HW 6

Due on October 22, 2019 (in class).

As before $\mathbf{N} = \{0, 1, 2, \dots, m, \dots\}$. Also $\mathbf{R}_+ := [0, \infty)$.

 $(K, |\;|)$ is a complete non-archimedean field such that $|\;|$ is non-trivial. For any complete field L, let

$$T_n(L) = L\langle \zeta_1, \ldots, \zeta_n \rangle$$

with the Gauss norm. If L = K, we just write T_n for $T_n(L)$ as we have been doing all along.

Definition 1. Let (A, || ||) be a normed K-algebra, i.e. it is a normed K-vector space such that $||ab|| \leq ||a|| ||b||$ for $a, b \in A$. An A-module M with a K-norm || ||'is said to be a normed A-module if $||ay||' \leq ||a|| ||y||'$, $a \in A$, $y \in M$. It is said to be a faithfully normed A-module if ||ay||' = ||a|| ||y||' for $a \in A$, $y \in M$. A normed normed A-module (M, || ||') is said to be separable with respect to bounded linear maps or simply b-separable if for every non-zero element $y \in M$, there exists a bounded linear map $\tau: M \to A$ such that $\tau(y) \neq 0.^1$

Spectral norms. We assume char K = p > 0. Let $F = Q(T_n)$, the quotient field of $T_n = K\langle \zeta_1, \ldots, \zeta_n \rangle$. Define the *Gauss norm*

$$\| \|_{gs} \colon F \to \mathbf{R}_+$$

on F the way we did in [Lecture 13, (2.2.1.1)].

Fix an algebraic closure \overline{F} over F. Since every non-zero element of \overline{F} has a minimal polynomial over F, the spectral norm

$$\| \|_{\mathrm{sp}} \colon \overline{F} \longrightarrow \mathbf{R}_+$$

is well defined and from HW 5, it is a non-archimedean norm on \overline{F} .

For each $m \in \mathbf{N}$, define F_m as $F^{p^{-m}}$, i.e.

$$F_m = \{ x \in \overline{F} \mid x^{p^m} \in F. \}.$$

We have a tower of fields

$$F = F_0 \subset F_1 \subset \cdots \subset F_m \subset \ldots \overline{F}.$$

We set

$$F_{\infty} := \bigcup_{m} F_{m}$$

The field F_{∞} is perfect. We have a purely inseparable extension $F \subset F_{\infty}$, and a separable extension $F_{\infty} \subset \overline{F}$. We may regard \overline{K} as the subfield of \overline{F} consisting of elements in \overline{F} which are algebraic over K. One can define K_m inside \overline{K} the way we defined F_m inside \overline{F} , or equivalently, set

$$K_m = F_m \cap \overline{K}.$$

¹A map $\lambda: M \to A$ is bounded if there exists C > 0 such that $\|\lambda(y)\| \leq C \|y\|', \forall y \in M$.

In other words $x \in \overline{F}$ lies in K_m if and only if $x^{p^m} \in K$. One again, setting $K_{\infty} = \bigcup_m K_m$, one has $K \subset K_{\infty}$ purely inseparable, K_{∞} perfect, and $K_{\infty} \subset \overline{K}$ separable.

Finally, set

$$T_{n,m} = \{ x \in \overline{F} \mid x^{p^m} \in T_n \}.$$

One way to see all this is to consider the Frobenius isomorphism $\Phi_m : \overline{F} \longrightarrow \overline{F}$, $x \mapsto x^{p^m}$. Then $F_m = \Phi_m^{-1}(F)$, $K_m = \Phi_m^{-1}(K)$, and $T_{n,m} = \Phi_m^{-1}(T_n)$.

- (1) (a) Show that K_1 is complete with respect to the norm on \overline{K} which extends uniquely from K.
 - (b) Show that if V is any normed finite dimensional K_1 -vector space, then V is b-separable over K.
- (2) Suppose every finite dimensional F-vector subspace of F_1 is b-separable over F. As always, the norm on any subspace of \overline{F} is $|| ||_{sp}$ and that on F is $|| ||_{gs}$. Show that every finite dimensional F-vector subspace of \overline{F} is also b-separable over F. [Hint: Let $U = \bigoplus_{\nu} Fe_{\nu} \subset \overline{F}$ where the direct sum is a finite direct sum. Let $U' = \sum_{\nu} F_{\infty}e_{\nu}$. Use the fact that F_{∞} is perfect and results from Lecture 13 and apply these to U'. Use the tower $F = F_0 \subset \cdots \subset F_m \subset \cdots \subset F_\infty$ to reduce to the case of finite dimensional F-vector subspaces of F_1 .]
- (3) Let M be a T_n -module with a K-norm || || such that (M, || ||) is faithfully normed over $(T_n, || ||_{gs})$, i.e., $||fm|| = ||f||_{gs} ||m||$ for all $f \in T_n$ and $m \in M$. Let $V = M \otimes_{T_n} F$.
 - (a) Show that M is a torsion free module.
 - (b) Show that $\| \|$ extends from M to V so that $(V, \| \|)$ is faithfully normed over $(F, \| \|_{gs})$.
 - (c) Suppose every finitely generated submodule N of M is *b*-separable over T_n . Show that every finite dimensional F-subspace U of V is *b*-separable over F.
- (4) Suppose every finitely generated T_n -submodule M of $T_{n,1}$ is b-separable. Here the norm on $T_{n,1}$, and hence on M, is the spectral norm $|| ||_{sp}$, and the norm on T_n is $|| ||_{gs}$. Show that every finite dimensional F-subspace Uof \overline{F} is b-separable over F. Here the norm on U is the spectral norm $|| ||_{sp}$ inherited from \overline{F} and that on F the Gauss norm $|| ||_{gs}$.

Double complexes. Recall the definitions from Lecture 3. Let $(D^{\bullet\bullet}, \partial_h, \partial_v)$ be a double complex of modules over a ring R and $T^{\bullet} = \text{Tot}^{\bullet}(D)$ its total complex. Assume for simplicity that $D^{\bullet\bullet}$ is a first quadrant double complex, i.e. its support is bounded below by the x-axis and on the left by the y-axis, these axes being possibly part of the support. Let H_I^{ij} , $H_{II}H_I^{ij}$, H^{ij} , etc be as in HW 5.

Let K^{\bullet} be the complex given by $K^p = \ker (D^{p,0} \to D^{p,1}) = \mathrm{H}^0(D^{p,\bullet})$ and

$$\varphi \colon K^{\bullet} \longrightarrow T^{\bullet}$$

the natural map of complexes which in degree p is the composite of inclusions $K^p \subset D^{p,0} \subset T^p$.

- (5) Let $n \in \mathbf{N}$. Suppose $H^{ij} = 0$ for all (i, j) such that i + j = n. Show that $\mathrm{H}^n(T^{\bullet}) = 0.$
- (6) (a) Show that $H^{i0} = H^i(K^{\bullet})$ for all i. (b) Suppose $H^{ij} = 0$ for (i, j) such that $j \ge 1$ and $n-1 \le i+j \le n$. Show that $H^{n0} = H^n(K^{\bullet}) \xrightarrow{H^n(\varphi)} H^n(T^{\bullet})$ is an isomorphism.