
NURTURE 1996-2000

ANALYSIS HOMEWORK

Instructions. The following is a list of 79 problems. Your Analysis Exam next
year, for most part, will be based on these problems. I will lay special emphasis
on Radon-Nikodym theory, Riesz Representation Theorems, Fubini and Tonelli
theorem.

You are expected to submit the following 10 problems by 1/11/98:
26, 27, 28, 29, 30, 31, 33, 34, 35 and 43;
and the following 10 by 1/2/99:
60, 61, 62, 63, 64, 65, 66, 67, 68 and 60;
and the following 10 by 1/5/99:
70, 71, 72, 73, 74, 75, 76, 77, 78 and 79.

Please do not submit more problems than the 10 assigned in a given period, for
I may not have time to correct them. You may quote results from other problems
(including the ones not assigned) provided the quoted result occurs in a problem
before the one you are trying to solve. You are free to discuss the remaining 49
problems with me over E-mail or usual mail. I will try to respond.

Notations. The notations of last year’s assignment will continue to be in force.
In addition we will have the following notations and conventions.

Let X be a set. The symbol 2X will denote the power set of X, i.e. the set of
all subsets of X. An increasing sequence {Ai} in 2X means a sequence of subsets
A1 ⊂ A2 ⊂ A3 . . . ⊂ An . . . . The symbol

Ai ↑ A
will be used to denote the fact that {Ai} is increasing and ∪iAi = A. We often
write limiAi to denote ∪iAi. Similarly if A1 ⊃ A2 . . . ⊃ An ⊃ . . . then {Ai} is said
to be a decreasing sequence (in 2X). If A = ∩Ai, then we write limiAi = A and we
use the notation

Ai ↓ A
to indicate that {Ai} decreases to A.

R̄ will denote the extended real line. A function on a set X will always mean a
function from X to R̄, unless otherwise specified. If (X, F) is a measurable space,
then by a function on (X, F) we mean a function on X which is measurable with
respect to F .

If (X,F) and (Y, G) are measurable spaces, then a map f : X → Y is said to be
measurable with respect to the pair (F , G) if f−1(E) ∈ F for every E ∈ G. We use
the shorthand f : (X, F) → (Y, G) to denote the fact that f is measurable with
respect to (F , G). If the context is clear, we simply say f is measurable for f as
above.

Note that a measurable function on (X, F) is a map (X, F)→ (R̄, B̄) where B̄
is the σ-algebra of Borel sets on R̄, i.e. the smallest σ-algebra containing the sets
{x|x > a}, a ∈ R.
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MCT and DCT will be shorthands for the Monotone Convergence Theorem and
the Dominated Convergence Theorem.

If (X, F) is a measurable space, and E ∈ F then F ∩ E will denote the subset
of 2E given by all B ∈ F such that B ⊂ E. It is easy to verify that F ∩ E is a
σ-algebra on E. If µ is a measure on (X, F), then µ|E will denote the restriction
of µ to F ∩ E. Note that µ|E is a measure on (E, F ∩ E). If the context is clear,
we will write µ for µ|E .

Convex Functions

(1) Let a < x ≤ x′ < y′ < b and a < x < y ≤ y′ < b. Let ϕ be a convex
function on (a, b). Show that the chord (of the graph of ϕ) over (x′, y′)
has larger slope than the chord over (x, y); that is

ϕ(y)− ϕ(x)

y − x
≤ ϕ(y′)− ϕ(x′)

y′ − x′
.

(2) Suppose ϕ is convex on (a, b). Show that ϕ is absolutely continuous on
every closed interval [c, d] ⊂ (a, b), that is, if [c, d] is such an interval, then
given ε > 0, there is a δ > 0 such that

n∑
i=1

|ϕ(x′i)− ϕ(xi)| < ε

for every finite collection {(xi, x′i)} of non-overlapping intervals in [c, d]
with

n∑
i=1

|xi − x′i| < δ.

Lebesgue Measure

Define

m∗ : 2R → [0, ∞]

by

m∗(A) = inf{
∑
|In| : A ⊂ ∪n≥1I

0
n}.

The function m∗ is called the (Lebesgue) outer measure on R. A set E ⊂ R
is said to be measurable if for every A ⊂ R,

m∗(A) = m∗(A ∩ E) +m∗(A \ E)

This definition of measurability of a set is due to Caratheodory. LetM⊂ 2R

be given by

M = {E ∈ 2R|Emeasurable}.
(3) (Monotonicity) Show that if A ⊂ B, m∗(A) ≤ m∗(B).
(4) Show

(a) m∗(∅) = 0,
(b) m∗(A) = 0 for a countable set A (we include finite sets as countable

sets),
(c) m∗(R) =∞.

(5) (Countable subadditivity) Show m∗(∪j≥1Aj) ≤
∑
j≥1m

∗(Aj)

(6) Show that m∗(I) = b− a, where I = [a, b].
(7) Show that m∗(IO) = |I|.
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(8) Show that M is a σ-algebra. Show also that if m : M → [0, ∞] is the
restriction of m∗ toM then m is a measure - the Lebesgue measure ! [Hint:
It is easier to prove both parts together, rather than separately. It is easy
to prove that ∅ ∈ M and that M is closed under complements. Break
up the rest of the proof into the following steps. Step 1 Show that M
is closed under finite unions. Step 2 Show that if E1, . . . , En is a finite
collection of pairwise disjoint subsets of R with each Ej ∈M then m∗(A∩
(∪n1Ej)) =

∑n
j=1m

∗(A ∩ Ej) for every A ⊂ R. Step 3 If {Ej}j≥1 is a

countable collection of disjoint sets inM, then m(∪j≥1Ej) =
∑∞
j=1m(Ej).

Step 4 Show that M is closed under countable unions.]
(9) Let B be the smallest σ-algebra containing the open subsets of R. B is

called the Borel σ-algebra. Show that B ⊂M.
(10) Show that B contains Gδ and Fσ.
(11) Let A ⊂ R. Show

(a) For every ε > 0, there exists an open set Gε ⊃ A such that m(Gε) ≤
m∗(A) + ε.

(b) There exists a Gδ set H such that H ⊃ A such that m(H) = m∗(A).
(c) Any measurable set in M is of the form E = K ∪ N , where K ∈ Fσ

and m(N) = 0.
(12) Show that the following are equivalent:

(a) E ∈M.
(b) For every ε > 0 there exists an open set Gε containing E such that

m∗(Gε \ E) ≤ ε.
(c) There exists H ⊃ E, H a Gδ set, such that m∗(H \ E) = 0.
(d) For every ε > 0, there exists Fε ⊂ E, Fε a closed set, such that

m∗(E \ Fε) ≤ ε.
(e) There exists K ⊂ E such that K ∈ Fσ and m∗(E \K) = 0.

(13) Let E ∈M, xo ∈ R. Show
(a) E + xo ∈M.
(b) m(E + xo) = m(E).

[Hint: Write E = K ∪ N where K is Fσ and N is of zero measure. Then
consider appropriate tranlates].

(14) Suppose µ is a measure on (R, B such that µ ([0, 1]) < ∞, and such that
for E ∈ B, and xo ∈ R, µ(E + xo) = µ(E) (i.e. µ is translation invariant).
Then show that there exists a real number α ≥ 0, such that µ = αm, where
m is the Lebesgue measure on (R, B). (From this one can conclude that µ
extends to M).

(15) Define an equivalence relation ∼ on Io as follows: x ∼ y if x− y is rational.
Let Io = ∪α∈ΓKα be the corresponding decomposition of Io into equivalence
classes (so that Kα ∩Kβ = ∅ if α 6= β). Let T : Γ→ Io be a map such that
such that T (α) ∈ Kα for every α ∈ Γ. By the Axiom of Choice such a T
exists. Let

E = {T (α)|α ∈ Γ}.

Show that E is not Lebesgue measurable, i.e. show that E does not lie in
M.

(16) Let E ∈ M, with m(E) < ∞, and let α ∈ (0,m(E)). Show that there
exists a Lebegue measurable set F in E such that m(F ) = α.
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(17) Suppose f : R→ R isM-measurable and g : R→ R is B-measurable. Show
that g ◦ f is M-measurable.

Measure Theory

A measure space (X, F , µ) is said to be complete if F contains all the
subsets of sets of measure zero, that is, if E ∈ F , µ(E) = 0, and D ⊂ E,
then D ∈ F .

(18) Let (X, F , µ) be a measure space. Show that

µ(E1) + µ(E2) = µ(E1 ∪ E2) + µ(E1 ∩ E2) Ei ∈ F .

(19) (a) Show that the Lebesgue measure space (R,M, m) is complete (see
definition above).

(b) Show that (R, B, m) is not complete.
(20) If (X, F , µ) is a measure space, show that we can find a unique complete

measure space (X, F̂ , µ̂) such that

(a) F ⊂ F̂ ;
(b) µ̂|F = µ ;

(c) E ∈ F̂ ⇐⇒ E = A ∪B where B ∈ F and A ⊂ C, C ∈ F , µ(C) = 0.

(X, F̂ , µ̂) is called the completion of X, F , µ).
(21) Let Z be a set. A monotone class M is a collection of subsets such that

if {Ai} is an increasing sequence of sets in M, and {Bi} is a decreasing
sequence of sets in M, then ∪iAi and ∩iBi belong to M. Show that if E is a
collection of sets in Z, then there is a unique monotone class M containing
E , and contained in every monotone class containing E . M is called the
smallest monotone class containing E . It is also called the monotone class
generated by E .

(22) Let A be an algebra of subsets of a non-empty set X, i.e. A is closed under
finite unions, complementations, and ∅, X ∈ A. Show
(a) A is closed under finite intersections.
(b) By a measure µ on A we mean a map µ : A → [0, ∞] such that

µ(∅) = 0 and if {Ei} are a countable collection of disjoint sets in
A such that ∪iEi ∈ A, then µ satisfies the formula for countable
additivity. Let F be the σ-algebra generated by A. Show that µ
extends to a unique measure, also denoted µ, on F . [Hint: Imitate
the construction of Lebesgue measure in exercises on the Lebesgue
measure.]

(23) Let (X, F) and (Y, G) be two measure spaces. A measurable rectangle in
X × Y is a set of the form A × B with A ∈ F and B ∈ G. The product
of F and G is defined to be the smallest σ-algebra containing measurable
rectangles. For E ⊂ X × Y and x ∈ X, define

Ex = {y| (x, y) ∈ E}.

Similarly for y ∈ Y , define

Ey = {x| (x, y) ∈ E}.

Ex is called the x-section of E and Ey the y-section of E. Show that if
E ∈ F × G, then Ex ∈ G, and Ey ∈ F for every x ∈ X and y ∈ Y . [Hint:
Enough to show Ex ∈ G. Let Ω be the class of all sets E ∈ F ×G such that
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Ex ∈ G for every x ∈ X. Show that Ω contains measurable rectangles and
that Ω is a σ-algebra. Conclude that Ω = F × G.]

(24) Let (X, F) and (Y, G) be as in the previous problem. Let E be the class of
elementary sets, i.e. sets of the form Q = R1 ∪ . . . ∪Rn, where each Ri is a
measurable reactangle, and Ri ∩ Rj 6= ∅. Show that F × G is the smallest
monotone class containing E .

(25) Let (X, F) and (Y, G) be as above. For a function f on X × Y , and an
element x ∈ X, define a function fx on Y by fx(y) = f(x, y). Similarly
define fy on X by fy(x) = f(x, y). Show that if f is F × G measurable,
then
(a) For each x ∈ X, fx is G-measurable.
(b) For each y ∈ Y , fy is F-measurable.

[Hint: Consider Q = f−1(V ), where V is an open set. By Exercise 23,
Qx ∈ G. Conclude that fx is measurable.]

Integration

(26) Show that if {fn} is a sequence of nonnegative functions on a measurable
space (X, F), then∫

X

∑
n≥1

fn dµ =
∑
n≥1

∫
X

fn dµ.

(27) (Fatou’s Lemma) Suppose {fn} is a sequence of non-negative functions on
(X, F). Show that∫

X

lim inf fn dµ ≤ lim inf

∫
X

fn dµ.

(28) Let (X, F , µ) be a measure space and let E ∈ F . For g a function on
(X, F) show that ∫

X

gχE dµ =

∫
E

(g|E) d (µ|E)

where the above has the following meaning:
If either side converges, then both sides converge and are equal, and if

either side diverges properly (i.e. does not converge and is not of the form
∞ −∞), then both sides diverge properly and to the same value (either
+∞ or −∞). We will, in subsequent problems, write

∫
E
g dµ to denote∫

X
gχE dµ.

(29) Let f : (X, F) −→ (Y, G) be a map between measurable spaces (i.e. f is
measurable). Let µ be a measure on (X, F) and define a measure f∗µ on
(Y, G) by

(f∗µ) (E) = µ
(
f−1(E)

)
.

Show the following abstract change of variables formula :∫
f−1(E)

g ◦ f dµ =

∫
E

g df∗µ,

where g is a measurable function on Y , E ∈ G and the above has the
following meaning - if either side is finite then both sides are finite and
equal, and if either side diverges properly (i.e. is +∞ or −∞) then both
sides diverge properly and to the same value.
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(30) Let (X, F , µ) be a measure space, and f ≥ 0 a function on (X, F). For
E ∈ F , set

ν(E) =

∫
E

f dµ.

Show
(a) ν : F → [0, ∞] is a measure on (X, F).
(b) If g is another a function on (X, F), show∫

X

g dν =

∫
X

gf dν

where as usual the meaning assigned to the above is that if either side
converges then both sides converge and are equal and if either side
diverges properly, then both sides diverge properly and to the same
infinite value. [Hint: First prove it for g ≥ 0 by using simple functions
and the MCT. Then do the usual trick of breaking up g into its positive
and negative parts.]

(31) Let f ∈ C(I), I = [a, b]. Show that∫ b

a

f dx =

∫
I

f dm

where the left side is the Riemann integral and the on the right side m
denotes the Lebesgue measure.[Hint: As usual first assume f ≥ 0, and
apply MCT to carefully chosen sequence of simple functions sn ↑ f . Then
do the usual little tricks.]

(32) Show that there exists a function f on (R,M) such that
∫
R |f | dm < ∞

and such that f is essentially unbounded, i.e.

m{x ∈ I| f(x) ≥ n} > 0

for all intervals I and for all n ∈ N. [Hint: Consider F = gχ[−1,1] where

g(x) = |x| 12 for x 6= 0 and g(0) = 125. Next consider

f(x) =
∑
n≥1

1

2n
F (x− rn),

where rn is the n-th rational (in some enumeration of Q). Show that
‖F‖1 <∞ and hence show that ‖f‖1 <∞. Prove that f has the required
properties.]

(33) Suppose (X, F , µ) is a measure space and f is a function on (X, F) such
that f ≥ 0 almost everywhere. Suppose further that∫

X

f dµ = 0.

Show that f = 0 almost everywhere.
(34) Let f ∈ L1(R) be such that∫

I

f dm = 0

for all intervals I. Show that f = 0 almost everywhere.
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(35) Let (X, F , µ) be a measure space. Let f be a non-negative function on
(X, F) which is integrable over X. Show that given ε > 0, there exists a
δ > 0 such that for every measurable set A ⊂ X, with µ(A) < δ, we have∫

A

f dµ < ε.

(36) Recall that f : I −→ R is said to be absolutely continuous if given ε > 0
there is a δ > 0 such that

∑n
i=1 |f(x′i)−f(xi)| < ε for every finite collection

{(xi, x′i)} of non-overlapping intervals in I with
∑n
i=1 |x′i − xi| < δ. Show

that if f : I −→ R is an indefinite integral then it is absolutely continuous,
where by an indefinite integral we mean f(x) = f(a) +

∫
[a,x]

g dm for some

integrable function g on I = [a, b]. [Hint: Use Exercise 35.]
(37) Show that if f is absolutely continuous on I, then it is of bounded variation

(I a finite length interval).
(38) Let f be absolutely continuous on I. Show that f has a derivative a.e.

Show also that if f ′(x) = 0 a.e., then f is a constant.
(39) Let f be absolutely continuous on [a, b], a, b ∈ R. Show that f is an

indefinite integral. In fact show that f(x) = f(a) +
∫

[a, x]
f ′ dm, for all

x ∈ [a, b].
(40) (Feijer) Let f : R→ R be bounded and measurable and satisfying f(x+1) =

f(x) for all x ∈ R. Let fn : R → R be given by fn(x) = f(nx), n ∈ N.
Show that ∫

[a,b]

f dm→ (b− a)

∫
[0,1]

f dm.

(41) With notations as in Exercise 40, suppose there is a subsequence of {fn}
which converges pointwise. Show that f is a constant.

(42) This is an analogue of Exercise 46 of last year’s Analysis assignment. Let
(X, F , µ) be a measure space. Let 1 ≤ p ≤ ∞ and let q be such that
1/p + 1/q = 1 (so that q = 1 when p = ∞ and q = ∞ when p = 1. Note
that 1 ≤ q ≤ ∞).
(a) For f, g measurable prove Hölder’s inequality :

‖fg‖1 ≤ ‖f‖p‖g‖q.
Conclude that if f ∈ Lp(µ) and g ∈ Lq(µ) then fg ∈ L1(µ). For
p = 2 this gives the Cauchy-Schwarz inequality for the inner product
(actually Hilbert) space L2(µ).

(b) Prove Minkowski’s inequality, i.e.

‖f + g‖p = ‖f‖p + ‖g‖p
for any two measurable functions f and g. Conclude that Lp(µ) is a
vector space with obvious notion of addition and scalar multiplication
and that ‖·‖p defines a norm on Lp(µ). [Hint: Consider the function
x 7→ xp. Show that it is convex. Apply Jensen’s inequality] [Remark:
The assertion in this problem was not true for Lp(h) of last year’s
assignment. Our apologies.]

(43) Let (X, F , µ) be a measure space and let 1 ≤ p1 ≤ p2 ≤ ∞.
(a) If µ(X) <∞, show that Lp2(µ) ⊂ Lp1(µ).
(b) If µ(X) = ∞, show that there is in general no inclusion relationship

between Lp1(µ) and Lp2(µ). In other words, give an example to show
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that Lp1 \ Lp2(µ) could be non-empty and an example to show that
Lp2 \ Lp1 6= ∅.

(44) With above notations, if r is a number between p1 and p2, and p2 < ∞,
show that

Lp1(µ) ∩ Lp2(µ) ⊂ Lr(µ).

(45) Let fn → f in Lp(µ).
(a) Show there exists a subsequence {fnk

} of {fn} which converges point-
wise to f .

(b) Give an example to show that it is possible for {fn(x)} not to converge
at any point x ∈ X.

Fubini’s Theorem

The following exercises are meant to prove the Fubini Theorem. Exer-
cise 48 (and sometimes Exercise 25) are referred to as the Tonelli Theorem,
and Exercises 49 and 50 together form the Fubini Theorem. Sometimes the
collection of all these statements (Tonelli and Fubini) are clumped together
as the Fubini Theorem. In general, any statement asserting that the ”iter-
ated integrals” are equal and each equals the ”integral”, is called a Fubini
Theorem.

(46) Let (X,F , µ) and (Y,G, ν) be σ-finite measure spaces. Let Ω be the class
of all Q ∈ F × G such that
(a) The functions ϕ and ψ on X and Y respectively given by:

ϕ(x) = ν(Qx)

ψ(x) = µ(Qy)

are F and G measurable respectively.
(b)

∫
X
ϕdµ =

∫
Y
ψ dν.

Show that Ω has the following four properties
(a) Every measurable rectangle belongs to Ω.
(b) If Qi ↑ Q, Qi ∈ Ω, i ∈ N, then Q ∈ Ω. [Hint: Use MCT.]
(c) If {Qi} are a countable disjoint collection, Qi ∈ Ω, then ∪iQi ∈ Ω.
(d) If Qi ↓ Q, each Qi ⊂ A × B, A ∈ F , B ∈ G, µ(A) < ∞, ν(B) < ∞,

then Q ∈ Ω. [Hint: Use DCT.]
(47) Let the notations be as in Exercise 46. Since µ and ν are σ-finite, we can

write X = ∪n∈NXn and Y = ∪n∈NYn where the {Xn} are disjoint, as are
the {Yn}, and µ(Xn), ν(Yn) <∞ for all n. For Q ∈ F × G, let

Qm,n = Q ∩ (Xn × Ym) (m,n) ∈ N× N.

Let M be the class of all Q ∈ F × G such that Qm,n ∈ Ω for all choices of
m and n. Show that
(a) M is a monotone class. Hence conclude M = F × G.
(b) Ω = M.
(c) ∫

X

ν(Qx) dµ(x) =

∫
Y

µ(Qy) dν(y)

for every Q ∈ F × G.
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(d) Show that the map µ× ν : F × G → [0,∞] given by

µ× ν(Q) =

∫
X

ν(Qx) dµ(x)

(
=

∫
Y

µ(Qy) dν(y)

)
is a σ-finite measure on (X × Y,F × G). µ × ν is called the product
measure of µ and ν.

(48) Let notations be as in Exercise 47. Let f be a non-negative function on
(X × Y,F × G). Show that x 7→

∫
Y
fx dν and y 7→

∫
X
fy dµ are F and G

measurable respectively, and∫
X

(∫
Y

fx(y) dν(y)

)
dµ(x) =

∫
X×Y

f d (µ× ν)

=

∫
Y

(∫
X

fy(x) dµ(x)

)
dν(y).

[Hint: Use characteristic functions, simple functions, . . . .]
(49) With notations as in Exercise 48, let f be a function on (X × Y,F × G).

Show that if |f |x ∈ L1(ν) and
∫
X

(|f(x, y)|) dµ(x) <∞, then f ∈ L1(µ×ν).
[Hint: Use Exercise 48 on |f |].

(50) If f ∈ L1(µ×ν), then show fx ∈ L1(ν) for almost all x ∈ X and fy ∈ L1(µ)
for almost all y ∈ Y . Show also that the functions x 7→

∫
Y
fx dν and

y 7→
∫
X
fy dµ are F and G measurable respectively, and∫

X

(∫
Y

fx(y) dν(y)

)
dµ(x) =

∫
X×Y

f d (µ× ν)

=

∫
Y

(∫
X

fy(x) dµ(x)

)
dν(y).

[Hint: Break up f into f+ and f− and use Exercise 48.]
(51) Let X = Y = [0, 1], µ = ν = m, where, as usual m is the Lebesgue

measure. Let 0 ≤ δn ↓ 1. with δ1 = 0. Let gn be a real continous function
with Supp gn ⊂ (δn, δn+1), and such that

∫
[0,1]

gn dm = 1, n ∈ N. Set

f(x, y) =

∞∑
n=1

[gn(x)− gn+1(x)] gn(y).

Note that f is pointwise convergent. Show that the two iterated integrals
of f are not equal. Why is Fubini inapplicable ?

(52) Let X = Y = [0, 1], F =M (the Lebesgue σ-algebra), G = 2X , µ = m, and
ν = the counting measure on (Y, G). Consider the characteristic function
χ∆ of the diagonal ∆ = {(x, x)|x ∈ [0, 1]}. Show that the two iterated
integrals of χ∆ (with respect to µ and ν) are not equal. Why is Fubini
inapplicable ?

(53) Suppose (X, F , µ), (Y, G, ν) and (Z, H, λ) are three measure spaces. Show
(a) (F × G)×H = F × (G ×H) on X × Y × Z.
(b) Assume µ, ν, λ are σ-finite. Show that (µ× ν)×λ = µ×(ν × λ). Note

that this means we can talk about an arbitrary number of products of
σ-algebras and measures, without putting parenthesis.

(c) Let (Xi, Fi, µi), i = 1, . . . , n be n σ-finite measure spaces. As usual,

let (Xi, F̂i, µ̂i) denote the completion of (Xi, Fi, µi), i = 1, . . . , n.
For any set S contained in {1, 2, . . . , n}, let FS = G1× . . .×Gn where
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Gi = Fi if i 6∈ S and Gi = F̂i if i ∈ S. Similarly let µS be the
measure on FS given by µS = ν1 × . . . × νn, where νi = µi if i 6∈
S and νi = µ̂i if i ∈ S. Show that for subsets S, P of {1, . . . , n},
the completion of (

∏n
i=1Xi, FS , µS) is the same as the completion of

(
∏n
i=1Xi, FP , µP ).

Remarks: Let (X,F , µ) and (Y,G, µ) be complete σ-finite spaces. Let
(X × Y, (F × G)

∗
, (µ× ν)

∗
) be the completion of (X × Y, F × G, µ × ν).

Then one can show that all the conclusions of Exercises 48, 49 and 50 are
true, the only difference being as follows:
The G measurability of fx and the F measurability of fy can only be
asserted for almost all x ∈ X and almost all y ∈ Y respectively, and so
x 7→

∫
Y
fx dν can only be defined a.e.-µ. A similar statement holds for fy

and y 7→
∫
X
fY dµ.

Advanced Several Variables Calculus

Let (Rd,Md,md) be the completion of (Rd,
∏d
i=1M,

∏d
i=1m) whereM

is the Lebesgue σ-algebra on R and m is the Lebesgue measure on (R,M).
Here we are viewing Rd as the product of d copies of R. The σ-algebraMd

is called the d-dimensional Lebesgue σ-algebra and the measure md is called
the d-dimensional Lebesue measure. Note that in view of Exercise ex:prod,
the measure space (R,Md,md) has many other descriptions.

If the context is clear, we will drop the subscript d from Md and md.
(54) A half-open cube in Rd of side b is a set of the form {(x1, . . . , xd)| ai ≤

xi < ai + b}, where (a1, . . . , ad) ∈ Rd. The centre of this cube is defined to
be the point (a1 + b/2, . . . , ad + b/2). Show that any open set in Rd is a
disjoint, countable union of half open cubes.

(55) Let T : Rn → Rn be a linear transformation. Show thatm(T (C)) = |detT |,
where C is the unit cube in Rn. Conclude that m(T (B)) = |detT |m(B)
for every B ∈ B.

(56) Let Bd be the σ-algebra on Rd generated by open sets. Bd is called the
d-dimensional Borel σ-algebra. If the context is clear, we write B for B.
(a) Show that Bd = B × . . .× B, where the product is taken d–times.
(b) Show that Bd ⊂Md.
(c) Show that the completion of (Rd,Bd,md) is the Lebesgue measure

space.
(57) Show that the d-dimensional Lebesgue measure is translation invariant.
(58) For a vector x = (x1, . . . , xd) ∈ Rd, let ‖x‖∞ = max1≤i≤d|xi|. Let U be

an open subset of Rd, F : U → Rd a C1 function. Let xo and x1 be points
in U such that the entire line segment joining these two points is in U and
such that there is a constant C for which ‖F ′(x)‖ ≤ C holds for all points x
in the line segment joining xo and x1. Here ‖ ‖ denotes the operator norm.
Show that

‖F (x1)− F (xo)‖)∞ ≤ C‖x1 − xo‖∞.

(59) Let U be an open subset of Rd, and G : U → Rd a differentiable func-
tion. Let ε < 0 be given and suppose C is a closed cube in U such that
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‖G′(x)− Id‖ ≤ ε for all x ∈ C. Here Id is the identity linear transformation
on Rd. Show that

m∗ (G(C)) ≤ (1 + ε)dm(C)

where m∗ is the outer Lebesgue measure on Rd defined in a manner analo-
gous to its definition in the 1-dimensional case. [Hint: Let xo be the centre
of C, and b the length of any side of C. Apply Exercise 58 to G − Id.
Conclude that G(C) is contained in a cube of side (1 + ε) · b centred at at
G(xo).]

(60) Let U, V, T be as in the Change of Variables Theorem for functions on Rd.
Let a > 0, B a Borel set contained in U such that |JT | ≤ a on B. Show
that

m(TB) ≤ a ·m(B).

[Hint: First assume that B is open and its closure B̄ is compact and con-
tained in U . In this special case, show (using compactness) that (a) there

is an M > 0 such that ‖
(
T−1

)′
(Tx)‖ ≤ M for all x ∈ B̄, and (b) for

every ε > 0, there is a δ > 0 such that ‖T ′(x)− T ′(xo)‖ ≤ ε/M for
every x, xo in B̄. Next write B as the disjoint union of countable fam-
ily of half open cubes {C − i}. Choose each Ci so small that each has
edge length ≤ 2δ. Let C be one of these cubes, and xo its centre. De-
fine G : U → Rd by G = S ◦ T (x) where S is the linear transformation

(T ′(xo))
−1

. Show that ‖G′(xo)− Id‖ ≤ ε for all x ∈ C. Apply Exer-
cise 59 to conclude m(G(C)) ≤ (1 + ε)dm(C). ¿From this conclude that
m(T (C) ≤ a · (1 + ε)m(C) and hence m(T (B)) ≤ a · (1 + ε)m(B). Next
show that the assertion is true for arbitrary open sets B in U by using a
limiting process. ¿From here to Borel sets should be easy.]

Hilbert Spaces

Assume all spaces are over R, if you are not comfortable with complex
inner product spaces. Throughout H is a Hilbert space.

(61) (a) Show that for all x, y ∈ H

‖x+ y‖2 + ‖x− y‖2 = 2‖x‖2 + 2‖y‖2.

(b) If E is a non-empty convex subset of H show that

‖x− y‖2 ≤ 2‖x‖2 + 2‖y‖2 − 4 {d(E, 0)}2

for x, y ∈ E. Here d(E, 0) is the distance of E from 0.[Hint: Consider
the average of x and y.]

(c) If E is above and is closed then show that E has a unique element of
smallest norm.[Hint: Let zn ∈ E be such that ‖zn‖ −→ d(E, 0). Use
above inequality to show {zn} converges.]

(62) Let M be a closed subspace of H. Let

M⊥ = {x ∈ H | < x, y >= 0, y ∈M}

Show that M⊥ is a closed subspace of H.
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(63) Let M be a closed subspace of H. Show that there exists a unique pair of
linear mappings P,Q:

P : H →M

Q : H →M⊥

such that P +Q = I, the identity map, and such that
(a) P |M = IM , P |M⊥ = 0, Q|M = 0 and Q|M⊥ = IM⊥ .
(b) ‖x− Px‖ = d(x,M).
(c) ‖x‖2 = ‖Px‖2 + ‖Qx‖2.

The map P is called the orthogonal projection of H onto M . Clearly, then,
Q is the orthogonal projection of H onto M⊥. Note that the last property
ensures that P and Q are bounded. [Hint: For any x ∈ H, let Qx be the
unique element of smallest norm in M + x. Define Px = x−Qx.]

(64) (Riesz Representation for Hilbert Spaces) Let H −→ K be a continuous
linear functional on H (K = R or C, depending on whether H is a real or
a complex Hilbert space). Show that there is a unique yL ∈ H such that

Lx =< x, yL > (x ∈ H).

Show also that ‖L‖ = ‖yL‖. [Note that if H is a real Hilbert space this

establishes an isometric isomorphism H∗
∼−→ H, viz. L 7→ yL. In other

words, the dual of a real Hilbert space can be completely identified with
itself. The general philosophy of the various Riesz Representation Theorems
is to “find” a concrete avatar of the dual space of a given Banach Space.
The complex version of this theorem says that the association L 7→ yL is
conjugate linear, but it is a isometric onto map from H∗ to H.]

The Radon-Nikodym Derivative

Equalities involving the Radon-Nikodym derivative must be regarded as
true almost everywhere (with respect to a suitable measure, clear from the
context).

In what follows we will use a freer concept of a measurable function on
the measure space (X,F , µ), viz., f is said to be measurable with respect to
F if there is a set E ∈ F of µ-measure zero on which f is possible undefined,
and on X \ E is real-valued (or complex valued) and measurable. This is,
strictly speaking, not a generalisation of the older concept of a measurable
function, but is so if f is in Lp(µ) or LpC(µ).

Two measures µ and ν on (X, F) are said to be mutually singular (writ-
ten µ ⊥ ν) if there are disjoint sets A and B in F such that A∪B = X and
ν(A) = µ(B) = 0. We sometimes say that ν is singular with respect to µ.

In the case of signed or complex measures we say ν � µ if |ν| � |µ| and
ν ⊥ µ if |ν| ⊥ |µ|.

(65) Let µ, ν and λ be three measures on (X, F).
(a) Suppose dν/dµ and dµ/dλ exist. Show that dν/dλ exists and

dν

dλ
=
dν

dµ
· dµ
dλ
.
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(b) Suppose dν/dµ exists and is non-zero a.e.−[µ]. Then show that dµ/dν
exists and

dµ

dν
=

1

dν/dµ
.

(c) Suppose dµ/dλ and dν/dλ exist and dµ/dλ > 0 a.e.-[λ]. Show that
dν/dµ exists and

dν

dµ
=
dν/dλ

dµ/dλ
a.e.-[µ].

[Hint: For the first two parts use Exercise 30. Remember you cannot use
the Radon-Nikodym Theorem since we are not assuming σ-finiteness of any
of the measures involved.]

(66) Suppose µ and ν are finite measures on (X, F) and λ = µ + nu. Let
g = dν/dλ (which clearly exists since µ, ν are finite and µ� λ).
(a) Show that 0 ≤ g ≤ 1 a.e.− [λ].

(b) Show that 1− g = dµ
dλ .

(c) Show that if f ∈ L2(λ), then∫
X

f(1− g) dν =

∫
X

fg dµ.

(67) Let µ, ν, g etc., be as in Exercise 66, and assume without loss of generality
that 0 ≤ g ≤ 1. Let A = {g < 1}, B = {g = 1} so that A ∪ B = X and
A ∩B = ∅. Set

νa(E) = ν(A ∩ E), νs(E) = ν(B ∩ E) (E ∈ F).

Note that νa and νs are measures and ν = νa + νs.
(a) Show that µ(B) = 0, νs(E) = νs(B ∩ E), i.e. µ ⊥ νs.
(b) Show that there is a unique h ∈ L1(µ) such that

νa(E) =

∫
E

h dµ (E ∈ F).

[Hint: One way of doing the last part is to consider f = 1+g+ . . .+gn,
apply the last part of Exercise 66, and then let n ↑ ∞.]

(c) Show that if ν � µ, then ν(B) = 0 and hence νa = ν.
The decomposition ν = νa + νs is called the Lebesgue decomposition of ν
with respect to µ. The measure νs is called the singular part of ν (with
respect to µ) and νa is called the absolutely continuous part of ν (with
respect to µ).

(68) Show that the Lebesgue decomposition (see notes at the end of Exercise 67
is unique.

(69) Show that the Lebesgue decomposition and the Radon-Nikodym theorem
hold if ν is a complex measure and µ is σ-finite. In other words we can
write

ν = νa + νs

such that νs ⊥ µ, νa � µ and there exists a unique h ∈ L1(µ) such that
dνa = h dµ. In particular, if ν � µ, νs = 0 and dν/dµ exits. [Hint: Break
up ν into real and imaginary parts, and break up each of these into positive
and negative parts].

(70) Suppose µ is a measure and ν is a complex measure. Show that the following
are equivalent
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(a) ν � µ.
(b) To every ε > 0 there corresponds a δ > 0 such that if E ∈ F saistifes

µ(E) < δ, then |ν(E)| < ε.
(71) Let µ be a finite measure on (X, F) and f ∈ L1

C(µ). Suppose S ⊂ C is a
closed subset and the averages

AE(f) =
1

µ(E)

∫
E

f dµ

lie in S for every E ∈ F such that µ(E) > 0. Show that f(x) ∈ S for
almost all x ∈ X.

(72) Let µ be a complex measure. Show that there is a C-valued function h on
X (the ambient space of µ) such that |h| = 1 and such that dµ = h d|µ|.
[Hint: Use the Radon-Nikodym Theorem and Exercise 71.]

(73) Suppose µ is a measure on (X, F), g ∈ L1
C(µ). Let λ be the complex

measure on F given by

λ(E) =

∫
E

g dµ (E ∈ F).

Show that

|λ|(E) =

∫
E

|g| dµ.

[Remark: This is a generalisation of Exercise 35(b) of your last year’s as-
sigment.]

(74) Let µ be a σ-finite signed measure (and hence a real-valued complex mea-
sure) on (X, F). Show that there exist A,B ∈ F such that A ∪ B = X,
A ∩B = ∅ and

µ+(E) = µ(A ∩ E), µ−(E) = −µ(B ∩ E) (E ∈ F).

[Hint: First assume µ is bounded so that it is a complex measure. Let
h = dµ/d|µ|. Set A = {h = 1} and B = {h = −1}.] This decomposition
is called the Hahn decomposition, and is valid for any signed measure (not
necessarily σ-finite).

(75) Show that the decomposition µ = µ+−µ− is minimal in the following sense.
Let µ be a σ-finite signed measure and suppose µ = λ1 − λ2 where λ1 and
λ2 are measures. Show that λ1 ≥ µ+ and λ2 ≥ µ−.

1. Riesz Representation

The exercises in this section include those involving duals of Lp spaces.
(76) Suppose 1 ≤ p ≤ ∞ and q is the exponent conjugate to p. Suppose µ is a

σ-finite measure and g is a complex valued measurable function such that
fg ∈ L1

C(µ) for every f ∈ LpC(µ). Prove that g ∈ LqC(µ).
(77) Suppose X = {a, b}, and on (X, 2X) we define a measure µ given by

µ({a}) = 1 and µ({b}) = µ(X) = ∞. Show that L∞(µ) is not the dual of
L1(µ). Why does our Theorem on duals of Lp spaces fail here ?

(78) Suppose 1 < p < ∞, and suppose q is the exponent conjugate to p. Show
that the dual of LpC(µ) is LqC(µ) even if µ is not σ-finite.

(79) Let X be a compact metric space such that C(X) is reflexive (i.e. the
imbedding of C(X) into its double dual is surjective. Recall that the em-
bedding is an isometry). Show that X must be a finite set.
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