WW 5

Due on October 15, 2019 (in class).
As before $\mathbf{N}=\{0,1,2, \ldots, m, \ldots\}$. Also $\mathbf{R}_{+}:=[0, \infty)$.
Spectral norms. Let || be a nontrivial non-archimedean absolute value on a field
(1) Let $F \rightarrow E$ be a finite normal field extension (not necessarily separable). Let $\mid \|^{\prime}$ be any absolute value on E extending ||. By Problem (3) of HW 1, we know there exists at least one such absolute value. For $x \in E$, define

$$
\|x\|=\max _{g \in \operatorname{Gal}(E / F)}|g x|^{\prime} .
$$

Note that || || need not be multiplicative, i.e. it may not define an absolute value on E. Nevertheless it defines a non-archimedean F-vector space norm, being a maximum.
(a) Show that $\|\|$ is a power multiplicative norm.
(b) If, as in Lecture 13, $\left\|\|_{\text {sp }}\right.$ denotes the spectral norm on E for the extension $F \rightarrow E$, with the norm on F being $\left|\mid\right.$, show that $\|\|=\|\|_{\text {sp }}$.
(2) Let $(F,| |)$ be as above. Let Q be a finite extension of F. Show that the spectral norm $\left\|\|_{\text {sp }}\right.$ on Q with respect to F is an F-vector space norm.

Double complexes. Recall the definitions from Lecture 3. Let ($D^{\bullet \bullet}, \partial_{h}, \partial_{v}$) be a double complex of modules over a ring R and $T^{\bullet}=\operatorname{Tot}^{\bullet}(D)$ its total complex. Define

$$
H_{I}^{i j}=\frac{\operatorname{ker} \partial_{v}^{i j}}{\operatorname{im} \partial_{v}^{i, j-1}} .
$$

The morphisms $\partial_{h}^{i j}$ induce maps $\delta_{h}^{i j}: H_{I}^{i j} \rightarrow H_{I}^{i+1, j}$, and it is easy to see that $\delta_{h}^{i+1, j} \circ \delta_{h}^{i j}=0$. Set

$$
H_{I I} H_{I}^{i j}=\frac{\operatorname{ker} \delta_{h}^{i j}}{\operatorname{im} \delta_{h}^{i-1, j}}
$$

Next define $Z^{i j}$ to be the sub-module of $D^{i j}$ consisting of elements $x_{i j}$ such that

$$
\begin{equation*}
\partial_{v} x^{i j}=0 \quad \text { and } \quad d_{h} x_{i j}=d_{v} x_{i+1, j-1} \tag{A}
\end{equation*}
$$

for some element $x_{i+1, j-1} \in D^{i+1, j-1}$. Also define $B^{i j}$ to be the submodule of $D^{i j}$ consisting of all elements $x_{i j}$ such that

$$
\begin{equation*}
x_{i j}=\partial_{v} x_{i, j-1}+\partial_{h} x_{i-1, j} \quad \text { where } \quad \partial_{v} x_{i-1, j}=0 . \tag{B}
\end{equation*}
$$

for some $x_{i, j-1} \in D^{i, j-1}$ and $x_{i-1, j} \in D^{i-1, j}$.
In the problems below, assume for simplicity that $D^{\bullet \bullet}$ is a first quadrant double complex, ie. its support is bounded below by the x-axis and on the left by the y-axis, these axes being possibly part of the support.
(3) Show that $B^{i j} \subset Z^{i j}$. Set $H^{i j}=Z^{i j} / B^{i j}$. Show that

$$
H^{i j} \xrightarrow{\sim} H_{I I} H_{I}^{i j} .
$$

(This does not require boundeness hypotheses on $D^{\bullet \bullet}$.)
(4) Fix $(p, q) \in \mathbf{N} \times \mathbf{N}$ and let $n=p+q$. Suppose $H^{i j}=0$ for the following $(i, j):(\mathrm{a}) ~ i+j=n,(i, j) \neq(p, q)$, (b) $j>q, i+j=n-1$, and (c) $j<q$ amd $i+j=n+1$. Show that when these three conditions are satisfied, there is a natural isomorphism $H^{p q} \xrightarrow{\sim} H^{n}\left(\operatorname{Tot}^{\bullet}(D)\right)$.

