
LECTURES 23 AND 24

Dates of Lectures: April 5 and 7, 2022

We fix a ring R throughout these lectures. All modules appearing are R-modules,
unless otherwise specified.

The symbol � is for flagging a cautionary comment or a tricky argument. It
occurs in the margins and is Knuth’s version of Bourbaki’s “dangerous bend sym-
bol”.

1. The Horseshoe Lemma

1.1. Injective Resolutions. Let M ∈ ModR. Embed M into an injective module
E0. Let Z1 = E0/M . Embed Z1 into an injective module E1. Then we have
an exact sequence 0 → M → E0 → E1. Suppose we have an exact sequence
0 → E0 → E1 → · · · → En with E1, . . . , E

n injective modules. Let Zn+1 be the
cokernel of En−1 → En, and embed Zn+1 into an injective module En+1. Then
clearly 0→M → E0 → · · · → En+1. By induction we see that we have a resolution
of M by injective modules,

0 −→M −→ E0 −→ . . . −→ En −→ . . .

Lemma 1.1.1. Let

0→ A −→ B −→ C → 0

be an exact sequence in ModR, and A → E•
A and C → E•

C injective resolutions in
ModR. Then there exists an injective resolution B → E•

B and an exact sequence of
complexes

(†) 0→ E•
A −→ E•

B −→ E•
C → 0.

Proof. Write ∂pA and ∂pC for the pth-coboundary maps in E•
A and E•

C . Since E•
A

and E•
C are injective complexes, if E•

B exists as in the assertion, then necessarily
EpB is the direct sum EpA ⊕ E

p
C . Therefore set

EpB = EpA ⊕ E
p
C (p ∈ N).

We have to find maps ∂pB : EpB → Ep+1
B such that the resulting complex E•

B resolves
B and fits into the sequence (†) making it exact. At each level p ∈ N we have a
split exact sequence

0→ EpA
[ 1
0
]

−−→ EpB
[0 1]−−−→ EpC → 0.

Since E0
A is an injective object and A is a subobject of B, the map A → E0

A

extends (in perhaps many ways) to B giving us a map ϕ : B → E0
A. Let ψ : B → E0

C

be the composite B → C → E0
C . It is clear that the following diagram with exact
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rows commutes:

0 // E0
A

[ 1
0
]
// E0
A ⊕ E0

C

[ 0 1 ] // E0
C

// 0

0 // A //

OO

B //

[ϕψ ]
OO

C //

OO

0

It is easy to check that the middle vertical arrow is injective. Thus we have an
exact sequence 0 → B → E0

B . Let A0 = cokerA→ E0
A, B0 = cokerB → E0

B , and
C0 = cokerC → E0

C . Then we have a short exact sequence (use the snake lemma
on the above commutative diagram with exact rows)

0→ A0 −→ B0 −→ C0 → 0.

Repeating the argument we gave earlier, since E1
A is an injective object, we have a

map ϕ0 : B0 → E1
A extending the natural map A0 → E1

A and a map ψ0 : B0 → E1
C

which is the composite B0 → C0 → E1
C . Repeating earlier arguments one notes

that

B0

[
ϕ0

ψ0

]
−−−−→ E1

B

is injective and that the diagram below, whose rows are exact, commutes.

0 // E1
A

[ 1
0
]
// E1
A ⊕ E1

C

[ 0 1 ] // E0
C

// 0

0 // A0 //

OO

B0 //

[
ϕ0

ψ0

] OO
C0 //

OO

0

Set ∂0B : E0
B → E1

B to be the composite

E0
C −−→→ B0

[
ϕ0

ψ0

]
−−−−→ E1

B .

Then 0 → B → E0
B → E1

B is exact. The process can be repeated ad infinitum.
For example, set A1, B1, C1 to be the cokernels of A0 → E1

A, B0 → E1
B , and

C0 → E1
C respectively. Then A1 ↪→ E2

A, C1 ↪→ E2
C and we can find appropriate

ϕ1 : B1 → E2
A and ψ1 : B1 → E2

C and set ∂1B to be the composite of E1
B � B1

followed by
[
ϕ1

ψ1

]
: B1 → E2

B . One checks that H1(0→ E0
B → E1

B → E2
B → 0) = 0.

A standard induction argument then gives the result. �

2. Derived Functors

2.1. Injective resolutions. Recall that K+(R) is the subcategory of the homo-
topy category K(R) whose objects are bounded below complexes. The following
lemma show that when one further restricts the the subcategory of bounded below
injective complexes, quasi-isomorphisms become isomorphisms. In fancy language
this means that the full subcategory of bounded below injective complexes in K(R)
is equivalent to the “derived category” D+(R) of bounded below complexes, a very
useful theorem in higher homological algebra.

Lemma 2.1.1. Let A• be a bounded below complex, and ϕ : A• → E• and ψ : A• →
I• be two injective resolutions (i.e. quasi-isomorphisms, with E• and I• complexes
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of injective objects) in K(R) with E• and I• bounded below. Then there is unique
isomorphism α : E• → I• in K(R) such that α ◦ϕ = ψ.

Proof. This is an immediate consequence of Proposition 2.3.3 of Lectures 21 and
22. �

2.2. Additive and half-exact functors. Let S be a second ring. A covariant
functor F : ModR → ModS is said to be an additive functor if the natural map
HomR(M, N) → HomS(F (M), F (N)) is an abelian group homomorphism for ev-
ery M,N ∈ ModR. If F is contravariant, then we require that the natural map
HomR(M,N) → HomS(F (N), F (M)) is a homomorphism of abelian groups for
every pair of R-modules M and N . One consequence is that an additive functor
(co or contra) must respect direct sums, i.e. F (M ⊕N) = F (M)⊕ F (N). Here is
a quick proof (for the covariant case). Let i : M →M ⊕N and j : N →M ⊕N be
the canonical inclusions. In other words, i = (1, 0) and j = (0, 1).1 Let πM : M ⊕N
and πN : M ⊕N → N be the canonical projections, i.e. πM = [1 0] and πN = [0 1].
Here, as aways, 1, or when I feel more expansive, 1, is a shorthand for the appropri-
ate identity map. Since 1F (M) = F (1M ), we see that F (πM ) ◦F (i) = 1F (M). This
means F (i) is injective and F (πM ) is surjective. By symmetry, F (j) is injective
and F (πN ) is surjective. Check that (F (πM ), F (πN ) : F (M ⊕N)→ F (M)⊕F (N)
is an isomorphism. In fact its inverse is the map [F (i) F (j)].

A covariant functor F : ModR → ModS is said to be left exact if it is additive and
0→ F (M)→ F (N)→ F (T ) is exact whenever 0→M → N → T → 0 is an exact
sequence. Note that we are not demanding that F (M)→ F (T ) is surjective, even
though M → T is. Suppose F is covariant and left exact and 0→ A→ B → C is an
exact sequence. If I is the image of B in C and P the cokernel of B → C, then we
have exact sequences 0 → A → B → I → 0 and 0 → I → C → P → 0. This gives
us exact sequences 0→ F (A)→ F (B)→ F (I) and 0→ F (I)→ F (C)→ F (P ). It
follows that 0 → F (A) → F (B) → F (C) is exact. A little thought shows that we
have proved that F is left exact if and only if 0→ F (M)→ F (N)→ F (T ) is exact
whenever 0→M → N → T is exact.

A contravariant functor from ModR to ModS is said to be left exact if it is
additive and 0→ F (T )→ F (N)→ F (M) is exact whenever 0→M → N → T → 0
is exact. As in the covariant case, it is enough to check that 0→ F (T )→ F (N)→
F (M) is exact whenever 0→M → N → T is exact.

The definitions of covariant and contravariant right exact functors is left to you.
As always, these matters are best done in the world of abelian categories. Then one
would say that a functor is right exact if the corresponding functor on the opposite
categories is left exact.

Functors which are right exact or left exact are called half exact. A functor which
is both right exact and left exact is called an exact functor.

2.3. Derived functors. Let F : ModR → ModS be left exact and covariant. Let
M ∈ ModR and M → E• an injective resolution of M . If M → I• is a second
injective resolution, then we know that in the homotopy category K(R) we have

1Recall that according to our conventions, (1, 0) = [ 10 ] and (0, 1) = [ 01 ]. In particular (a, b) 6=
[a b], each side being the transpose of the other.
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an isomorphism θ : E• −→∼ I• such that

(2.3.1)

E•

θ ˜

��

M

=={{{{{{{{

!!C
CC

CC
CC

C

I•

commutes. It is easy to see that an additive functor preserves homotopies. This
means F (θ) : F (E•)→ F (I•) is well defined and is an isomorphism in K(S).

The above discussion shows that up to canonical isomorphisms, the S-modules
Hi(F (E•)), i ≥ 0, do not depend upon the choice of the injective resolution E• of
M . Set

(2.3.2) RiF (M) := Hi(F (E•)), i ≥ 0.

Note that by the left exactness of F we have

(2.3.3) R0F (M) = F (M).

The RiF are functors on ModR. Here is a brief sketch of the argument. Suppose
f : M → N is an R-map. Fix injective resolutions M → E•

M and N → E•
N . Accord-

ing to Proposition 2.3.3 of Lectures 21 and 22 we have a unique map ϕ : E•
M → E•

N

in K(R) such that the following diagram commutes in K(R).

(2.3.4)

M

f

��

// E•
M

ϕ

��
N // E•

N

We therefore get S-maps

(2.3.5) Ri(f) : RiF (M) −→ Ri(N)

for i ≥ 0, with Ri(f) := Hi(F (ϕ)). It is easy to see that Ri(f) are additive functors.
Note that under the identification (2.3.3), R0(f) = f . Thus, at the level of functors,
one has

(2.3.6) R0F = F.

The functor RiF is called the ith right derived functor of F . It can be defined
for any additive functor F , not necessarily only for left exact functors. However,
in that case, we no longer have the identification (2.3.6). It is sometimes useful to
have this more general definition.

Next, if F is contravariant and left exact, one sets

RiF (M) = Hi(F (P•))

for i ≥ 0, where P• → M is a projective resolution of M . These are well-defined,
are additive functors, and are such that R0F = F . Once again, RiF are called
the ith right derived functors of F . One can redo the proofs, or simply note that
projectives are injectives in the opposite category, and that we have a covariant left
exact functor ModR

◦ → ModS induced by F , where ModR
◦

is the opposite category
of ModR. Of course, one has to have developed the basics of abelian categories,
which we haven’t.
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For right exact functors F : ModR → ModS we have left derived functors LiF ,
i ≥ 0, with L0F = F . For F covariant, this is defined at the level of objects by the
formula

LiF (M) = Hi(F (P•)), i ≥ 0,

where P• → M is a projective resolution of F . The proofs are replicas of the left
exact situation. Or, . . . chant the “opposite category” mantra. If F is contravariant,
one must use injective resolutions of M . Once again, the requirement that F be
right exact is not really necessary, but if it is dropped (and it sometimes is), then
we no longer have L0F = F .

2.3.7. One can make a more sophisticated statement. Suppose ν : F → G is a
natural transformation of left exact functors. Applying F and G to the diagram
(2.3.4) and then relating the two commutative squares F ((2.3.4)) and G((2.3.4))via
ν, we see that we have a natural transformation of functors RiF → RiG.

2.3.8. The following statement is made for left exact covariant functors. As an
exercise, write out what the correct statement should be in the remaining three
cases of half exact functors.

Theorem 2.3.9. Let F : ModR → ModS be a covariant left exact functor and

0 −→M −→ N −→ T −→ 0

a short exact sequence of R-modules. Then we have a long exact sequence of S-
modules,

0 −→ F (M) −→ F (N) −→ F (T )
δ−−→ R1F (M) −→ R1F (N) −→ . . .

. . . −→ Rn−1F (T )
δ−−→ RnF (M) −→ RnF (N) −→ Rn(T )

δ−−→ . . .

where all unlabelled maps arise from the functoriality of RiF .

Proof. Let M → E•
M , T → E•

T . By the Horseshoe Lemma Lemma ??, we have an
injective resolution N → E•

N which fits into a short exact sequence of complexes as
below:

0 −→ E•
M −→ E•

N −→ E•
T −→ 0

The above short exact sequence of complexes is semi-split, i.e. for each n, the
corresponding sequence 0→ EnM → EnN → En + T → 0 is split. This is so because
EnM is injective. Next, since F is additive, the discussion in the first paragraph
of §2.2 shows that 0 → F (EnM ) → F (EnM ) → F (EnT ) → 0 is also split exact. In
particular, we have a short exact sequence of complexes

0 −→ F (E•
M ) −→ F (E•

N ) −→ F (E•
T ) −→ 0

The assertion of the theorem now follows. �

2.3.10. The above Theorem says that {RiF}i≥0 is a delta functor (or a δ-functor),
the definition of which is obvious from the statement of the theorem. See §1.5 (and
see especially the remark in 1.5.7 of loc.cit.) over here for an alternate proof using
mapping cones.

3. Ext and Tor

In this section we define the two most important derived functors in commutative
algebra.
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3.1. The functor ExtiR(−,?). There are two equivalent definitions for ExtiR(M,N),
for M,N ∈ ModR and i ≥ 0. For clarity, we will (temporarily) call one of them
ExtiR(M,N) and the other extiR(M,N), and then show that they agree (up to
canonical isomorphism, of course).

Recall that if M and N are R-modules, then HomR(M, ?) : ModR → ModR is a
covariant left exact functor and HomR(−, N) : ModR → ModR is a contravariant
left exact functor.

Definition 3.1.1. Let M,N ∈ ModR. For i ≥ 0, ExtiR(M, ?) is the ith right
derived functor of HomR(M, ?) and exti(−, N) is the ith right derived functor of
HomR(−, N).

From the remark in 2.3.7, we see that ExtiR(−, ?) and extiR(−, ?) are bi-functors.

Theorem 3.1.2. Let M and N be R-modules. For each i ≥ 0, we have a bifunc-
torial isomorphism

ExtiR(M, N) −→∼ extiR(M, N).

Proof. We will skip the boring and routine bifunctoriality part of the statement
and instead concentrate on producing the isomorphism.

Let P• → M be a projective resolution of M and N → E• an injective res-
olution of N . Consider the double complex A•• = HomR(P•, E

•), where Aij =
HomR(Pi, E

j). Since Ej is injective, therefore HomR(−, Ej) is exact and hence
HomR(P•, E

j) is a resolution of HomR(M, Ej). In other words, for each j, the
complex

0 −→ HomR(M, Ej) −→ A0,j −→ A1,j −→ . . . −→ Ai,j −→ Ai+1,j −→ . . .

is exact. We can regard HomR(M,E•) as a double complex Z•• concentrated in
the 0th column. And we have a map of double complexes ϕ : Z•• → A••. Applying
Theorem 1.5.5 of Lectures 21 and 22 we see that the induced map

Tot(ϕ) : HomR(M, E•) −→ Tot•(A••)

is a quasi-isomorphism.
In the same way, for each i, we have an exact sequence

0 −→ HomR(Pi, N) −→ Ai,0 −→ Ai,1 −→ . . . Ai,j −→ Ai,j+1 −→ . . .

is exact, and this time taking Z•• to be the double complex concentrated in the 0th

row given by HomR(P•, N), and letting ψ : Z•• → A•• be the resulting map, we
see, by again applying Theorem 1.5.5 of loc.cit., that we have a quasi-isomorphism

Tot(ψ) : HomR(P•, N) −→ Tot•A••.

It follows that for i ≥ 0, we have an isomorphism

(#) ExtiR(M, N) −→∼ extiR(M, N)
6
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such that the following diagram commutes

ExtiR(M, N)

˜

(#)

��

Hi(HomR(M, E•))˜

Tot(ϕ)

��
Hi(Tot•(A••))

extiR(M,N) Hi(HomR(P•, N))

˜

Tot(ψ)

OO

This completes the proof. �

3.1.3. The symbol extiR(M,N) was temporary. In view of the above result, we will

use the symbol ExtiR(M,N) for this functor too.

3.2. The functor TorRi (−, ?). Let N ∈ ModR. We know that − ⊗R N is right

exact. It is in general not exact. For example, the sequence 0→ Z/2Z
0−→ Z/2Z

1−→
Z/2Z→ 0 is not exact, and this sequence is obtained by applying −⊗Z (Z/2Z) to

the short exact sequence 0→ Z
2−→ Z→ Z/Z→ 0.

Lemma 3.2.1. Let P be a projective module. Then −⊗R P is an exact functor.

Proof. This is obvious if P is a free module. Since projective modules are direct
summands of free modules, the result follows. �

Definition 3.2.2. Let N ∈ ModR and i a non-negative integer. The functor
TorRi (−, N) : ModR → ModR is the ith left exact functor of −⊗R N .

Theorem 3.2.3. Let M and N be R-modules. Then for every i ≥ 0, TorRi (M, N) =

TorRi (N, M).

Proof. Let P• →M and Q• → N be projective resolutions and let A•• = P•⊗AQ•.
By Lemma 3.2.1, each row P• ⊗R Qj is a resolution of M ⊗R Qj , and each column
Pi ⊗R Q• is a resolution of Pi ⊗R N . The rest of the proof is the same as the one
given for Theorem 3.1.2. We need the observation made in 1.5.6 of Lectures 21 and
22. �

4. Derived functors through acyclic objects

4.1. Acyclic objects. . Let F : ModR → ModS be an additive functor and M
an R-module. If F is left exact (respectively right exact), then M is said to be
F -acyclic if RiF (M) = 0 (respectively LiF (M) = 0) for i ≥ 1. In the definition,
we are not specifying the variance of F . It could be covariant or contravariant.

The following result is stated for covariant half exact functors. It is a simple
exercise to get the correct statements for contravariant half exact functors.

Lemma 4.1.1. Let F : ModR → ModS be an additive covariant functor, and sup-
pose

(∗) 0 −→M −→ N −→ T −→ 0

is an exact sequence of R-modules.

(a) Let F be left exact.
7
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(i) If M is F -acyclic then

0 −→ F (M) −→ F (N) −→ F (T ) −→ 0

is exact.
(ii) If M and N are F -acyclic then T is also F -acyclic.

(b) Let F be right exact.
(i) If T is F -acyclic then

0 −→ F (M) −→ F (N) −→ F (T ) −→ 0

is exact.
(ii) If N and T are F -acyclic then M is also F -acyclic.

Proof. We will only prove (a). The proof of (b) is the same mutatis mutandis. In
fact these statements are valid for half exact functors between abelian categories (as
usual we will not use elements in our proofs), and so one can invoke the “opposite
category” mantra.

Statement (i) of (a) is obvious by Theorem 2.3.9 applied to (∗), and the fact that
M is acyclic, so that R1F (M) = 0. For part (ii) of (a), we have, the exact sequence

RiF (N) −→ RiF (T ) −→ Ri+1F (M).

If i ≥ 1, the two ends of the above exact sequence vanish, forcing the middle term
to also vanish. �

4.1.2. In the same way, if F is half exact and M and T are F -acyclic, then so is
N . However, if F is left exact and N and T areF - acyclic, we cannot assert that M
is F -acyclic. What is true then is that Ri(M) = 0 for i ≥ 2. Similarly, if F is right
exact and M and N are F -acyclic, then we cannot assert that T is also F -acyclic.
Without additional information, we can only assert that Li(T ) = 0 for i ≥ 2.

As usual, the following statement is made for covariant functors. The analogous
statement for contravariant functors is proved the same way. The formulation of
that statement and its proof is left to you.

Lemma 4.1.3. Let F be half exact covariant and C• an F -acyclic exact complex.2

(a) If F is left exact and C• is bounded below, then F (C•) is exact.
(b) If F is right exact and C• is bounded above, then F (C•) is exact.

Proof. We will only prove (a), since (a) and (b) are disguised forms of each other.
Since C• is bounded below, by translating C• if necessary, we assume without loss
of generality that Cn = 0 for n < 0. Let Zi = Zi(C•) for i ∈ Z. Then Zi = 0
for i ≤ 0, whence Z0 is F -acyclic. Suppose Zi is F -acyclic. Since C• is exact, the
sequence 0→ Zi → Ci → Zi+1 → 0 is also exact. By (a)(ii) of Lemma 4.1.1, Zi+1

is also F -acyclic. By induction we see that Zi is F -acyclic for all i ≥ 0 (and Zi is
acyclic for i < 0 since Zi = 0 for such i). By (i) of part (a) of Lemma 4.1.1 we see
that

0 −→ F (Zi) −→ F (Ci) −→ F (Zi+1) −→ 0

is exact for all i ∈ Z (trivially so, when i is negative). Now the map F (Ci) →
F (Ci+1) factors as the composite F (Ci) → F (Zi+1) → F (Ci+1) (since F is a
functor). The above exact sequence shows that F (Ci)→ F (Zi+1) is surjective, and
the left exactness of F shows that F (Zi+1)→ F (Ci+1) is injective. Thus F (Zi+1)
is the image of F (Ci) → F (Ci+1). On the other hand, by the left exactness of F ,

2C• being F -acyclic means each Cn is F -acyclic.
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it is also the kernel of F (Ci+1)→ F (Ci+2). It follows that F (C•) is exact at i+ 1.
Since i ∈ Z is arbitrary, we are done. �

The following lemma has an obvious version for contravariant functors, and as
usual you are expected to formulate that. The proofs are identical mutatis mutandis
in the covariant and contravariant cases.

Lemma 4.1.4. Let F be a contravariant half exact functor and ϕ : A• → B• a
quasi-isomorphism between F -acyclic complexes.

(a) Let F be left exact, and A• and B• bounded below. Then F (ϕ) : F (A•) →
F (B•) is a quasi-isomorphism.

(b) Let F be right exact, and A• and B• bounded above. Then F (ϕ) : F (A•) →
F (B•) is a quasi-isomorphism.

Proof. As usual, we only prove (a), since the proof of (b) is identical, mutatis
mutandis. The mapping cone C•

ϕ of ϕ is bounded below, exact, and made up of
F -acyclic modules. By Lemma 4.1.3, F (C•

ϕ) is exact. Since F is additive, it is
clear that F (C•

ϕ) = C•
F (ϕ), the mapping cone of F (ϕ). It follows that F (ϕ) is a

quasi-isomorphism. �
The following theorem, stated as usual only for covariant functors, is one of the

most important tools for calculating derived functors. Do formulate the theorem
in the contravariant case (and of course it is true there for the trivial reason that
it is true in the covariant case).

Theorem 4.1.5. Let F be a half exact covariant functor and M an R-module.

(a) If F is left exact and 0 → M → A0 → · · · → An → . . . is an F -acyclic
resolution of M then there are canonical isomorphisms

Hi(F (A•)) −→∼ RiF (M)

for i ≥ 0.
(b) If F is right exact and · · · → An → An−1 → · · · → A0 → M → 0 is an

F -acyclic resolution of M , then there are canonical isomorphisms

Hi(F (A•)) −→∼ LiF (M)

for i ≥ 0.

Proof. It suffices to prove (a). Let M → E• be an injective resolution of M . By
Proposition 2.3.3 of Lectures 21 and 22 we have a quasi-isomorphism ϕ : A• → E•

such that the diagram

A•

ϕ

��

M

=={{{{{{{{

!!C
CC

CC
CC

C

E•

commutes. Now injective modules are clearly F -acylic (if E is injective, then the

exact sequence 0→ E
1E−−→ E → 0 is an injective resolution of E). By Lemma 4.1.4,

F (ϕ) : F (A•)→ F (E•) is a quasi-isomporphism. The Theorem follows. �
9
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4.2. Flat modules and TorRi . An R-module Q is said to be flat if −⊗R Q is an
exact functor.

4.2.1. Examples. Projective modules are flat by Lemma 3.2.1. If S is a multi-
plicative system, then S−1R is flat over R. Since direct limits of exact sequences
of direct systems is exact (easy exercise), and since tensor product commutes with
direct limits (by the universal property of tensor products and the (Hom,⊗) ad-
jointness), the direct limit of projective modules is flat. The converse is also true,
namely, if a module is flat, then it is the direct limit of projective modules.

Suppose Q is a flat R-module. If N ∈ ModR and P• → N is a projective
resolution, then as −⊗R Q is exact, P• ⊗R Q→ N ⊗R Q is a resolution, i.e.

. . . −→ Pn ⊗R Q −→ Pn−1 ⊗R Q −→ . . . −→ P0 ⊗R Q −→ N ⊗R Q −→ 0

is exact. It is then immediate that TorRi (N,Q) = 0 for i ≥ 1. By Theorem 3.2.3 it

follows that TorRi (Q,N) = 0 for i ≥ 1.

Proposition 4.2.2. Let M and N be R-modules andQ• → M a flat resolution of
M . Then TorRi (M,N) = Hi(Q• ⊗R N) for i ≥ 0.

Proof. We just proved that TorRi (Q,N) = 0 for i ≥ 1 for every flat module Q. We
are therefore done by part (b) Theorem 4.1.5. �

4.3. Ext and Tor through Koszul complexes. For t ∈ R, the homology Koszul

complex K•(t) is the complex 0 → R
t−→ R → 0, where the R on the left is K1(t)

and the one on the right is K0(t). The cohomology Koszul complex K•(t) is the
same complex, but with the R on the left being K0(t) and the one on the right
being K1(t). Let t1, . . . , td ∈ R and let t denote the sequence (t1, . . . , td). The
homology Koszul complex K•(t) is the complex K•(t1) ⊗ · · · ⊗ K•(td), where the
convention is that A• ⊗ B• is shorthand for the total complex of the commuting
double complex obtained by tensoring A• with B•. Similarly, one can define the
cohomology Koszul complex K•(t) as the tensor product K•(t1)⊗ · · · ⊗K•(td). It
turns out that K•(t) is isomorphic to HomR(K•(t), R) as well as to the translate
of the homology Koszul by d units to the right.

If t is a regular sequence (also known as an R-sequence), i.e., if t1 is a nonzero
divisor of R, and for i ≥ 2, ti is a nonzero divisor of R/〈t1, . . . , td−1〉, then K•(t) is
a free (and hence projective) resolution of R/I where I = 〈t1, . . . , td〉. For d = 1,
this is obvious by the definition of a nonzero divisor. In the general case, one uses
induction and Theorem 1.5.5 of Lectures 21 and 22. The details are left to you. It
follows that in this case

TorRi (R/I,M) = Hi(K•(t⊗M)) and ExtiR(R/I,M) = Hi(HomR(K•(t),M)).

(See also https://www.cmi.ac.in/~pramath/AGI/notes/CechNotes.pdf.)
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