Hom}_{\mathscr{C}}(Z_1, C) \to \operatorname{Hom}_{\mathscr{C}}(Z_2, C)$ is given by $\phi \mapsto \phi \circ \tau, \phi \in \operatorname{Hom}_{\mathscr{C}}(Z_1, C)$.

Čech cohomology. Suppose $(\mathscr{C}, \mathscr{C}ov)$ is a Grothendieck topology on a category \mathscr{C} . Let $\mathfrak{Psh} = \mathfrak{Psh}_{\mathscr{C}}$ denote the category of pre-sheaves on \mathscr{C} .

For $V \in \mathscr{C}$, let \mathbb{Z}_V be the presheaf of abelian groups on \mathscr{C} given by

$$\mathcal{Z}_{V}(W) = \mathbf{Z}^{\operatorname{Hom}_{\mathscr{C}}(W, V)} = \bigoplus_{\phi \colon V \to W} \mathbf{Z} \qquad (W \in \mathscr{C})$$

with obvious "restriction" maps.

In the problems that follow, fix $U \in \mathscr{C}$ and $\mathfrak{U} = \{U_{\alpha} \to U\}_{\alpha \in I} \in \mathscr{C}ov(U)$. If is \mathscr{P} a presheaf on \mathscr{C} then (as usual) $C^{\bullet}(\mathfrak{U}, \mathscr{P})$ will denote Čech complex associated with \mathfrak{U} and \mathscr{P} . If $(i_0, \ldots, i_p) \in I^{p+1}$, then set

$$U_{i_0\dots i_p} = U_{i_0} \times_U U_{i_1} \times_U \dots \times_U U_{i_p}.$$

Finally for $p \in \mathbf{N}$ we write

$$Z_p = \bigoplus_{i \in I^{p+1}} Z_{U_{i_0 \dots i_p}}.$$

(2) Let $V \in \mathscr{C}$. Show that

$$\operatorname{Hom}_{\operatorname{Psh}}(\mathbb{Z}_V, -) = \Gamma(V, -).$$

- (3) (a) Show that $C^p(\mathfrak{U}, \mathscr{P})$ is functorial in $\mathscr{P} \in \mathfrak{Psh}$.
 - (b) Fix $p \in \mathbf{N}$. Show that

$$C^p(\mathfrak{U}, \mathscr{P}) = \operatorname{Hom}_{\operatorname{Psh}}(\mathbb{Z}_p, \mathscr{P}).$$

for every $\mathscr{P} \in \mathcal{Psh}$. Show that this is a functorial identification.

(4) (a) Show (using problem (1) and problem (3)) that we have a homology complex

 $0 \longleftarrow Z_0 \longleftarrow Z_1 \longleftarrow \ldots \longleftarrow Z_{p-1} \longleftarrow Z_p \longleftarrow \ldots$

such that $\operatorname{Hom}_{\operatorname{Psh}}(Z_{\bullet}, \mathscr{P}) = C^{\bullet}(\mathfrak{U}, \mathscr{P})$ for $\mathscr{P} \in \operatorname{Psh}$.

- (b) Give an explicit formula for the boundary map $Z_p \to Z_{p-1}$.
- (c) Show that $H_p(Z_{\bullet}) = 0$ for $p \ge 1$.