
NURTURE 1996-2000

ANALYSIS HOMEWORK

Instructions. Submit at least 20 problems by 1/4/98 and at least 20 more by
1/6/98. You can bring the remaining solutions with you for the contact programme.

Notations. The symbol I will be used to denote a closed and bounded interval
in the real line. Its lower limit will be denoted a and its upper limit b, so that
I = [a, b]. The interior of I will be denoted Io. In other words Io = (a, b). The
special interval [0, 1] will be written Io. The length of an interval I will be denoted
|I|. The space of continuous real valued functions on I will be denoted C(I). Real
numbers and complex numbers will be written (as usual) R and C respectively.

Basic Topology

(1) Let K be a compact subset of R and F a closed subset of R. Show that
there exists x1 ∈ K and x2 ∈ F such that

|x1 − x2| = inf
x′∈K,x′′∈F

{|x′ − x′′|}.

(2) Let E be a subset of R. Show that E contains a countable subset D such
that D is dense in E (i.e. the closure of D in E is E. Here we are thinking
of E as a metric space in its own right with metric inherited from R).

(3) Given 0 < α < 1, construct a closed, nowhere dense, perfect set Cα ⊂ Io
such that

Io \ Cα = ∪j≥1I
◦
j and

∑
|Ij | = α.

Here Ij , j ∈ N are intervals.
(4) Let H be a subset of R which is the intersection of a countable number of

open subsets of R. Show that if H is dense in R, then it is uncountable.

Sequences and Series

In the problems in this section discover and prove a relationship between

(5) lim sup(an + bn) and lim sup an + lim sup bn.
[Hint: Compare {an} and {bn} given by an = (−1)n+1 and bn = (−1)n.]

(6) lim inf(an − bn) and lim inf an − lim sup bn.
[Hint: Compare {an} and {bn} given by:

an =

{
−1 if n odd

0 otherwise

and

bn =

{
1 if n odd

2 otherwise].
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(7) lim sup(abnn ) and lim sup(an)lim inf bn .

Sequences and Series of Functions

(8) Let fn ∈ C(I), n ∈ N and let fn converge to f pointwise on I. Suppose
that for every Cauchy sequence {xn} in I we have

fn(xn) −→ f(limxn).

Show that fn −→ f uniformly on I.
(9) Let f ∈ C(Io). Define fn ∈ C(Io) by

fn(x) = f(xn) x ∈ I.

Show that {fn} is equicontinuous if and only if f is a constant. [Hint:
Arzela-Ascoli].

(10) A real-valued function f on Io is said to be Hölder continuous of order α if
there is a constant C such that |f(x)− f(y)| ≤ C|x− y|α. Define

||f ||α = max |f(x)|+ sup
|f(x)− f(y)|
|x− y|α

.

Show that for 0 < α ≤ 1, the set of functions with ||f ||α ≤ 1 is a compact
subset of C(Io). [Hint: Arzela-Ascoli].

(11) Consider

f(x) =

∞∑
n=1

1

1 + n2x
.

(a) For what values of x does the series converge absolutely ?
(b) On what intervals does it converge uniformly ?
(c) On what intervals does it fail to converge uniformly ?
(d) Is f continuous wherever the series converges ?
(e) Is f bounded ?

(12) (Helly’s selection theorem) Let fn : I → R be a sequence of non-decreasing
functions on I and let M be a non-negative real number such that

|fn(x)| ≤M.

Show that there exists a subsequence {fnk
} which converges pointwise on I

to a non-decreasing function f . Show that if f is continuous, then fnk
−→ f

uniformly on I.
(13) Let f be continuous periodic real-valued function on R with period 2π; that

is, f(x+ π) = f(x). Show that, given ε > 0, there is a finite series ϕ given
by

ϕ = a0 +

N∑
n=1

(an cosnx+ bn sinnx)

such that |ϕ(x) − f(x)| < ε for all x. [Hint: Note that periodic functions
of period 2π are really functions on the unit circle in the complex plane.
Apply Stone-Weierstrass (Thm. 7.32 of Rudin) to an appropriate algebra
of functions on the unit circle. After doing the problem, it might be worth
pondering over its implications to the theory of Fourier Series].
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(14) Let X and Y be compact metric spaces. Show that for each continuous
real valued function f on X × Y and each ε > 0, we can find continuous
real valued functions g1, . . . , gn on X and h1, . . . , hn on Y such that for
each (x, y) ∈ X × Y we have

|f(x, y)−
n∑
i+1

gi(x)hi(y)| < ε.

[Hint: Stone-Weierstrass.]

General

(15) Let E be a bounded subset of R and suppose every continuous real valued
function on E is uniformly continuous on E. Show that E is compact.

(16) Let (X, d) be a metric space and endow X × X with the metric D given
by the formula

D ((x1, x2), (x′1, x
′
2)) = d(x1, x

′
1) + d(x2, x

′
2).

Show that there is no continuous, one-to-one and onto function f : X×X →
R such that f−1 is also continuous. [Hint: Suppose such an f existed. Then
show
(a) X is path connected.
(b) For any point (x, y) ∈ X, show that X×X\{(x, y)} is path connected.
(c) R \ {0} is not path connected.

Deduce a contradiction.]

Functions of Several Variables

In this section, all vector spaces and linear transformations are assumed
to be over the real number R. A linear functional on Rn is a linear trans-
formation from Rn → R. Recall that the norm of a linear transformation
T is the supremum of Tx as x varies over the unit sphere (or equivalently,
the closed unit ball), and is denoted ||T || (see Rudin).

(17) Prove that for every linear functional A on Rn, there exists a unique element
yA ∈ Rn such that Ax = x ·yA for every x ∈ Rn. Prove also that ||A|| = yA.
[Remark: Such theorems are called representation theorems. The above
can be considered as a special case of the Riesz Representation Theorem for
Hilbert spaces. There are other Riesz Representation theorems for other
spaces – and they all identify the dual space of a well-known Banach space
with another concrete well known Banach space.]

(18) Suppose f : Rn × Rn → R is given by

f(x1, . . . , xn; y1, . . . , yn) = x1y1 + . . .+ xnyn.

(a) Is f differentiable at every point of Rn × Rn ?
(b) Write the matrix form of f ′ at the points where f ′ exists.

(19) Let f : R2 → R be defined by

f(x, y) =

{
(x2 + y2) sin 1√

x2+y2
(x, y) 6= 0

0 (x, y) = 0

(a) Show that f is differentiable at (0, 0).
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(b) Is the derivative continuous ?
(20) (Euler’s equation) Suppose f : Rn → R is a differentiable function satisfying

f(tx) = tmf(x) (*)

for all t ∈ R and all x ∈ Rn. Show that
n∑
i=1

xiDif(x) = mf(x).

[Remark: Functions satisfying the identity (∗) for all x are called homoge-
nous of degree m.]

(21) Consider f : R→ R given by

f(x) =

{
x
2 + x2 sin 1

x x 6= 0

0 x = 0.

Can you find a local inverse of f in a neighbourhood of 0 ? [Hint: Read
the hypotheses of the Inverse Function Theorem. Does f satisfy them ?]

(22) Let f : R → R3 be differentiable and suppose |f(t)| = 1 for every t. Show
that

f ′(t) · f(t) = 0.

[Remark: This is a way of saying that if a particle is moving on the unit
sphere in 3-space, then its velocity vector is tangential to the sphere.]

(23) Let f = (f1, f2) be the mapping of R2 into R2 given by

f1(x, y) = ex cos y, f2(x, y) = ex sin y.

(a) What is the range of f ?
(b) Show that the Jacobian of f is not zero at any point of R2.
(c) Conclude that f has local inverses. Is f one-to-one on R2 ?
(d) Find an explicit formula for the differentiable inverse g of f in a neigh-

bourhood of b = (1/2,
√

3/2) ∈ R2 with g(b) = (0, π/3). (Note that
such local inverses are guaranteed by part (c)). You are also required
to produce such a neighbourhood (on which the inverse g exists).

Notations. Let E be an open subset of Rn. Define the classes C(k)(E) of
functions as follows: C(1)(E) is the class of functions whose partial deriva-
tives exist and are continuous. By recursion, define C(k)(E) to be the class
of functions f such that the partial derivatives D1f, . . . , Dnf exist and be-
long to C(k−1)(E). If f ∈ C(k)(E), denote DikDik−1

. . . Di1f by Di1...ikf .

(24) Let f : R2 → R be in C(2)(R2). For each x ∈ R define gx : R → R by
gx(y) = f(x, y). Suppose that for each x, the equation

g′x(y) = 0

has a unique solution y = c(x). If D2,2f(x, y) 6= 0 for all (x, y), show that
c is differentiable and

c′(x) = −D2,1f(x, c(x))

D2,2f(x, c(x))
.
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(25) Let f ∈ C(k)(E). Show that the k-th order derivative Di1...ikf is unchanged
if the subscripts i1, . . . , ik are permuted.

Functions of Bounded Variation

There is a natural generalisation of the notion of monotone functions on
an interval I, viz., the notion of functions of bounded variation.

Definition 0.1. Let ∆ : a = x0 < x1 < . . . < xn = b be a partition of
I = [a, b]. For a function f : I → R define

V (f, ∆) =

n∑
i=1

|f(xi)− f(xi−1)|

V (f, I) = sup
∆
V (f, ∆).

The function f is said to be of bounded variation on I if V (f, I) <∞. We
denote the space of functions of bounded variation on I by BV (I).

(26) Show that BV (I) is a vector space over R with the obvious notion of addi-
tion and scalar multiplication.

(27) Let J1 = [a, b] and J2 = [b, c] and J = [a, c]. Show that V (f, J) =
V (f, J1) + V (f, J2) for every function f : J → R.

(28) Let f ∈ BV (I). Show that f can be written as the difference of two
monotone functions. Conclude that the set of discontinuities of f is at
most countable.

(29) Let fn −→ f pointwise on I. Show that

V (f, I) ≤ lim inf V (fn, I).

(30) Show that there exist f, g ∈ BV (Io) with g(Io) ⊂ Io such that f◦g is not
in BV (Io).

(31) Prove the following :-
A function f lies in BV (I) if and only if there exists a non-decreasing
function ϕ : I → R such that

|f(x′′)− f(x′)| ≤ ϕ(x′′)− ϕ(x′)

for every pair of elements x′, x′′ ∈ I with x′ ≤ x′′.
(32) If f ∈ BV (I), then show that the function m : I → R given by

m(x) = V (f, [a, x])

is continuous if and only if f is continuous.

The Riemann-Stieltjes Integral

Notation. Let X be any set and E ⊂ X a subset. Then χE will denote
the real valued function on E given by χE(x) = 1 if x ∈ E and χE(x) = 0
if x 6∈ E. You are expected to have read the relevant chapter of Rudin.

In other words you should be familiar with the concept of
∫ b
a
fdα for α a

monotone function on I. In the following exercises we develop a slightly
more general integral, and deduce its first properties.
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(33) Mimic the definition if Riemann-Stieltjes integral over I with respect to a
monotone function and come up with a definition of a Riemann-Stieltjes
integral with respect to a function of bounded variation on I.

(34) Let f ∈ C(I), g ∈ BV (I) and define

F (x) =

∫ x

a

fdg a ≤ x ≤ b.

Show that F need not be continuous. If g is continuous at x0, show that
so is F .

(35) Let f be a real valued function on I.
(a) If f is monotone on I, show that

V (f, I) = |f(b)− f(a)|.
(b) If f is differentiable1 on I and its derivative f ′ is continuous on I, then

V (f, I) =

∫
I

|f ′(x)|dx

(36) Let f : I → R, g ∈ BV (I) be such that

lim sup
x<x0

|f(x)− f(x0)| > 0

and
lim sup
x<x0

|g(x)− g(x0)| > 0.

Show that
∫
I
fdg does not exist. [Remark: The same proof will also show

that
∫
I
fdg does not exist whenever both

lim sup
x>x0

|f(x)− f(x0)| > 0

lim sup
x>x0

|g(x)− g(x0)| > 0

for some x0 ∈ I.]
(37) Let f : I → R be such that

∫
I
fdg exists for all g ∈ BV (I). Show that f is

continuous. [Hint: Use Problem 36.]
(38) Suppose f ∈ C(I) and g ∈ BV (I). Show that

|
∫
I

fdg| ≤ ||f ||∞V (g, I).

[Remark: The existence of
∫
I
fdg is part of the assertion. The symbol

||f ||∞ denotes the supremum of |f | on I.]
(39) Show that if fn ∈ C(I) and fn −→ f uniformly on I, then

lim
n→∞

∫
I

fndg =

∫
I

fdg.

(40) Consider the function on [0, 1] given by

fn(x) =


4n2x 0 ≤ x ≤ 1

2n

4n− 4n2x 1
2n ≤ x ≤

1
n

0 x ≥ 1
n .

1By this we mean that the right derivative of f at a exists, the left derivative of f at b exists

and that f is differentiable on Io. The derivative of f thus makes sense on all of I, even though
I is a closed interval
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Note that fn is continuous. Is the statement

lim
n→∞

∫ 1

0

fn(x)dx =

∫ 1

0

lim
n→∞

fn(x)dx

true ? [Hint: It may be helpful to graph fn.]
(41) Let f ∈ C(I) and gn ∈ BV (I) for n ∈ N. Suppose

(a) gn −→ g pointwise on I.
(b) There exists K <∞ such that V (gn, I) ≤ K for every n ∈ N.

Show that V (g, I) ≤ K and that
∫
I
fdgn −→

∫
I
fdg.

(42) Let g ∈ BV (I) and assume that g is continuous at x0 ∈ I. Show that∫
I

χ{x0}dg = 0.

(43) Let f ∈ C(I) and suppose∫
I

|f(x)|dx = 0.

Show that f ≡ 0 on I.
(44) Let g : [−1, 1]→ R. Let I = [−1, 1].

(a) If g = χ(0, 1], show that
∫
I
fdg exists if and only if f is continuous

from the right at 0. In this case show that∫
I

fdg = f(0).

(b) State and prove a similar result for g = χ[0,1].

(c) If g = 1
2χ{0}+χ(0,1], show that

∫
I
fdg exists if and only if f is contin-

uous at 0. In this case what is
∫
I
fdg ?

(45) This and the next problem develop the rudiments of Lp theory.
(a) Let ϕ : R+ → R+ be a strictly increasing continuous function, and let

a, b > 0. Show that

ab ≤
∫ a

0

ϕ(x)dx+

∫ b

0

ϕ−1(y)dy.

[Hint and Remark: Draw a picture and see what you get. This in-
equality is called Young’s inequality.]

(b) Let p and q be positive real numbers such that

1

p
+

1

q
= 1.

Note that this automatically forces the inequalities 1 < p < ∞ and
1 < q < ∞. Use Young’s inequality for an appropriate ϕ to conclude
that for a ≥ 0, b ≥ 0,

ab ≤ ap

p
+
bq

q
.

(46) For an increasing function h on I and p > 0, let Lp(h) denote the class of
functions f on I such that

∫
I
|f |pdh <∞. Let p, q be as in Problem 45 (i.e.

1/p+ 1/q = 1 and p, q > 0).



8 NURTURE 1996-2000 ANALYSIS HOMEWORK

(a) For f ∈ Lp(h), g ∈ Lq(h), show that
∫
I
fgdh exists and∣∣∣∣∫

I

fgdh

∣∣∣∣ ≤ {∫
I

|f |pdh
} 1

p
{∫

I

|g|qdh
} 1

q

[Remark: This is called Hölder’s inequality. For p = q = 2,it is called
the Cauchy-Schwarz inequality].

(b) For 1 ≤ p < ∞, show that Lp(h) is a vector space with the obvious
notion of addition and scalar multiplication.

(c) For f ∈ Lp(h) (1 ≤ p <∞), define

||f ||p =

{∫
I

|f |pdh
} 1

p

Show that d(f, g) = ||f − g||p defines a metric on Lp(h). Is Lp(h),
with this metric, complete ?
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