HW 4

Due on October 8, 2019 (in class).
As before $\mathbf{N}=\{0,1,2, \ldots, m, \ldots\}$. We will use $\mathbf{N}_{>0}$ as the symbol for positive integers. Also $\mathbf{R}_{+}:=[0, \infty)$.

Seminorms. Look up definitions from HW 3.
(1) Suppose $\|\|$ and $\| \|^{\prime}$ are power multiplicative semi-norms on a ring A which are equivalent to each other. Show that they are in fact equal.
(2) Suppose $(A,\| \|)$ and $\left(B,\| \|^{\prime}\right)$ are semi-normed rings, with $\left\|\|^{\prime}\right.$ powermultiplicative. Let $\varphi: A \rightarrow B$ be a ring homomorphism which is bounded, i.e. there is a constant $C \geq 0$ such that $\|\varphi(x)\|^{\prime} \leq C\|x\|$ for every $x \in A$. Show that φ is a contraction, i.e.

$$
\|\varphi(x)\|^{\prime} \leq\|x\|
$$

for every $x \in A$.
(3) Suppose $(A,\| \|)$ is a semi-normed ring. Define $\left\|\|^{\prime}\right.$ by the formula

$$
\|x\|^{\prime}=\inf _{n \geq 1}\left\|x^{n}\right\|^{\frac{1}{n}} \quad(x \in A)
$$

Show that
(a) $\|x\|^{\prime}=\lim _{n \rightarrow \infty}\left\|x^{n}\right\|^{\frac{1}{n}}$ for every $x \in A$. In other words show that the limit on the right side exists and is equal to the left side.
(b) $\left\|\|^{\prime}: A \rightarrow \mathbf{R}_{+}\right.$is a power multiplicative semi-norm on A.
(c) $\left\|\left\|^{\prime} \leq\right\|\right\|$.
(d) If $a \in A$ is such that $\left\|a^{n}\right\|=\|a\|^{n}$, then $\|a\|=\|a\|^{\prime}$. In particular, if $\|\|$ is power multiplicative, then $\|\|=\| \|^{\prime}$.
(e) If $a \in A$ is such that $\|a x\|=\|a\|\|x\|$ for all $x \in A$, then $\|a x\|^{\prime}=$ $\|a\|^{\prime}\|x\|^{\prime}$ for all $x \in A$.

