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Lecture 1

1. Sigma algebras and Measures

The Riemann integral has been seen to be the limit of sums. The Riemann-
Stieltjes integral with respect to an increasing function g can be seen as the limit of
weighted sums, where the “weight” given to a subinterval (c, d) is roughly g(b)−g(a)
(this is strictly true if c and d are points of continuity of g). Once we allow ourselves
the notion of weighted sums and their limit, the most natural integral one can think
of is integral with respect to a measure. This leads to an abstract defintion of an
integral

∫
X
f dµ, where X is a fairly arbitrary space, and µ is the “weight” function,

or a measure. However to lay a proper foundation, one has to introduce the idea of
a σ-algebra. In this lecture, we define σ-algebras and measures and give examples.
We also introduce a class of functions, the “measurable” functions, which are the
functions we will attempt to integrate in later lectures.

Definition 1.1. Let X be a set. A subset F of 2X is called a σ-algebra on X
if

(1) ∅, X ∈ F ,
(2) F is closed under complementation, i.e. if E ∈ F then X \ E ∈ F , and
(3) F is closed under countable unions, i.e. if {Ej}∞j=1 is a sequence of mem-

bers of F , then ∪∞j=1Ej ∈ F .

A measurable space is a a pair (X, F) where X is a set and F is a σ-algebra on X.
Members of F are called measurable sets.

Using D’Morgan’s Laws one checks that a σ-algebra is closed under countable
intersection. Note that 2X is itself a σ-algebra. Moreover, the arbitrary intersection
of σ-algebras on X is again a σ-algebra on X. From this it follows that given a class
H ⊂ 2X , there is a smallest σ-algebra F on X containing H. F is the “smallest”
in the sense that if G ⊃ H, and G is a σ-algebra, then G ⊃ F . We often say that F
is the σ-algebra generated by H.

Example 1.1. The following are some examples of σ-algebras other than 2X .

(i) Let B be the σ-algebra generated by the class H of open sets in R. B is called
the Borel σ-algebra on R. We will show, at some point, that B is not 2R.

(iii) Let R̄ be the extended real line, i.e. R ∪ {−∞,+∞}. On R̄ define a metric
given by d(x, y) = |arctan(x)− arctan(y)|. Here we use the convention that
arctan(−∞) = −π/2 and arctan(+∞) = π/2. Now as a set, R is a subset of R̄,
and hence inherits this metrics from R̄. Note that the open sets on R induced
by this metric agree with the open sets in R under the usual metric. Let B̄ be
the sigma algebra generated by open subsets of R̄.

(iii) Let X be any set. Let F = {E|E is countable, or X \ E is countable}. If X is
not countable, then F 6= 2X .
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4 LECTURE 1

Definition 1.2. Let (X, F) be a measurable space. A measure on (X, F) is
a function

µ : F −→ [0, ∞]

such that

(i) µ(∅) = 0, and
(ii) (Countable Additivity) If {Ei} is a countable collection of disjoint subsets

of X, with each Ei ∈ F , then

µ (∪∞i=1Ei) =

∞∑
i=1

µ(Ei).

A measure space is a triple (X, F , µ) where (X, F) is a measurable space and µ is
a measure on (X, F).

Remark 1.1. Note that if A ⊂ B, A,B ∈ F then µ(B \ A) = µ(B) − µ(A).
In particular µ(A) ≤ µ(B). The second property is often referred to as the mono-
tonicity of µ.

Example 1.2. The following are some examples of measure spaces.

(i) (The Lebesgue Measure on R) On B we can define a unique measure m such
that for every interval I, m(I) = length of I. Exercises 3—15 of your Homework
assigment gives the method of obtaining m. In fact, from the Exercises, one sees
that m extends as a measure to a larger σ-algebraM, and this extended measure
is also denoted m. The measure m is called the Lebesgue measure on R andM
the Lebesgue σ-algebra. The measure space (R,M, m) is called the Lebesgue
measure space.

(ii) The above has a natural generalisation to d-dimensions. One can talk about the
Lebesgue σ-algebraMd and the Lebesgue measure md on Rd (see Exercises 55—
60 of your Homework assignment).

(iii) Let X be a non-empty set. (X, {∅, X}, µ) is a measure space, where µ(∅) = 0
and µ(X) =∞.

(iv) (The Dirac Measure) Let (X,F) be a measurable space, and let xo ∈ X. The
Dirac measure at xo is the measure δxo given by :

δxo =

{
1 if xo ∈ E
0 if xo 6∈ E

for E ∈ F . Later, when we do integration with respect to a measure, you will
see that ∫

X

f dδxo = f(xo).

(v) (The Counting Measure) Let (X, cf) be a measurable space. The counting
measure on (X,F) is the measure #X given by

#X(E) =

{
∞ if E is not a finite set

cardinality of E if E id finite

for E ∈ F .

Let X be a set and {En} a sequence of subsets of X. We will use the notation
En ↑ E to mean that {En} is increasing, i.e. En ⊂ En+1 for all n ∈ N, and that
it increases to E, i.e. E = ∪nEn. Similarly En ↓ E means that En ⊃ En+1 and
that E = ∩nEn, and of course, in this instance we say that {En} is decreasing and
decreases to E.

For the rest of this lecture, let us fix a measure space (X,F , µ).
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Theorem 1.1. Let En ∈ F and En ↑ E. Then µ(En) ↑ µ(E).

Proof. We have

E = ∪n≥1 (En \ En−1)

where we define Eo = ∅. The right side is a disjoint union, and hence

µ(E) =

∞∑
j=1

µ (Ej \ Ej−1)

= lim
n→∞

n∑
j=1

µ (Ej \ Ej−1)

= lim
n→∞

µ(En)

�

Example 1.3. Consider the measure space (N, 2N, #) where # is the counting
measure on (N, 2N). Let En = {n, n+ 1, . . . }. Then clearly En ↓ ∅. However, #(En) does
not decrease to zero. So the analogue of the above theorem is not true for a decreasing
sequence of sets. The difficulty is that #(En) = ∞ for all n. The next theorem shows
that the analogue for decreasing sequences is true with further hypotheses.

Theorem 1.2. Let En ↓ E, En ∈ F and µ(E1) <∞. Then µ(En) ↓ µ(E).

Proof. Let Ai = E1 \Ei. Then Ai ↑ E1 \E. Apply the previous theorem. �

2. Measurable Maps

Definition 2.1. Let (X, F) and (Y, G) be measurable spaces. A map f :
X −→ Y is said to be measurable (or more precisely, measurable with respect to
(F , G)) if f−1(E) ∈ F for every E ∈ G. We will often use the notation f :
(X, F)→ (Y, G) to indicate that f is a measurable map.

Proposition 2.1. Let (X,F)
f−→ (Y,G)

g−→ (Z,H) be a pair of measurable
maps. Then g ◦ f : X → Z is measurable.

Proof. Obvious. �

Proposition 2.2. Let f : X → Y be a map of sets, and suppose G is a σ-
algebra on Y . Then the class f−1(G) ⊂ 2X given by

f−1(G) := {f−1(B)|B ∈ G}

is also a σ-algebra.

Proof. This follows from the fact that the map

f−1 : 2Y → 2X

is a map which preserves arbitrary unions, arbitrary intersections and complemen-
tation. �

Theorem 2.1. Let f : X → Y be a map of sets. Let Q ⊂ 2Y , and let G be the
σ-algebra generated by Q. Let P = {f−1(B)|B ∈ Q}. Then the σ-algebra generated
by P is f−1(G).
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Proof. Let F = the σ-algebra generated by P. Since f−1(G) ⊃ P and f−1(G)
is a σ-algebra, therefore f−1(G) ⊃ F . On the other hand, let

G′ = {B ∈ G| f−1(B) ∈ F}.

It is easy to check that G′ is a σ-algebra. Clearly Q ⊂ G′ ⊂ G. Hence G′ = G (for
G is the smallest σ-algebra containing Q). It follows that f−1(B) ∈ F for every
B ∈ G. This means that f−1(G) ⊂ F . �

3. Measurable Functions

Definition 3.1. For this course, a function on a set X is a map f : X → R̄.
If (X, F) is a measurable space, then an F measurable function on X is a function
which is (F , R̄)-measurable. A function on (X, F) is the same as a F-measurable
function on X. If the context is clear, we will drop the adjective F from the phrase
F-measurable.

Let F be the σ-algebra on R generated by sets of the form (α, ∞). Let α, β ∈ R.
Then,

(a) (−∞, β] ∈ F .
(b) Hence (α, β] ∈ F .
(c) (α, β) = ∪n(α, β + 1/n] ∈ F .
(d) The above is true for α = −∞ also (same proof).
(e) {β} = ∩n(β − 1/n, β] ∈ F .
(f) Every open interval, and hence every open set is in F , since every open

set is a countable union of open intervals.
(g) Hence F = B.

In the same way, one can show that B̄ is the σ-algebra generated by sets of the
form (α,∞] where α ∈ R. We thus have

Theorem 3.1. Let (X,F) be a measurable space. Then a function f on X is
measurable if and only if

{x ∈ X| f(x) > α} ∈ F
for every α ∈ R.

Remark 3.1. Clearly there are other equivalent tests of measurabilty. For
example, f : X → R̄ is measurable if and only if each set of the form {f ≥ a} is
measurable in X. Indeed, sets of the form {x ∈ R̄|x ≥ a} generate B̄ —as can be
easily verified from arguments given earlier.

Proof. The Theorem follows from the observations above it and Theorem 2.1.
�

We will use the following conventions.

a · ∞ =∞ for a > 0, a ∈ R̄
0 · ∞ = 0

∞−∞ = undefined

Theorem 3.2. Suppose f, g are functions on (X, F). Then f + g, f − g, f · g
are all measurable, whenever they are defined.
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Proof. Note that

{f + g > a} = ∪r∈Q [{f > r} ∩ {g > a− r}]
and hence f + g is measurable. It follows that f − g is measurable (why ?). Next

{f2 > a} = {f >
√
a} ∪ {f < −

√
a}

and hence f2 is measurable if f is. Since

f · g =
1

4

{
(f + g)

2 − (f − g)
2
}

we are done. Note that the proof (of measurability of fg works even if f + g or
f − g are not defined at every point (check this !). �

Example 3.1. In the examples that follow, we will abuse notation and treat B and
M as σ-algebras on any interval (or for that matter, any Lebesgue measurable set) in R.
We will assume familiarity with the notion of Lebesgue measurability (see Exercises 3—15
of your Homework assignment).

(1) Any continous function on an interval is B-measurable.
(2) Monotone functions on an interval are B-measurable.
(3) Bounded Variation functions on closed bounded intervals are B-measurable.
(4) Let f = χQ : R→ R. Then f is B-measurable. Indeed,

{f > a} =


∅ if a ≥ 1

Q if 0 ≤ a < 1

R if a < 0

4. Signed Measures and Complex Measures

Sometimes it is useful to have a more general notion of measures. These are
particularly useful in understanding the various Riesz Representation Theorems,
which we will do in Lecture 8.

Definition 4.1. By a signed measure on the measurable space (X, F) we mean
an extended real valued set function

µ : F → R̄
satisfying the following conditions

(i) µ assumes at most one of the values +∞,−∞.
(ii) µ(∅) = 0.

(iii) µ(∪∞i=1Ei) =
∑∞
i=1 µ(Ei) for any sequence {Ei} of disjoint measurable

sets, the equality taken to mean that the series on the right converges
absolutely if µ(∪iEi) is finite and that it properly diverges to µ(∪iEi)
otherwise.

Definition 4.2. By a complex measure on the measurable space (X, F) we
mean a complex valued function µ : F → C such that

(i) µ(∅) = 0.
(ii) For each countable disjoint union ∪iEi of sets in F we have

µ(∪iEi) =

∞∑
i=1

µ(Ei)

with absolute convergence on the right.





Lecture 2

In this Lecture we prove two crucial results viz., Egoroff’s Theorem and Lusin’s
Theorem. But first we continue our discussion of measurability.

5. Measurability Continued

We begin with the following observations.

(i) Let (X, F) be a measurable space. Then E ∈ F if and only if χE is
measurable.

(ii) Consider the measurable space (X, {∅, X}), where X is a non-empty set.
Then a function on X is measurable if and only if it is a constant.

(iii) Consider the measurable space (X, 2X). Clearly every function on X is
measurable.

Example 5.1. We give an example of a continuous increasing function on Io = [0, 1]
which sends a set of measure zero to a set of measure one ! Note that such a function
must be a homemorphism between Io and its range. The example is meant to illustrate
the difficulty in resolving topology with measure. A “small” set can become a “big” set
under a homeomorphism. Consider the Cantor function on Io = [0, 1] defined as follows:
In the construction of the Cantor set, suppose I1j , . . . , I2j−1,j are the “middle thirds”
after (j − 1)-steps. In other words, I11 is the middle third of Io, and I12, I22 are the
middle thirds of Io \ Io11, etc, etc, . . . . Let Jo = ∪Ioij . In other words Jo = Io \ C where
C is the Cantor set. Define

f(x) =


0 if x = 0
2i− 1

2j
if x ∈ Iij

supy<x,y∈∪Iij f(y) if x > 0 and x 6∈ Jo
One checks that f is non-decreasing and continuous on Io and its image is Io. Now consider
ϕ : Io → [0, 2] where

ϕ(x) = f(x) + x for x ∈ Io.
Then ϕ is an homeomorphism from Io to [0, 2]. One checks that m (ϕ(C)) = 1.

Theorem 5.1. Let (X, F) be a measurable space and {fn} a sequence of mea-
surable functions on X. Then h = supn fn and g = infn fn are also measurable.

Proof. We have
{h > a} = ∪∞n=1{fn > a}

and hence h is measurable. Similarly, g is measurable. �

Corollary 5.1. lim inf fn and lim sup fn are measurable.

Proof. lim inf fn = supn inf{fn, fn+1, . . . }. A similar description is there for
lim sup fn. �

Corollary 5.2. If fn → f pointwise, then f is measurable.

9
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6. Simple Functions

Definition 6.1. Let (X, F) be a measurable space. A function S : X → R is
simple if

(i) S is measurable, and
(ii) S(X) is a finite set.

Let S be a simple function on X, and say S(X) = {α1, . . . , αn}. Let Aj =
{S = αj} ∈ F . Then X is the disjoint union of the Aj ’s. Note that

S =

n∑
j=1

αjχAj .

Theorem 6.1. Let f ≥ 0 be a function on the measurable space (X, F). Then
there exists a sequence of simple functions {Sn} on (X, F) such that Sn ↑ f point-
wise.

Proof. Let Inj = [ j−1
2n ,

j
2n ), j = 1, 2, . . . , n2n. Let

Sn =
n2n∑
j=1

j − 1

2n
χf−1(Inj) + nχf−1[n,∞], n ∈ N.

One can check easily that Sn ↑ f pointwise. �

7. The Theorems of Egoroff and Lusin

Theorem 7.1. [Egoroff] Let (X,F , µ) be a measure space with µ(X) < ∞.
Suppose {fn} is a sequence of measurable functions on X such that fn → f point-
wise on X. Then given ε > 0, there exists E ∈ F such that µ (X \ E) ≤ ε and
fn → f uniformly on E.

Proof. Let AN,j = {|fn − f | ≤ 1/j, n ≥ N}. Then, for fixed j, {AN,j}N is an
increasing sequence of measurable sets, increasing to X. Therefore, µ(AN,j) ↑ µ(X)
as N ↑ ∞. Since µ(X) <∞ therefore there exists an Nj ∈ N such that

µ
(
X \ANj ,j

)
≤ ε

2j
.

Let E = ∩∞j=1ANj ,j . Then,

µ (X \ E) = µ
(
∪j
(
X \ANj ,j

))
≤
∑
j

µ
(
X \ANj ,j

)
≤ ε.

We claim that fn → f uniformly on E. To see this, let η > 0 be given. Let jo ∈ N
be such that 1/jo ≤ η. Since E ⊂ ANjo ,jo , one sees that

|fn(x)− f(x)| ≤ η (x ∈ E;n ≥ Njo).

This gives uniform convergence of {fn} on E. �

Theorem 7.2. Consider the Lebesgue measure space (R,M,m). Let E ∈ M
be a set of finite Lebesgue measure. Let f be a measurable real-function on E. Then
for every ε > 0, there exists a continuous function

gε : R→ R
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such that
m ({x ∈ E| gε(x) 6= f(x)}) ≤ ε.

Proof. We may assume f ≥ 0 on E by breaking up f as the difference of
f+ = max{f, 0} and f− = max{−f, 0}. Then we have sequence of non-negative
simple functions on E, {Sn} increasing to f on E. Suppose

Sj =

kj∑
i=1

αjiχAji
.

Then, by Exercise 12 (d) of your homework assignment, we can approximate each
Aji by closed Fji, sop that

m (Aji \ Fji) ≤
ε

kj2j+1
.

Let Fj = ∪kji=1Fij . Then Fj is a closed subset of F and

m(E \ Fj) ≤
ε

2j+1
.

Note that Sj |Fj is continuous on Fj . Let F = ∩jFj . Then

m(E \ F ) ≤
∑
j

m(E \ Fj) ≤
ε

2

and Sj |F is continuous for all j.
By Egoroff’s Theorem (applied to Sj and the set F ), and by Exercise 12 (d)

of the Homework assignment, there is a closed set Fo ⊂ F such that Sj converges
uniformly to f on Fo and m(E \ Fo) ≤ ε. Since each Sj is continuous on Fo,
therefore f is continuous on Fo. We can extend f |Fo to a continuous gε on R, and
this gε clearly does the required job. �





Lecture 3

8. Integration of non-negative functions

Let (X, F , µ) be a measure space. Then any function S =
∑m
i=1 βiχBi where

βi ∈ R, i = 1, . . . ,m and the Bi are mutually disjoint, and Bi ∈ F for every i, is
a simple function (this can be seen easily from the definition of a simple function).
There may be many ways in which S could be represented in this manner, however,
the canonical representation is

S =

n∑
j=1

αiχAj

where α1, . . . , αn are the distinct values of S and Aj = S−1(αj), j = 1, . . . , n.

Lemma 8.1. Let S be a simple function, say,
∑m
i=1 βiχBi , where Bi are mutu-

ally disjoint measurable sets. Then the number

m∑
i=1

βiµ(Bi)

does not depend on the particular representation of S as a linear combination of
characteristic functions over mutually disjoint measurable sets.

Proof. Let
∑n
j=1 αjχAj

be the canonical representation of S. It follows that

for each i = 1, . . . ,m there is a σ(i) ∈ {1, . . . , n} such that βi = ασ(i) and Aj =
∪σ(i)=jBi. Clearly this is a disjoint union. Now

m∑
i=1

βiµ(Bi) =

n∑
j=1

∑
σ(i)=j

βiµ(Bi)

=

n∑
j=1

∑
σ(i)=j

ασ(i)µ(Bi)

=

n∑
j=1

∑
σ(i)=j

αjµ(Bi)

=

n∑
j=1

αj
∑
σ(i)=j

µ(Bi)

=

n∑
j=1

αjµ(Aj).

The result follows. �

13
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Definition 8.1. Let S ≥ 0 be a simple function, say
∑m
i=1 βiχBi . Then the

integral of S over X with repect to µ is∫
X

S dµ =

m∑
i=1

βiµ(Bi).

Note that, by the previous Lemma, this is well-defined.

Definition 8.2. Let E ∈ F . The restriction of F to E, written F ∩ E is the
σ-algebra on E given by

F ∩ E = {A ∈ F|A ⊂ E}.

The resriction of µ to F∩E is denoted µ|E . Clearly µ|E is a measure on (E, F∩E).
If S ≥ 0 is a simple function on X, then the symbol

∫
E
S dµ will be used as a

shorthand for
∫
E

(S|E) d (µ|E).

Remark 8.1. Let S ≥ 0 be simple. The integral clearly enjoys the following
properties.

•
∫
X
c · S dµ = c

∫
X
S dµ, c ≥ 0.

•
∫
E
S dµ =

∫
X
S · χE dµ for E ∈ F

• If ν : F → [0, ∞] is the fuction given by

ν(E) =

∫
E

S dµ

then ν is a measure on (X, F).
• Suppose T ≥ 0 is another simple function on (X, F), then∫

X

(S + T ) dµ =

∫
X

S dµ+

∫
X

T dµ.

Note that if S =
∑
j αjχAj

and T =
∑
i βiχBi

, then

S + T =
∑
i,j

(αj + βi)χAj∩Bi .

Definition 8.3. Let f ≥ 0 be a measurable function on X. The integral of f
over X with respect to µ, denoted

∫
X
f dµ is,∫

X

f dµ = sup
0≤S≤f

∫
X

S dµ

where the supremum is taken over simple S. We say f is integrable if its integral is
finite.

As usual, if E ∈ F , then
∫
E
f dµ is shorthand for

∫
E

(f |E) d(µ|E). The following
properties are obvious:

•
∫
X
c · f dµ = c

∫
X
f dµ for c ≥ 0.

•
∫
E
f dµ =

∫
X
fχE dµ, E ∈ F .

• If 0 ≤ g ≤ f , then
∫
X
g dµ ≤

∫
X
f dµ.

• If E ⊂ F , E,F ∈ F , then
∫
E
f dµ ≤

∫
F
f dµ. (Recall that f is assumed

to be non-negative).
• If f = 0 then

∫
X
f dµ = 0.

• If E ∈ F and µ(E) = 0, then for f ≥ 0,
∫
E
f dµ = 0.
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9. The Monotone Convergence Theorem

In order to prove linearity of the integral it is useful to have the Monotone
Convergence Theorem—a theorem important in its own right.

Theorem 9.1. (The Monotone Convergence Theorem). Let fn ↑ f pointwise,
where {fn} is a sequence of non-negative measurable functions on X. Then∫

X

fn dµ =

∫
X

f dµ.

Note that such a statement is not true for Riemann integrals.

Proof. The sequence of extended real numbers {
∫
X
fn dµ} is a monotone se-

quence, and hence α = limn

∫
X
fn dµ exists as an extended real number. Clearly

α ≤
∫
X

f dµ.

Let 0 ≤ S ≤ f on X, S simple, and let 0 < c < 1 be a constant. Then we claim
that

α ≥
∫
X

c · S dµ.

Let En = {fn ≥ c · S}. Then each En ∈ F and {En} is an increasing sequence of
sets. Since 0 < c < 1, therefore En ↑ X. Let ν be the measure on (X,F) given by

ν(E) =

∫
E

S dµ.

Since ν is a measure, therefore ν(En) ↑ ν(X). Hence∫
En

c · S dµ ↑
∫
X

S dµ.

But cS ≤ fn on En. This gives∫
En

cS dµ ≤
∫
En

fn dµ ≤ intXfn dµ.

The last inequality follows from the fact that En ⊂ X. This shows that
∫
X
cS dµ ≤

limn

∫
X
fn dµ = α. Thus the claim is proved. Now let c ↑ 1. We get∫

X

S dµ ≤ α

for all simple S such that 0 ≤ S ≤ f . By definition of
∫
X
f dµ, we get

∫
X
f dµ ≤ α.

This gives the desired result. �

Corollary 9.1. Let f, g be non-negative measurable functions on X. Then∫
X

(f + g)dµ =

∫
X

f dµ+

∫
X

g dµ

Proof. Let Sn ↑ f and S′n ↑ g as n ↑ ∞. Here Sn and S′n are simple non-
negative functions. Apply the Monotone Convergence Theorem to {Sn}, {S′n} and
{Sn + S′n}. Since we already have linearity of the integral for simple functions, we
are done. �
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10. Integration

Now let f be an arbitrary measurable function on X. Define f+ = max{f, 0}
and f− = max{−f, 0}. One can check that f+ and f− are measurable. Clearly
they are non-negative functions. Note that f = f+ − f− and |f | = f+ + f−. Note
that f+ ≤ |f | and f− ≤ |f | and hence if

∫
X
|f | dµ < ∞ then

∫
X
f+ dµ < ∞ and∫

X
f− dµ <∞.

Definition 10.1. The 1-norm of a measurable function f on X is

‖f‖1 =

∫
X

|f | dµ.

A measurable function f on X is said to be integrable with respect to µ if ‖f‖1 <∞.
In this case, we define the integral of f with respect to µ as∫

X

f dµ =

∫
X

f+ dµ−
∫
X

f− dµ.

Note that if µ(E) = 0 then
∫
E
f dµ = 0, where, as before the integral on the

right is a shorthand for
∫
E
f |E d(µ|E).

Definition 10.2. A property ℘ for points in X is said to hold almost every-
where [µ] (abbreviated to a.e.-[µ]) if the set of points for which ℘ fails is contained
in a set of measure zero.

On the space of measurable functions on X we have an equivalence relation ∼
defined by f ∼ g if f = ga.e.-[µ]. If f ∼ g, then f is integrable if and only if g is,
and in this case

∫
X
f dµ =

∫
X
g dµ (why ?).

Note that if f is integrable, then f takes the values ∞, and −∞ on a set of
measure zero.

Definition 10.3. The space L1(µ) is the set of equivalence classes (under ∼)
of integrable functions.

Remark 10.1. Note that the integral with respect to µ is well defined on L1(µ)
since two integrable functions which are ∼–equivalent have the same integral. Moreover,
since an integrable function takes on the two infinite values on sets of measure zero,
therefore, L1(µ) is a vector space over R. The crucial point to prove is that addition
can be defined. While two integrable functions may not be added for fear of introducing
undefined values like ∞−∞, their equivalence classes can be, for the lacunary set if of
measure zero, allowing for arbitrary changes in values there. For an integrable function,
it is conventional to write f ∈ L1(µ), when what is meant is that the equivalence class of
f is in L1(µ).

Definition 10.4. The map L1(µ) → R induced by the integral
∫
X

(·) dµ on
integrable functions (see Remark above) will also be called the integral over X
with respect to µ and will be denoted

∫
X

(·) dµ. The 1-norm on L1(µ), is the map

L1(µ)→ R induced by the 1-norm on integrable functions (see Remark above). We
continue to use the symbol ‖·‖1 for this map on L1(µ).

Theorem 10.1. With above notations and conventions we have

(1) (L1(µ), ‖ · ‖1) is a normed linear space.
(2) |

∫
X
f dµ| ≤

∫
X
|f | dµ = ‖f‖1

(3)
∫
X

(·) dµ is a linear functional on L1(µ).
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Proof. The second assertion is easy. For the first, the only non-trivial state-
ment to be proved is that if ‖f‖1 = 0 then f = 0 in L1(µ) (i.e. f = 0, a.e. − [µ]).
Without loss of genrality, we may assume f ≥ 0 (by replacing f by |f | if necessary).
Then ∫

X

f dµ = 0

so that ∫
{f 6=0}

f dµ = 0.

But

{f 6= 0} = ∪n
{

1

n− 1
≥ f > 1

n

}
and hence

0 =

∫
{f 6=0}

f dµ

=
∑
n

∫
{ 1

n−1≥f≥
1
n}
f dµ

≥
∑
n

1

n
µ

({
1

n− 1
> f ≥ 1

n

})
.

This implies that

µ

({
1

n− 1
≥ f > 1

n

})
= 0

Summing over n, we get µ ({f 6= 0}) = 0. Thus f = 0 a.e.− [µ].
The last part is not as straightforward as it seems. It is not true in general that

(f + g)
+

= f+ + g+

or that

(f + g)
−

= f− + g−.

Let f + g = h. Then h ∈ L1(µ). Then

h+ − h− = h = f + g = f+ − f− + g+ − g− a.e.− [µ].

Since f, g, h are finite a.e.− [µ], we get

h+ + f− + g− = f+ + g+ + h− a.e.− [µ].

Take integrals of both sides, transpose appropriate terms and get∫
X

h dµ =

∫
X

f dµ+

∫
X

g dµ.

�

Remark 10.2. Suppose fn → f in L1(µ), in other words, ‖fn − f‖1 → 0 as n →
∞. Since |

∫
X

(fn − f) dµ| ≤ ‖fn − f‖1, therefore it follows that
∫
X
fn dµ →

∫
X
f dµ as

n→∞.
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11. The Dominated Convergence Theorem

We have seen that under certain conditions, limn and
∫
X

commute. More pre-
cisely, if the conditions of the Monotone Convergence Theorem (MCT) are satisfied
then this is true. But the MCT is for increasing sequences. The (Lebesgue) Domi-
nated Convergence Theorem (abbreviated DCT) is applicable to other situations.

Theorem 11.1. [The Dominated Convergence Theorem] Let {fn} be a sequence
in L1(µ) such that fn → f pointwise a.e.− [µ], Suppose there exists φ ∈ L1(µ) such
that

|fn| ≤ φ (n ∈ N).

Then fn → f in L1(µ).

Proof. Let
gn = 2φ− |fn − f |.

Then gn ≥ 0. Apply Fatou’s Lemma (Exercise 27 of your homework assignment).
Get ∫

X

lim inf gn dµ ≤ lim inf

∫
X

gn dµ

i.e. ∫
X

2φdµ ≤
∫
X

2φdµ+ lim inf

{
−
∫
X

|fn − f | dµ
}

or

0 ≥ lim sup

∫
X

|fn − f | dµ

This gives,

0 ≥ lim sup

∫
X

|fn − f | dµ ≥ lim inf

∫
X

|fn − f | dµ ≥ 0.

Thus

lim
n

∫
X

|fn − f | dµ = 0

and hence the result.
�

Example 11.1. The DCT is only a sufficient condition for the limit of integrals to be
the integral of the limit. We will give a sequence of integrable functions {fn} on (R,M, m)
such that {fn} is not dominated by an L1 function, and nevertheless the conclusion of the
DCT holds. Define fn by

fn(x) =
1

x
χ[1/(n+1),1/n](x) ≥ 0.

Then

19



20 LECTURE 4

(i) fn → f := 0 pointwise.

(ii)
∫
R |fn − f | dm =

∫ 1
n
1

n+1

dx

x
= log

n+ 1

n
→ 0 as n→∞.

However, if there was a φ ∈ L1(m) such that fn ≤ φ for all n, then φ(x) ≥ 1/x for x > 0
and hence φ 6∈ L1(m).

12. Applications of DCT

Theorem 12.1. Let f : I → R be such that f ′ exists and is bounded on I.
Then

f(b)− f(a) =

∫
I

f ′ dm

Remark 12.1. Note that f ′ must necessarily be measurable. Thinking of f as a
function on all of R, for each a ∈ R, define the translate of f by a as the function Taf
given by Taf(x) = f(x+a). Clearly Taf is also measurable for every a ∈ R. Now consider

gn = n
[
T1/nf − f

]
.

Clearly gn is also measurable. Let n ↑ ∞ and see what happens. How would you take
care of the right end point ?

Proof. Since |f ′| ≤ M , therefore
∫
I
|f ′| dm ≤ M · m(I) < ∞. Thus f ′ ∈

L1(m). Let gn be as above. Then, for each x and each n we have ξx,n ∈ [x, x+1/n]
such that

|gn| ≤ |f ′(ξx,n)| ≤M.

By DCT, we get ∫
I

gn dm −→
∫
I

f ′ dm.

On the other hand,∫
I

gn dm = n

{∫
I

f(x+ 1/n) dm(x)−
∫
I

f(x) dm(x)

}
= n

{∫ b+ 1
n

a+ 1
n

f dm−
∫ b

a

f dm

}

= n

{∫ b+ 1
n

b

f dm−
∫ a+ 1

n

a

f dm

}
−→ f(b)− f(a) as n→∞ (since f is continuous)

�

Another application of the DCT is in proving that L1(µ) is complete under the
metric induced by its norm, i.e. L1(µ) is a Banach space. In order to show this, we
need the following Proposition.

Proposition 12.1. Let (X, F , µ) be a measure space. Let {fn} be a sequence
in L1(µ) such that ∑

n≥1

‖fn‖1 <∞.
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Then g =
∑
n≥1 fn converges a.e.−[µ] and g ∈ L1(µ). Moreover gn =

∑n
k=1 fk → g

in L1(µ) as n→∞ and hence, in particular, we have∫
X

∑
n≥1

fn dµ =
∑
n≥1

∫
X

fn dµ.

Remark 12.2. Note that it will also follow that
∑
|fn| < ∞, a.e. − [µ] since

‖|fn|‖1 = ‖fn‖1.

Proof. Let φ =
∑
n≥1 |fn| . Then by MCT,∫

X

φdµ =
∑
n≥1

‖fn‖1 <∞.

In other words, φ < ∞ a.e. − [µ] and φ ∈ L1(µ). Thus the series
∑
n≥1 |fn|

converges a.e. − [µ] and hence it follows that
∑
n≥1 fn converges a.e. − [µ]. Let

g =
∑
n≥1 fn and gN =

∑N
n=1 fn. Then |gN | ≤ φ ∈ L1(µ). By the DCT, we get

that
∫
X
gN dµ→

∫
X
g dµ. In other words,

N∑
n=1

∫
X

fn dµ −→
∫
X

∑
n≥1

fn dµ.

This gives the required result. �

Theorem 12.2. L1(µ) is a Banach space with ‖·‖1 as norm.

Proof. Let {hn} be a Cauchy sequence in L1(µ). Let n1 < n2 < . . . < nk <
. . . be a sequence of positive integers such that

‖hn − hm‖1 ≤
1

2k
(n,m ≥ nk)

Let

f1 = hn1
fk = hnk

− hnk−1
(k ≥ 2).

Then ∑
k≥1

‖fk‖1 ≤ ∞.

By the Proposition above, h =
∑
k≥1 fk is finite a.e. − [µ], and h ∈ L1(µ). One

checks easily that ‖hn − h‖1 → 0 as n→∞. �

13. Lp spaces

Fix a measure space (X, F , µ).

Definition 13.1. Let 1 ≤ p <∞. The p-norm of a measurable function f is

‖f‖p :=

{∫
X

|f |p dµ
} 1

p

.

A measurable function f on X is said to be p-integrable with respect to µ if∫
X
|f |p dµ < ∞, i.e. if ‖f‖p < ∞. Note that f is 1-integrable preciesely when

it is integrable.
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Remark 13.1. Suppose f is p-integrable, and f = g a.e. − [µ], for some other
measurable function g on X. Then clearly |f |p = |g|p a.e.− [µ], whence we conclude that
g is also p-integrable. Moreover, in this case∫

X

|f |p dµ =

∫
X

|g|p dµ.

Further, note that if f is p-integrable, then as in the case p = 1,
∫
X
|f |p dµ = 0 if and only

if f = 0 a.e.− [µ]

Definition 13.2. Let 1 ≥ p < µ. Then Lp(µ) is the set of all equivalence
classes of p-integrable functions on X with respect to µ, under the equivalence
relation of “equality a.e. − [µ]”. For f a p-integrable function, let [f ] ∈ Lp(µ), be
its equivalence class. Define

‖[f ]‖p =

{∫
X

|f |p dµ
} 1

p

.

By the above remarks this is well defined. We call it the Lp norm of [f ] or the
p-norm of f .

Remark 13.2. It is convention to write f ∈ Lp(µ) when what is meant is that
[f ] ∈ Lp(µ). In the same vein, for a p-integrable function f , we write ‖f‖p for ‖[f ]‖p. If
it is clearly kept in mind that equalities are only almost everywhere [µ, then no confusion
arises from these conventions. We will follow them. Finally, note that the p-norm makes
sense as an exteneded real number for any measurable function f , and it is p integrable
precisely when ‖f‖p <∞.

Definition 13.3. Let f be a measurable function on X. We say f is essentially
bounded if the essential supremum of f ,

‖f‖∞ := inf{y > 0|µ{|f | > 0} = 0}
is finite.

Remark 13.3. As usual, one can see that the essential supremum of two measurable
functions which are equal a.e.− [µ] agree.

Definition 13.4. L∞(µ) is the set of equivalence classes of essentially bounded
measurable functions under the relationship of “equality a.e. − [µ]”. For [f ] ∈
L∞(µ), ‖[f ]‖∞ := ‖f‖∞. This is well-defined by the above remark. As is conven-
tional, we write f ∈ L∞(µ) when we mean [f ] ∈ Lp(µ).

Example 13.1. (1) Consider (I,M∩I,m|I). Then for a continuous function
on I, the essential supremum agrees with its maximum.

(2) Let {rn} be some enumeration of the rational numers Q. Set

f(x) =

{
n if x = rn

0 if x 6∈ Q

Then f is unbounded everywhere (in the ordinary sense), but ‖f‖∞ = 0.

Theorem 13.1. Let (X,F , µ) be a measure space with 0 < µ(X) <∞. Then

‖f‖p −→ ‖f‖∞ as p→∞.

Proof. We will show that

lim sup
p→∞

‖f‖p ≤ ‖f‖∞ ≤ lim inf
p→∞

‖f‖p.
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Now, ∫
|f |p dµ ≤ ‖f‖p∞µ(X).

This gives

‖f‖p ≤ ‖f‖∞µ(X)
1
p ,

from which we conclude that

lim sup
p→∞

‖f‖p ≤ ‖f‖∞.

To show the second equality, we may assume that ‖f‖∞ <∞. Let 0 < λ < ‖f‖∞,
and let E = {|f | > 0}. Then 0 < µ(E) <∞ and

µ(E) =

∫
E

1 dµ ≤ 1

λp

∫
E

|f |p dµ ≤ 1

λp

∫
X

|f | dµ.

Thus

λpµ(E) ≤ ‖f‖pp,

i.e.

λ · µ(E)
1
p ≤ ‖f‖p.

Thus,

λ ≤ lim inf
p→∞

‖f‖p.

Let λ ↑ ‖f‖∞. We get that

‖f‖∞ ≤ lim inf
p→∞

‖f‖p

as required. �
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14. Jensen’s Inequality

Theorem 14.1. [Jensen’s Inequality] Let (X,F , µ) be a measure space with
µ(X) = 1. If f : X → R is an integrable function, taking values in the interval
(a, b) with a = −∞ and b =∞ allowed, and if ϕ : (a, b)→ R is convex, then

ϕ

(∫
X

f dµ

)
≤
∫
X

(ϕ ◦ f) dµ.

Proof. Let t =
∫
X
f dµ. Then for a < s < t < u < b we have, by Exercise 1

of the Homework assignment

ϕ(t)− ϕ(s)

t− s
≤ ϕ(u)− ϕ(t)

u− t
.

Let β be the supremum of the quotients on the left. Then for s < t

ϕ(t)− ϕ(s)

t− s
≤ β

and

ϕ(u)− ϕ(t)

u− t
≥ β

The two inequalities can be combined to give

ϕ(t)− ϕ(s)

t− s
≤ β (a < s < b).

This means
ϕ(s) ≥ ϕ(t) + β(t− s) (a < s < b).

Hence
ϕ(f(x))− ϕ(t)− β(f(x)− t) ≥ 0

for every x ∈ X. Since ϕ is continuous (in fact it is absolutely continuous. See
Exercise 2 of your Homework assignment) therefore ϕ◦f is measurable. Integrating
the above inequality, and using the fact that for any constant α ∈ R,

∫
X
αdµ = α

(for µ(X) = 1), we get the required inequality (remember that t and ϕ(t) are
constants). �

Example 14.1. Let b1, . . . , bn ≥ 0 and aj = log bj for j = 1, . . . n. Let X =
{1, 2, . . . , n} and consder the measur space (X,F , µ) where F = 2X and µ = 1/n · #,
where # is the counting measure on (X,F). Then µ(X) = 1. Jensen’s inequality applies
to the convex function ϕ(x) = exp(x) and the function f on X given by f(j) = aj . We
immediately get

exp
1

n

n∑
j=1

aj ≤
1

n

n∑
j=1

exp aj .

25
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In other words,

exp
1

n
log b1 . . . bn ≤

1

n
(b1 + . . .+ bn).

This gives the well-known inequality

(b1 . . . bn)
1
n ≤ b1 + . . .+ bn

n
.

15. The Riesz-Fischer Theorem

Fix a measure space (X, F , µ).

Theorem 15.1. Let 1 ≤ p ≤ ∞, and let q be such that 1/p+1/q = 1, where we
use the convention that q =∞ of p = 1 and q = 1 if p =∞. Let f, g be measurable
functions on X. Then

(1) ∫
X

|fg| dµ ≤ ‖f‖p‖g‖q (Hölder’s inequality)

(2)

‖f + g‖p ≤ ‖f‖p + ‖g‖p (Minkowski’s inequality)

(3) Lp(µ) is a normed linear space.

Proof. This is Exercise 42 of your Homework assignment. �

Theorem 15.2. [The Riesz-Fischer Theorem] Lp(µ) is a Banach space.

Proof. We will leave the case p = ∞ as an (easy!) exercise. So assume
1 ≤ p < ∞. Let fn be meaurable functions such that

∑∞
n=1 ‖fn‖p < ∞. Let

φ =
∑∞
n=1 |fn|. Then ‖φ‖p ≤

∑
n ‖fn‖p < ∞. Hence φ < ∞ a.e. − [µ]. Let

gn =
∑n
j=1 fj and g =

∑∞
j=1 fn. Then ‖g‖p ≤ ‖φ‖p < ∞ and hence g ∈ Lp(µ).

Moreover,

‖gn − g‖p ≤ ‖
∞∑

j=n+1

fj‖p ≤
∞∑

j=n+1

‖fj‖p −→ 0 as n→∞.

Thus gn → g in Lp(µ). Now imitate the proof of the completness of L1(µ) to get
the result. �

16. Radon-Nikodym Theorem

Definition 16.1. Suppose µ and ν are measures on (X, F) such that the
follwing relationship holds,

ν(E) =

∫
E

f dµ (E ∈ F),

for some measurable function f ≥ 0. Then we say that f is the Radon-Nikodym
derivative of ν with resoect to µ and we write f = dν/dµ.

Note that the Radon-Nikodym derivative, if it exists, is unique up to equality
a.e.− [µ], for, if a measurable function h is such that

∫
E
h dµ = 0 for every E ∈ F ,

then h = 0, a.e. − [µ]. Indeed, in this case,
∫
X
h+ dµ =

∫
{h>0} h dµ and hence

h+ = 0 a.e.− [µ]. Similarly h− = 0, a.e.− [µ].

Not that if dν/dν exists, then ν(E) = 0 for every E ∈ F such that µ(E) = 0.
This motivates the following definition:
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Definition 16.2. Let µ, ν be measures on (X, F). We say ν is absolutely
continuous with respect to µ (written ν � µ) if for every E ∈ F with µ(F) = 0, we
have ν(E) = 0.

Clearly, if dν/dµ exists, then ν � µ. We would like to give a converse to this.
However, we will prove a converse under special conditions, namely, when µ and ν
are σ-finite, a notion which we now define.

Definition 16.3. A measure µ on (X, F) is said to be σ-finite if X =
⋃∞
n=1En

with each En measurable and of finite µ-measure.

Theorem 16.1. [The Radon-Nikodym Theorem] Let µ and ν be σ-finite mea-
sures on (X, F) and suppose µ � ν. Then the Radon-Nikodym derivative dν/dµ
exists.

Proof. Write X =
⋃
nEn where the En have finite µ and ν measure. We may

assume, without loss of generality, that the En are disjoint. Clearly it is enough to
prove the existence of the derivative on each En. In other words, it is enough to
assume that µ(X) <∞ and ν(X) <∞.

We will first prove a special case, viz., the case where ν ≤ µ. Let ‖·‖µ,p and
‖·‖ν,p be the norms of Lp(µ) and Lp(ν) (p ≥ 1). Then one checks easily that
Lp(µ) ⊂ Lp(ν). It is clearly enough to show that∫

X

f dν ≤
∫
X

f dµ (f ≥ 0 measurable).

But this inequality is clearly true for simple f ≥ 0 and hence by MCT for all
measurable f ≥ 0. Moreover, by Exercise 42, Lp(ν) ⊂ L1(ν) for p ≥ 1. Thus we
have a linear functional Λ : L2(µ)→ R given by

Λf =

∫
X

f dν.

Since |Λf | ≤ ‖f‖µ,2
√
µ(X) ≤ ‖f‖ν,2

√
µ(X) (the first inequality follows from

Hölder’s inequality with g = 1), therefore Λ is a continous linear functional. But
L2(µ) is a Hilbert space (the Riesz-Fischer theorem gives completeness), there-
fore by the Riesz Representation Theorem for Hilbert spaces, there exists a unique
g ∈ L2(µ) such that Λf =

∫
X
fg dµ for every f ∈ L2(µ). Taking f = χE , E ∈ F

we get

ν(E) =

∫
E

g dµ.

By definition of the Radon-Nikodym derivative dν/dµ = g a.e.− [µ].
If ν 6≤ µ, then consider λ = µ+ ν. By the above arguments, dµ/dλ and dν/dλ

exist. Let E = {dµ/dλ = 0}. Then µ(E) =
∫
E
dµ/dλ dλ = 0. This means that

ν(E) = 0 and hence λ(E) = 0. In other words dµ/dλ > 0 a.e. − [λ]. By the
homework exercises on Radon-Nikodym theorem, it follows that dν/dµ exists and
is given by

dν

dµ
=
dν/dλ

dµ/dλ
a.e.− [µ].

�
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17. Change of Variables

Let U, V be open sets in Rn and T : U → V a one-to-one onto map such
that T and T−1 are C1, i.e., T and T−1 are differentiable and their derivatives are
continuous. We wish to see how the form of an integral

∫
V
f dm changes under the

substitution x 7→ Tx. The precise form of our theorem is

Theorem 17.1. [Change of Variables Formula]. Let U, V, T be as above. Let µ
be the measure on (U, B) given by

µ(B) = m(TB), B ⊂ U,B ∈ B.
Let JT : U → R be the “Jacobian” of T , i.e., JT = det (T ′(x)). Then

(1) µ� m, and dµ/dm = |JT |. In other words,

m(TB) =

∫
B

|JT | dm (B ∈ B).

(2) For f : V → R, ∫
V

f dm =

∫
U

(f ◦ T ) |JT | dm,

where the equality above has to be interpreted in the sense that if either of
the integrals in this formula exists, then both exist and are equal, and if
either diverges properly then both do and to the same infinite value.

Proof. The second part follows from the first part and the “abstract of change
of variables formula” (Exercise 29 of your Homework assignment). Indeed if ϕ =
T−1 then, ∫

U

(f ◦ T ) |JT | dm =

∫
U

(f ◦ T ) dµ

=

∫
U

(f ◦ T ) dϕ∗m

=

∫
ϕ−1(U)

(f ◦ T ◦ ϕ) dm

=

∫
V

f dm

as required.
To prove the first part, let Bn,k = {(k − 1)/n ≤ |JT | < k/n} ∩ B, for n, k

positve integers. Then B is the disjoint union of Bn,k over k. By Exercise 60 of
your Homework assignment, we have

m (T (Bn,k)) ≤ k

n
m(Bn,k).

We also have |Jϕ(y)| ≤ n/(k−1) for all y ∈ T (Bn,k). Hence, again using Exercise 59,
and the first inequality, we get

k − 1

n
m(Bn,k) ≤ m (T (Bn,k)) ≤ k

n
m(Bn,k).

for every k ∈ N. On the other hand, clearly

k − 1

n
m(Bn,k) ≤

∫
Bn,k

|JT | dm ≤
k

n
m(Bn,k)
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for k ∈ N. Thus, ∣∣∣∣∣m (T (Bn,k))−
∫
Bn,k

|JT | dm

∣∣∣∣∣ ≤ 1

n
m(Bn,k).

Since B =
⋃
k Bn,k and the union is disjoint, we get∣∣∣∣m (T (B))−

∫
B

|JT | dm
∣∣∣∣ ≤ 1

n
m(B).

Since n is arbitrary,

m (T (B)) =

∫
B

|JT | dm.

Thus we are done when m(B) < ∞. The general case is proved by writing B as
the increasing limit of Borel sets of finite measure and invoking MCT. �
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18. Complex Measures

Much the way that a function of bounded variation on a closed bounded interval
is dominated by its total variation function, it is possible to find a measure λ which
dominates a given complex measure µ on a measurable space (X, F) in the sense
that |µ(E)| ≤ λ(E) for every E ∈ F . Moreover we would like to find a minimal
such λ. The obvious candidiate is λ = |µ|, where |µ| : F −→ [0, ∞] is given by

|µ|(E) = sup
{Ei}

∞∑
i=1

|µ(Ei)|

the supremum being taken over all partitions {Ei} of E. Here we are using the
term “partition” in a special sense, viz., a collection of sets {Ei} is said to be a
partition of E ∈ F if (a) the collection is countable, (b) is pairwise disjoint and (c)
each Ei ∈ F . It is not clear a-priori that |µ| is a measure (we will prove this later).

Definition 18.1. The set function |µ| is called the total variation measure1 of
µ, and |µ|(X) is called the total variation of µ. We write

‖µ‖ = |µ|(X).

One checks (easily) that the total variation is anorm on the C-vector space of
complex measures on (X, F).

Theorem 18.1. The total variation measure |µ| of a complex measure µ on F
is a measure on F .

Proof. The only point that needs checking is countable additivity. To that
end first note that if E ∈ F is such that |µ|(E) = 0, then (as a simple consequence
of the definitions), |µ(E)| = 0, and further, if A ⊂ E is a measurable subset then
|µ|(A) = 0. Its follows that we have countable additivity for any |µ|-null set E ∈ F .

Now suppose |µ|(E) > 0. Let {Ei} be a partition of E. Let Bi be the sets in
{Ai} (in some enumeration) which satisfy |µ|(Ai) = 0. Let Ci be the remaining
members of {Ai} (again enumerated in some manner). Pick real numbers ti so that
0 < ti < |µ|(Ci). By definition of |µ|(Ci), there exists a partition {Dij} of {Ci}
such that

∑∞
j=1 |µ(Dij)| > ti. It follows that

∞∑
i=1

|µ(Bi)|+
∑
i

∑
j

|µ(Dij)| >
∞∑
i=1

ti.

1Even though we have not yet proved that |µ| is actually a measure on (X, F).
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But {Bi} and {Dij}ij together form a partition of E. Thus, |µ|(E) >
∑∞
i=1 ti. Let

ti ↑ |µ|(Ci). We see that

|µ|(E) ≥
∞∑
i=1

|µ|(Ai). (*)

In particular if {Aij} is a partition of {Ai} then

∞∑
i=1

|µ|(Ai) ≥
∞∑
i=1

∞∑
j=1

|µ|(Aij). (†)

Let {Ei} be a partition of E, and Aij = Ai ∩ Ej . Then,∑
j

|µ(Ej)| ≤
∑
j

∑
i

|µ(Aij)|

≤
∑
i

∑
j

|µ|(Aij)

≤
∑
i

|µ|(Ai) (by (†)).

In particular |µ|(E) ≤
∑
i |µ|(Ai). This together with (∗) proves that |µ| is a

measure. �

Theorem 18.2. Let µ be a complex measure on (X, F). Then |µ|(X) < ∞,
i.e. |µ| is a finite measure.

Proof. We claim that if E ∈ F is such that |µ|(E) = ∞, then there exist
A,B ∈ F such that E = A ∪ B, A ∩ B = ∅, |µ(X)| > 1 and |µ|(B) = ∞. To
see this, let t = 6 (1 + |µ(E)|). Then there exists a partition {Ej} of E such that∑
j |µ(Ej)| > t. In particular, for some n,

n∑
j=1

|µ(Ej)| > t.

Now, given any set of complex numbers {z1, . . . , zn}, there exists a subset S of the
indices {1, . . . , n} such that |

∑
j∈S zj | is at least 1

6

∑n
j=1 |zj |.

2 If we put zj = µ(Ej),
and use the just mentioned fact, we see that∣∣∣∣∣∣

∑
j∈S

zj

∣∣∣∣∣∣ > 1 + |µ(E)|.

Let C =
⋃
j∈S Ej and D = X \ C. Then C ⊂ E and

|µ(C) > 1 + |µ(E)|.

Hence,

|µ(D)| > |µ(C)| − |µ(E)| > 1.

2This can be seen as follows. If s =
∑n

j=1
|zj | then of the four quadrants bounded by the

diagonal lines y = ±x, at least one, call it Q, is such that the sum of |zj | of the zj which lie in

Q is at least a quarter of s. By multiplying all the zj by a a complex number c with |c| = 1, if
necessary, we may assume that Q is the quadrant given by |y| ≤ x. Let S = {j| zj ∈ Q}. The

claim follows by using the fact that Re zj > |zj |/
√
2 for j ∈ S and the fact that 4

√
2 ≤ 6.
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Thus both |µ(C)| and |µ(D)| have absolute value greater than 1. Since {C,D} is a
partition of E, at least one of C or D (if not both) have infinite |µ| measure. Pick
such a set from {C, D} and call it A and call the remaining one as B. Clearly this
proves the claim.

Now put B0 = X. Suppose we have chosen B0 ⊃ B1 ⊃ . . . ⊃ Bn, with
|µ|(Bn) = ∞. Decompose Bn into Bn = An+1 ∪ Bn+1, with |µ(An+1)| > 1 and
|µ|(Bn+1) =∞. Then we get A1, A2, . . . , An, . . . which are mutually disjoint and
|µ(Ai)| > 1. This implies that

∑
i(Ai) does not converge absolutely, contradicting

the defintion of complex measure. Hence |µ|(X) <∞. �

19. Signed Measures, Positive and Negative Variations

If µ is a signed measure on a measurable space (X, F), then, by following the
steps we sused for a complex measure, we can define the total variation measure |µ|
on (X, F). However, we cannot conclude that |µ| is a finite measure, for the proof
of Theorem 18.2 needs the fact that µ is a complex measure in a crucial way. A
signed measure need not be a complex measure—it is so, if and only if it does not
take (positive or negative) infinite values, i.e. if and only if it takes real values. For
a signed measure µ, we continue to write ‖µ‖ for |µ|(X), with the understanding
that possibly ‖µ‖ =∞. Define

µ+ =
1

2
(|µ|+ µ) ,

µ− =
1

2
(|µ| − µ) .

µ+ and µ− are measures on F , and

µ = µ+ − µ−

|µ| = µ+ + µ−.

The measure µ+ is called the positive variation of µ and µ− is called the negative
variation of µ.

A signed measure which is real valued (i.e. is a complex measure) is called a
bounded signed measure, for it its range must lie in the bounded interval [−‖µ‖, ‖µ‖].
If µ is a bounded signed measure, then µ+ and µ− are finite measures (and clearly
the converse is also true). The above decomposition is often called the Jordan de-
composition or the Hahn-Jordan decomposition. A signed measure µ is said to be
σ-finite if |µ| is σ-finite. This is equivalent to saying that X can be written as a
union of countable number of measurable sets {En}, on each of which µ is bounded.
We may, as usual, assume the En are disjoint, or at the other extreme, assume that
they are an increasing sequence.

20. Measurability and Integration Revisited

Let (X,F , µ) be a measure space. For this and the rest of the lectures we use a
slightly freer concept of measurability (which needs µ). A function which is unde-
fined on a set E with µ(E) = 0, and which is measurable on X \ E will be said to
be measurable on X (or strictly speaking on the measure space (X, F , µ)). A mea-
surable complex valued function on X (or simply a complex function on (X,F , µ))
is a measurable function f : (X \ E,F) −→ (C, BC) where E ∈ F and µ(E) = 0.
Here BC is the Borel σ-algebra on C.
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Let p ≥ 1 be a real number. A complex function f on (X,F , µ) is said to be
p-integrable if |f | is p-integrable. We say f is integrable, if it is 1-integrable. If f is
integrable, and Re f = u and Im f = v (so that f = u+ iv), then note that both u
and v are integrable (in the real sense) since |u| and |v| are both less that |f |. In
this case we define the integral of f to be∫

X

f dµ :=

∫
X

u dµ+ i

∫
X

v dµ.

As in the real case we can define Lp-spaces as follows: LpC(µ) is the space of equiv-
alence classes of p-integrable complex functions under the equivalence relation of
“equality a.e. − [µ]”. Note that Lp(µ) ⊂ LpC(µ). LpC(µ) is a C-vector space. The
Hölder, Minkowski inequalities hold for this space, as does the Riesz-Fischer The-
orem (so that LpC(µ) is a complex Banach space). Moreover L2

C(µ) is a Hilbert
space with inner product (f, g) =

∫
X
fḡ dµ. The proofs of all these statements are

exactly the same as in the real case. To make sense of the Hölder inequality for the
case p = 1, we have to define ‖·‖∞ for complex measurable functions, and this is
done exactly as in the real case. We leave the exact defintion of the space L∞C (µ)
to the reader.

Now suppose µ is a complex measure. According to Exercise 72 of your Home-
work assigment, dµ = h d|µ|. We say that a complex function f integrable with
respect to µ if fh is integrable with respect to |µ| and in this case we define∫

X

f dµ =

∫
X

fh d|µ|.

21. LpC(µ) and its Dual

Let p ∈ [1, ∞]. Then the conjugate exponent of p is defined to be the unique
number q ∈ [1, ∞] which satisfies 1/p + 1/q = 1, with the understanding that
q =∞ if p = 1, and q = 1 if p =∞.

Our goal in this section is to identify the (complex) dual of LpC(µ) for p ∈ [1, ∞)
(note that we do not allow p to be ∞). It turns out to be LqC(µ), where q is the
exponent conjugate to p, in a sense made precise below. As a corollary, one easily
gets that the real dual of the real Banach space Lp(µ) is Lq(µ). This theorem are
also often called Riesz Representation Theorem, along with certain other theorems
which identify the dual of a well-known Banach space. Strictly speaking the name
is reserved for the theorem which identifies the dual of continuous functions (com-
plex or real valued) on a locally compact Hausdorff space, the theme of our next
lecture (but we concentrate there on compact metric spaces). However, the Riesz
Representation Theorems can be viewed as a philosophy, and so one can bring
many theorems under its umbrella. Recall that a bounded linear transformation
is the same as a continuous linear transformation. You are expected to remember
the definition of the norm of a bounded linear operator, in particular of a bounded
linear functional.

Theorem 21.1. Suppose and µ is a σ-finite measure on (X, F), and p is an
exponent with 1 ≤ p < ∞ and q its conjugate exponent. Then the (Banach space)
dual of LpC(µ) is LqC(µ) in the following sense: If Λ is a bounded linear functional
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on LpC(µ) then there is a unique gΛ ∈ LqC(µ) such that

Λf =

∫
X

fgΛ dµ (f ∈ LpC(µ)). (1)

Moreover,

‖Λ‖ = ‖gΛ‖q. (2)

Proof. The uniqueness of gΛ is an easy exercise best left to the reader. Note
that, if (1) holds then by Hölder’s inequality, we must have that

‖Λ‖ ≤ ‖gΛ‖q. (*)

First assume that µ is a finite measure so that χE ∈ Lp(µ) for E ∈ F . Define
ν(E) = Λ(χE). One checks easily that if En ↑ E (En ∈ F), then ‖χEn

− χE‖pto0.
This shows that ν is a complex measure. Clearly ν � µ. Hence by the Radon-
Nikodym Theorem (see Exercise 69 of your Homework assigment), there exists a
g ∈ L1

C(µ) such that

Λ(χE) =

∫
X

χEg dµ.

It follows that

Λf =

∫
X

fg dµ (f ∈ L∞C (µ))

for every f ∈ L∞C (µ) is the uniform limit of simple functions3. Note that we cannot
use our usual MCT arguments because g is not non-negative (in fact g is complex).

If p = 1, ∣∣∣∣∫
E

g dµ

∣∣∣∣ ≤ ‖Λ‖ · ‖χE‖1 = ‖Λ‖ · µ(E) (E ∈ F).

By Exercise 71 of your Homework assignment, |g(x)| ≤ ‖Λ‖, and hence g ∈ L∞C (µ)
and ‖g‖∞ ≤ ‖Λ‖ <∞. This aalong with (*) shows that ‖g‖∞ = ‖Λ‖.

Now suppose 1 < p <∞. We can always find a measurable function α, |α| = 1,
such that αg = |g|. Indeed, on the set where g is zero, we take α to be 1, and
outside this set we take α = |g|/g. Let En = {|g| ≤ n} and let f = χEn

|g|q−1α.
Then, on En, we have |f |p = |g|q. Moreover, since f ∈ L∞C (µ), therefore,∫

En

|g|q dµ =

∫
X

fg dµ

Λf

≤ ‖Λ‖ · ‖f‖p

= ‖Λ‖
{∫

En

|g|q
} 1

p

.

Since 1− 1/p = 1/q, we see from the above inequalities that{∫
En

|g|q dµ
} 1

q

≤ ‖Λ‖,

3The point needs elaboration. We may assume that f is bounded, say |f(x)| < M < ∞
for all x ∈ X. Let Anj = {f ∈ [−M + (j − 1)M/n, −M + jM/n)}. Then, setting Sn =∑2n

j=1
(−M +(j− 1)M/n)χAnj

+Mχ{f=M} we see that Sn converges to f uniformly. Moreover,

‖Sn − f‖p ≤ supx∈X |Sn(x)− f(x)|µ(X)
1
p , and hence Sn → f in Lp(µ) as n→∞.
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i.e. ∫
X

χEn
|g|q dµ ≤ ‖Λ‖q.

Apply MCT, and get that g ∈ LqC(µ) and moreover, ‖g‖q ≤ ‖Λ‖. Now if Φg is
defined on LpC(µ) by f 7→

∫
X
fg dµ, we see that Φg is a bounded linear functional,

which agrees with Λ on L∞C (µ). Now L∞C (µ) is dense in LpC(µ) (why ?) and hence
Φg = Λ. Set gΛ = g. We have just seen that ‖gΛ‖q ≤ ‖Λ‖. Using this and (*), we
see that we are through when µ is a finite measure.

Suppose now that µ(X) = ∞. Since µ is σ-finite, we may write X =
⋃
nEn,

where the En ∈ F are mutually disjoint, and such that µ(En) < ∞. Define a
function h : X −→ (0,∞) by h = n−2µ(En)−1χEn

. Then h is measurable, in
fact h ∈ L1(µ). Let ν be the measure given by the “indefinite integral” of h (i.e.
ν(E) =

∫
E
h dµ, E ∈ F). One checks that F 7→ h1/pF is a linear isometry of LpC(ν)

onto LpC(µ). Let L be the bounded linear functional on LpC(ν) corresponding to Λ
under the above isometry. By the first part of the proof, there is a GL ∈ LqC(ν)
which “represents” L (i.e. LF =

∫
X
FGL dν, for F ∈ LpC(ν)). One checks, readily

that gΛ may be taken to h1/qGL (with the understanding that 1/q = 0 if p = 1). �

Corollary 21.1. The dual of the real Banach space Lp(µ) is Lq(µ) in the
sense that if Λ is a bounded linear functional on Lp(µ), then there exists a unique
gΛ ∈ Lq(µ) such that Λ is given by f 7→

∫
X
fgΛ dµ and ‖Λ‖ = ‖gΛ‖q.

Proof. Clearly Λ can be extended in an obvious way to LpC(µ) as a bounded
(complex) functional, and moreover the norm of Λ is preserved under this extension.
By the Theorem, we have a gΛ representing this extended Λ. A little thought shows
that gΛ must necessarily be real-valued. The rest is easy. �
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This and the next lecture will concentrate on proving that the dual of the
Banach space of continuous complex-valued functions on a compact metric space X
is the space of complex measures on (X, BX) (with the total variation as norm). The
σ-algebra BX is the “Borel σ-algebra” on X, i.e. the smallest σ-algebra containing
the open sets of X. The real analogue is easily deducible, viz., the dual of the real
Banach space of continuous real valued functions on X is the space of bounded
signed measures on (X, BX).

The approach is a disguised form of the Daniell approach, however I balked
at having to reproduce the entire formalism of the Daniell integral, for something
which is essentially down to earth (at least on metric spaces, or any space with a
good Urysohn type Theorem). I have painted with broad strokes for lack of time
prevented me from giving all the details, but there is nothing that cannot be filled
in by a motivated and intelligent reader.

Usually, the Riesz Representation Theorem is proved for locally compact spaces,
and the compact version becomes a corollary.

22. MCT Revisited

We will need the following strengthened form of the MCT

Theorem 22.1. [MCT] Let (X, F , µ) be a measure space, and let {fn} be a
sequence in L1(µ) such that fn ↑ f pointwise as n → ∞. Then f ∈ L1(µ) if and
only if limn

∫
X
fn dµ <∞ and in this case

∫
X
f dµ = limn

∫
X
fn dµ.

Proof. Let gn = fn − f1, g = f − f1. Then 0 ≤ gn ↑ g. Apply MCT. �

23. The Borel σ-algebra BX
Let X be a metric space, and BX its Borel σ-algebra. Now on a metric space,

every closed set is Gδ. Indeed, if F is closed then F =
⋂∞
n=1{x| d(x, F ) < 1/n}.

As a consequence, every open set on X is Fσ. Now let G be an open set in X. We
claim that there is a continuous function f on X, with 0 ≤ f ≤ 1, and such that
G = {f > 0}. To see this, write G =

⋃
n Fn, with each Fn closed. By Urysohn’s

lemma there are continuous functions fn, 0 ≤ fn ≤ 1 such that Fn = {fn = 1} and
G = {fn > 0}. A little thought shows that the function f =

∑∞
n=1 2−nfn is the

required one.
Let A be the smallest σ-algebra such that every member of C(X) is measurable

(C(X) is the Banach space of real-valued continuous functions on X). In other
words A is the smallest σ-algebra containing sets of the form f−1(B), f ∈ C(X),
B ∈ BR. Clearly A ⊂ BX . On the other hand the argument in the previous
paragraph shows that every open set G is in A. Therefore, we have proved:

37
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Theorem 23.1. BX is the smallest σ-algebra on X such that every continous
function f : X −→ R is measurable.

Remark 23.1. The above need not work for an arbitrary Hausdorff topological
space. What is needed is a Urysohn Lemma and the fact that every open set is Fσ. While
the Riesz Representation Theorem makes sense for locally arbitrary compact Hausdorff
spaces, the statement is a complicated one, which takes into account the failure of the
above Theorem for these more general spaces.

24. Positive Functionals

Let X be a compact metric space. As usual, let BX denote its Borel σ-algebra.
C(X) will denote continuous real-valued functions on X.

Definition 24.1. A linear functional

Λ : C(X) −→ R

is said to be positive if Λf ≥ 0 for every non-negative continuous function f on X.

Remark 24.1. If Λ is a positive linear functional on C(X), then clearly Λf ≥ Λg if
f ≥ g. This also shows that Λ is bounded, and in fact ‖Λ‖ = Λ(1).

For the rest of this section, fix a postive linear functional Λ on C(X). We will
construct a measure µΛ on BX such that Λf =

∫
X
f dµΛ for f ∈ C(X). Later we

will show that Borel measure with this property is unique. Actually, the process of
constructing µΛ is such that we actually construct it on a σ-algebra which is larger
than BX , and µΛ turns out to be complete with respect to this σ-algebra.

We use the symbol f ∨ g to denote max{f, g} and f ∧ g for min{f, g} for any
two functions on X. Note that if f, g ∈ C(X), then f ∨ g and f ∧ g are both in
C(X). Let S↑ be the set of increasing sequences {φn} of continuous functions. If
f : X → R̄ is an extended real valued function then S↑f will denote the subset of
S↑ whose limit is f . Let

L′u = {f : X → R̄|S↑f 6= ∅}.

Note that if f, g ∈ L′u then f ∨ g and f ∧ g are in L′u. The following observations
are immediate for L′u :

• If {φn} ∈ S↑f , then limn Λφn exists as an extended real number.
• If {φn}, {ψn} ∈ S↑f then for each m ∈ N, {φm ∨ ψn}n ∈ S↑f and φm ≤
φm ∨ ψn for every n ∈ N. Thus

lim
n→∞

Λφn ≤ lim
n→∞

Λ(φm ∨ ψn).

• For each m ∈ N, (φm ∨ψn−ψn) ↓ 0 as n→∞. Since we are dealing with
continuous functions, the convergence is actually uniform4. Hence

lim
n→∞

Λφm ∨ ψn = lim
n→∞

Λψn.

• It follows then that limn→∞ Λφn ≤ limn→∞ Λψn. Since {φn} and {ψn}
were arbitrary members of S↑f therefore

lim
n→∞

Λφn = lim
n→∞

Λψn.

4If {gn} is a sequence of continuous functions on the compact metric space X and gn ↓ 0
pointwise, then one checks easily that ‖gn‖∞ ↓ 0.
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In view of the above, we can define

Λ : L′u −→ R̄

in a well-defined way by the formula Λf = limn Λφn, where {φn} ∈ S↑f .
Now define

Lu = {f ∈ L′u|Λf <∞}.
Note that Lu is closed under sums (whenever the sum is defined), and under multi-
plication by positive real numbers. Note also that if f, g ∈ Lu then f ∨ g and f ∧ g
are also in Lu. Clearly, Λ is real-valued on Lu.

We are trying to get to the largest possible linear space to which Λ can be
extended as a positive linear functional. Consider functions f :−→ R̄ such that

inf{Λg| g ≥ f, g ∈ Lu} = − inf{Λh|h ≥ −f, h ∈ Lu}.

Denote the collection of such functions L1. Clearly Λ extends to f ∈ L1 as the
above common value. A little thought shows that Λf < ∞ for f ∈ L1 and that
Lu ⊂ L1. Moreover, one checks that L1 is a vector space and if f, g ∈ L1, then so
do f ∨ g and f ∧ g. Note that this means that |f | ∈ L1 if f ∈ L1 (for f+ = f ∨ 0
and f− = (−f) ∧ 0). Λ is a positive linear functional on L1, i.e. Λf ≥ 0 whenever
f ≥ 0 and f ∈ L1.

One also has the following analogoues of the MCT (in the newer form given in
this lecture) and DCT. We leave the proofs to the reader.

Proposition 24.1. With notations as above, we have

(1) Let {fn} be a sequence of functions in L1, ans suppose fn ↑ f as n ↑ ∞.
Then f ∈ L1 if and only if limn Λfn <∞ and in this case Λf = limn Λfn.

(2) Let {fn} be a sequence of fucntions in L1 such that fn → f pointwise.
Suppose there exists g ∈ L1 such that |fn| ≤ g for all n ∈ N. Then f ∈ L1

and Λf = limn Λfn.

Note that since C(X) consists of measurable functions, therefore so does Lu
(being the limit of such functions. How about L1 ? We will show that any function
in L1 is “close” to some measurable function. To that end, for a function (taking
values in R̄) g on X, let Sg↓ consist of sequences {φn} of functions in Lu such that
φn ↓ g and limn φn > −∞. Note that if Sg↓ is non-empty, then any sequence {φn}
in Lu decreasing to g must necessarily be in Sg↓. Moreover, if {φn}, {ψn} ∈ Sg↓
then limn Λφn = limn Λψn and both are real-numbers. Let

Lul = {g : X −→ R̄|Sg↓ 6= ∅}.

Then Lul ⊂ L1 (by Proposition 24.1) and clearly members of Lul are measurable
(being limits of such functions). The subscripts u and ul added to L are meant to
evoke “upper” and “upper-lower” limits. The next theorem shows that L1 and Lul
are nearly the same (or at least that Λ cannot distinguish them).

Theorem 24.1. Given f ∈ L1 there exists g ∈ Lul such that g ≥ f and
Λf = Λg.

Proof. By definition of L1, for each n ∈ N there exists hn ≥ f such that
hn ∈ Lu and Λhn ≤ Λf + 1/n. Let gn = h1 ∧ . . . ∧ hn. Then hn ≥ gn ≥ f , and
gn is a decreasing sequence of functions in Lu. Let g = limn gn. One checks that g
satisfies the conclusion of the theorem. �
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Let

F = {A ∈ 2X |χA ∧ f ∈ L1∀f ∈ L1}.
One can show that F is a σ-algebra on X, and that every f ∈ L1 is F-

measurable. In particular every continuous function is F-measurable. By Theo-
rem 23.1, it follows that F ⊃ BX . Since χA = χA∧1 and 1 ∈ L1, therefore, χA ∈ L1

for every A ∈ F . Define

µΛ(A) = Λ(χA).

This gives a measure on F . Moreover, by MCT (in its strengthened form), DCT
and Proposition 24.1, we see that

Λf =

∫
X

f dµΛ (f ∈ L1).

Since F ⊃ BX we may consider µΛ to be a Borel measure.

Example 24.1. On C([0, 1]) consider the positive fucntional Λ given by “Riemann

integration” i.e. the functional f 7→
∫ 1

0
f(t) dt. If we follow the above procedure, then

F = M, the Lebesgue σ-algebra, and µΛ is the Lebesgue measure m. This gives an
alternate way of getting the Lebesgue σ-algebra and the Lebesgue measure.

25. The Riesz Representation Theorem for Positive Functionals

Theorem 25.1. Let Λ : C(X) −→ R be a positive linear functional. Then there
exists a unique finite Borel measure µ on X such that

Λf =

∫
X

f dµ (f ∈ C(X)). (*)

Moreover, if Λ and µ are so related then ‖Λ‖ = ‖µ‖.

Proof. We have already shown the existence of a µ satisfying (∗). The state-
ment about norms follows by taking f = 1 in (∗). It remains to show uniqueness.
So suppose µ is a Borel measure satisfying (∗). We have to show that µ = µΛ on
BX , where µΛ is the measure we constructed earlier. As before, extend Λ to L′u,
Lu and L1. By MCT (in the form we have given in this lecture) and the definition
of Λ on Lu and Lul we see that

Λf =

∫
X

f dµ (f ∈ Lul).

Let B ∈ BX . Since χB ∈ L1 (indeed, B ∈ F and hence by definition of the
σ-algebra F , χB ∧ 1 ∈ L1. But χB ∧ 1 = χB), therefore by Theorem 24.1 we have
g ≥ χB , g ∈ Lul with Λg = Λ(χB). Since g ∈ Lul therefore this can be rephrased
as

Λ(χB) =

∫
X

g dµ. (†)

Let ϕ = g − χB . Then ϕ is BX -measurable (since g is, being a member of Lul),
ϕ ≥ 0 and ϕ ∈ L1 (being the difference of two members in L1). Now Λϕ = 0.
Applying Theorem 24.1 again, there exists a ψ ∈ Lul with ψ ≥ ϕ and Λψ = Λϕ.
Thus

0 ≤
∫
X

ϕdµ ≤
∫
X

ψ dµ = Λψ = Λϕ = 0 (‡)
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Putting together (†) and (‡) we see that

µλ(B) = Λ(χB) =

∫
X

g dµ =

∫
X

g dµ−
∫
X

ϕdµ =

∫
X

χB dµ = µ(B).

Thus µΛ = µ on BX . �
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In this lecture we prove the rest of the Riesz Representation Theorem, viz.,
bounded linear functionals on CC(X) are represented uniquely (and in a norm
preserving way) by complex Borel measures on X, where X is a compact metric
space. Here CC(X) is the complex Banach space (norm being the supremum norm)
of continuous complex valued functions on X.

26. Some Lemmas

By a complex valued simple function on a measurable space (X, F) we mean
complex valued measurable functions s such that s(X) is a finite set in C.

Lemma 26.1. Let (X, F , µ) be a measure space. Then the class S of all complex
valued simple functions on X which are non-zero on a set of finite measure is dense
in LpC(µ) for every p ∈ [1, ∞).

Proof. Clearly S ⊂ Lp(µ). Suppose f ≥ 0 is p-integrable. Let s be a simple
function such that 0 ≤ s ≤ f . Then s ∈ Lp(µ) and so s ∈ S. Moreover, in this case
|f − s|p ≤ fp. We can find a sequnce of simple functions {sn}, 0 ≤ sn ≤ sn+1 ≤ f
such that sn ↑ f . Since |f − sn|p ≤ fp therefore by the DCT, ‖f − sn‖p → 0 as
n → ∞. If f ∈ LpC(µ), then breaking f into its real and imaginary parts, and
then breaking each into its positive and negative parts, we can find a sequence in
S approaching f in LpC(µ). �

Lemma 26.2. Let X be a compact metric space5. Let µ be a measure on
(X, BX). Then CC(X) is dense in LpC(µ).

Proof. Let S be as above. Lusin’s theorem can clearly be extended to show
that given s ∈ S and ε > 0, one can find a g ∈ CC(X) which agrees with s
everywhere except possible a set of µ-measure less than ε, and such that ‖g‖∞ ≤
‖s‖∞. Hence

‖g − s‖p ≤ 2ε
1
p ‖s‖∞.

Thus the closure of CC(X) in LpC(µ) contains S. But by Lemma 26.1, S is dense in
LpC(µ). Hence we are done. �

Recall that λ is a complex measure, then there is a h ∈ L1
C(|λ|), with |h| = 1

such that λ(E) =
∫
E
h d|λ| (see Exercise 72 of your Homework assignment). Recall

that integration with repsect to λ is defined as by
∫
X
fdλ :=

∫
X
fh d|λ|.

5the requirement of being compact or being a metric space are not strictly necessary

43
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Lemma 26.3. Let X be a compact metric space, and λ a complex measure on
(X, BX) such that ∫

X

f dλ = 0 (f ∈ CC(X)).

Then λ = 0.

Proof. By Exercise 72 of your Homework assignment, dλ = h d|λ|, where h is
Borel measurable with |h| = 1. We claim that

|λ|(X) ≤ ‖h̄− f‖1 (f ∈ CC(X)) (*)

where the norm on the right is that of L1
C(|λ|). Suppose (∗) is true. By Lemma 26.2,

we can make the quantity ‖h̄− f‖1 as small as we wish. This implies that |λ|(X) =
0. Hence λ = 0. The relation (∗) is shown as follows. Let f ∈ CC(X). Then∫

X

fh d|λ| =
∫
X

f dλ = 0

by our hypothesis on λ. Therefore

|λ|(X) =

∫
X

h̄h d|λ| =
∫
X

(h̄h− fh) d|λ| ≤
∫
X

|h̄− f |d|λ| = ‖h̄− f‖1.

Hence we are done. �

27. The Riesz Representation Theorem

Theorem 27.1. The dual of the complex Banach space CC(X) is the space of
complex measures on (X, BX). More precisely, given a bounded linear functional

Λ : CC(X) −→ C

there exists a unique complex measure λ on (X, BX) such that ‖Λ‖ = ‖λ‖ and

Λf =

∫
X

f dλ (f ∈ CC(X)). (∗Λ)

Proof. Uniqueness of a λ satisfying (∗)Λ follows from Lemma 26.3. Thus we
only have to show existence of a λ satisfying (∗)Λ and such that ‖Λ‖ = ‖λ‖. We
may assume that Λ 6= 0. In this case, by multipying by ‖Λ‖−1 if necessary, we may
assume, without loss of generality that ‖Λ‖ = 1.

Let C+(X) be the set of nonnegative continuous functions on X. Let L :
C+(X) −→ R be given by

Lf = sup{|Λh| |h ∈ CC(X), |h| ≤ f}.

Then

• Lf ≥ 0.
• 0 ≤ Lf1 ≤ Lf2 if 0 ≤ f1 ≤ f2.
• If c > 0 is a constant, then Lcf = cLf for f ∈ C+(X).
• |Λf | ≤ L(|f |).

We will now show that for f, g ∈ C+(X), L(f + g) = Lf +Lg. Given ε > 0, by
definition of L, there exist f ′ and g′ such that |f ′| ≤ f , |g′| ≤ g and Lf ≤ |Λf ′|+ ε,
Lg ≤ |Λg′|+ ε. Let a, b be complex numbers of modulus 1 such that aΛf ′ = |Λg′|
and bΛf ′ = |Λf ′|. Then

Lf+Lg ≤ |Λf ′|+ |Λg′|+2ε = Λ(af ′+bg′)+2ε ≤ L(|f ′|+ |g′|)+2ε ≤ L(f+g)+2ε.
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In other words

L(f + g) ≤ Lf + Lg. (†)

On the other hand, suppose h ∈ CC(X) is such that |h| ≤ f + g. Let K =
{f = 0} ∩ {g = 0}, and let V be the complement of K in X. On V define
h1 = fh/(f + g), h2 = gh/(f + g) and on K define h1 = h2 = 0. One checks that
h1 and h2 are continuous on X, h1 + h2 = h, |h1| ≤ f and |h2| ≤ g. It follows that
|Λh| = |Λh1 + Λh2| ≤ |Λh1|+ Λh2| ≤ Lf + Lg. By definition of L, we then get

L(f + g) ≤ Lf + Lg. (‡)

Thus, from (†) and (‡) we see that L(f + g) = Lf + Lg, for f, g ∈ C+(X). Now if
f ∈ C(X), then f+, f− ∈ C+(X), and so one defines Lf = Lf+ − Lf−. This way,
we extend L to all of C(X). Clearly, L is a positive linear functional. Moreover,

‖L‖ = L(1) = sup{Λf ||f | ≤ 1} = ‖Λ‖ = 1.

Let µ be the measure representing L ensured by the Riesz Representation for pos-
itive functionals. Then

µ(X) = ‖µ‖ = ‖L‖ = 1.

For 1 ≤ p ≤ ∞, let ‖·‖p denote the norm in LpC(µ). We then have

|Λf | ≤ L(|f |) = ‖f‖1 (f ∈ CC(X)).

In other words, Λ, when thought of as a functional on the normed linear space
(CC(X), ‖·‖1) (this is different from the usual norm on CC(X)) is a bounded linear
functional with norm less than or equal to 1.6. Now (CC(X), ‖·‖1) is dense in
L1
C(µ) (see Lemma 26.2), and therefore there is a norm preserving extension of Λ to

L1
C(µ). By Riesz Representation for L1

C(µ), the extended functional is represented
by g ∈ L∞C (µ), with |g| ≤ 1 (we are using the fact that the norm of Λ as a functional
on L1

C(µ) is at most 1). In other words,

Λf =

∫
X

fg dµ (f ∈ L1
C(µ)).

We thus get a complex measure λ given by,

λ(B) =

∫
B

g dµ (B ∈ BX),

and clearly λ satisfies (∗Λ). It only remains to show that ‖λ‖ = 1.
Let f ∈ CC(X) with ‖f‖∞ ≤ 1. Then,∫

X

|g| dµ ≥ |
∫
X

fg dµ| = |Λf |.

This gives, ∫
X

|g| dµ ≥ ‖Λ‖ = 1.

But |g| ≤ 1, and ‖µ‖ = 1. The only way the above three facts can be reconciled is
to have |g| = 1 a.e.− [µ]. It follows by Exercise 73 of your Homework assignment,
that |λ| = µ and hence ‖λ‖ = ‖µ‖ = 1. �

The following corollary is obvious.

6CC(X) is complete with respect to its usual norm, viz., ‖·‖∞, but need not be complete
with respect to ‖·‖1 as we can see from Lemma26.2
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Corollary 27.1. The dual of the real Banach space C(X) is the space of
bounded signed measures on (X, BX) in the sense that given a bounded linear func-
tional Λ on C(X), there exits a unique bounded Borel signed measure µ such that
‖µ‖ = ‖Λ‖ and

Λf =

∫
X

f dµ (f ∈ C(X)).

Example 27.1. Let I = [a, b] be a closed bounded interval in R. Then a bounded
signed measure on (I,BI) gives rise to a function of bounded variation on I in the following
way. Let σ be a bounded signed measure on our measurable space. Define

gσ(x) = σ ([a, x)) (x ∈ I).

One checks that gσ(a) = 0, gσ is left continuous and is a function of bounded variation.
Moreover, for any continuous function f on I one checks easily that∫

I

f dσ =

∫ b

a

f dgσ.

If we have a function g ∈ BV (I) such that g is left continuous, then we can construct a
bounded signed measure by first defining it for the algebra of intervals given by [α, β) and
[α, b] for α, β ∈ I. On such intervals, we define it by

σg[α, β) = g(β)− g(α).

and
σg[α, b] = g(b)− g(α).

A canonical procedure now allows us to extend σg to all of BX . Moreover, two left
continuous functions of bounded variation will give rise to the same signed measure if
and only if they differ by a constant. So if we concentrate on left continuous functions
g ∈ BV (I) such that g(a) = 0, then we get a one-to-one correspondence with bounded
signed measures. The two processes mentioned are inverses of each other. And under this
correspondence the total variation of σ is the same as the variation of gσ. Thus the dual
of C(I) can be identified with left continuous fucntions of bounded variation on I, which
are zero at a.


