LECTURES 21-22

Dates of Lectures: March 29 and 31, 2022

We fix a ring R throughout these lectures. All modules appearing are R-modules,
unless otherwise specified.

The symbol @ is for flagging a cautionary comment or a tricky argument. It
occurs in the margins and is Knuth’s version of Bourbaki’s “dangerous bend sym-
bol”.

Much of the notes here are re-cycled from older courses of mine, and so may
talk about objects, subobjects etc, i.e. the underlying context is that of an abelian
category. In the older courses, &/ was an arbitrary abelian category, and I didn’t
have the energy to change the notations or the references to objects and subobjects.
In practical terms, set Modg = &7, and you are good to go. There will be some
bewildering statements (I did make some noises about the existence of countable
direct sums, but if &7 = Modg, that is always assured).

I have combined Lectures 21 and 22.

1. Double complexes

1.1. Standard Double Complexes. A double complexin <7, or sometimes in our
class, a standard double complex in <7, consists of data A*® = (A, 01, 02), where

A= (Apl'q)(;mq)erZ

is a family of objects in 27, and

O = (3f’q)(p,q)ez 0o = (agﬂ)(p.,q)ez

are two families of morphisms
af’q: AP9 _y APtLa aqu: AP —y APatl

such that

0101 =0 0202 =0 0102 = 020

We often suppress the superscripts p, ¢ when these are either immaterial or easily
deducible from the context. Thus, e.g., we write 9y for 95°?. The maps 9; and 0,
will be called partial coboundaries, and when we wish to be more specific, they will
be called horizontal and vertical (partial) coboundaries respectively. The data fits
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into a commutative diagram, whose rows and columns are complexes.

B2 02 02

o A0a+1 0 : 2 APatl o, Apt+la+l 9
02 % 02 02

o A0 o1 7 o1 AP o1 Artla o
B2 02 02

Next consider the direct sum’

Tot"A**:= H AP,
p+g=n
Define
" : Tot"A®® — Tot™ 1A
by the formula
o= {7+ (-1)Po5}.
ptg=n
The map within “curly brackets” can be regarded as a map AP*? — Tot" 1 A*®, tak-
ing values in the subobject AP1:4 @ AP:9+1 of Tot™ ! A*®, whence by the definition
of direct sum, the map 0™ makes sense.
Evidently
8n+1 o 8n =0
for every n € Z by the relations given between 97 and d;. We have therefore a
complex (Tot®A®®,9), called the total complex associated to the double complex
A*e.
A morphism of double complexes f: A*® — B*® is (of course) a family of maps
fPe: AP? — BP4 one for each ordered pair of integers (p, ¢), which commute with

vertical and horizontal coboundaries. This naturally induces a map of complexes
Tot f: Tot®* A*® — Tot* B*®

1.2. Anti-commutative double complexes. In much of the pre-Grothendieck
literature, double complexes mean a variant of our standard double complexes. The
only difference is that the grids in the diagram on the last page anti-commute rather
than commute. In greater detail, for this course, data of the form K*® = (K, d;,d2)
represents an anti-commauting double complex if K is a family (K?9) of objects in
o/ indexed by Z x Z and dy = (d}'?: KP4 — KPT19) dy = (d?: KP9 — KPatl)
are families of maps indexed by (p,q) € Z X Z, called the horizontal and vertical
partial coboundaries respectively, such that

did; =0 dady =0, didy = —dad;.

IThis is where our assumption that &/ has countable direct sums comes into play. Alternately,
one can assume that the displayed direct sum for Tot™ A®® is finite for every n € Z.
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We set (and please pay attention to the notation, especially the accent on the top
left)

"Tot"K**:= @ K"

ptg=n
and define
d": 'Tot"K** — "Tot" 1 K**

by the formula

dn= > (dP+ d5)

ptg=n

without any sign of the form (—1)? intervening. It is easy to see, with d:= (d"),cz,
that ("Tot® K*®, d) is a complex. We call this complex the total complex associated
with the anti-commuting double complex K*°.

I will leave the task of defining maps of anti-commuting double complexes to
you.

1.3. Bounded double complexes. Let C** be a double complex (standard or
anti-commutative). We say it is bounded on the left if there is an integer py such
that

cPe =0, p < po-
If this happens we sometimes say C*® is bounded on the left by pg. Similarly C*®
is bounded below (by qo) if there exists an integer gg such that

CcP1=90 q < qo-

I leave to you the fun task of defining terms like bounded on the right and bounded
above.

Note that if C*® is bounded on the left and below (resp. above and to the right)
it lives in a translate of the first quadrant (resp. third quadrant) and as such the

direct sum
@ o
p+q=n

is actually a finite sum? for each n. So in such instances, one can define Tot"C*®
or "Tot™C*®*® (as the case may be) without insisting that </ have countable direct
sums. In fact we will largely be dealing with such situations.

1.4. The transpose of A®®. There is an obvious notion of a transpose of a double
complex. Suppose (A*®,0;,0,) is a double complex. One can define a new double
complex (X**, 0, 0y), with

XP1 = AP o =05, and 0Pt = 9P,
It is easy to see that there is a natural a isomorphism of complexes
(1.4.1) 0: Tot®(A®®) = Tot*(X°**)

2Draw a picture with such quadrant translates, and look at the intersection of such quadrant
translates with lines having slope —1.

3



given at the n'™ level by the sum of the maps 0P9: AP1 — X9 = API p 4 q = n,
where 679 is multiplication by (—1)P?. Indeed, if n = p + g,

O 00" = DY 0071 = (~1)" (D + (~1)10,) = (=1 ((~1)701 + 3a)
- (_1)pq+qal 4 (_1)pq+p(_1)p32
— 9p+1,q31 + gp,q+1(_1)p32
= Lo,
which means 6 is a cochain map, and therefore necessarily an isomorphism of
complexes, since it is so in each graded piece. The “matrix” of 6", regarded

as a map from the direct sum A%" @ A"l @ ... @ A™0 to the direct sum
X0n g Xtn-lg...¢ X0 is of the form

0o ... 0 6o
0o ... ot 1t 0
0" =
om0 L. 0 0

1.5. Notations. Let A*® be a double complex, and m an integer. Then A}, will
mean the double complex (with obvious vertical and horizontal differentials) whose

(p, q)th graded piece is
AP1 ifp>m
1.5.1 APL =
| ) m20 {0 otherwise.
Similarly one can define A%, , and set A%, = A% ., and AL, = AL .

These are the column truncations of A®®. Similarly there are row truncations
gmA..a <mA..a >mA..a and >mA..-

It is important to remember that while A%S is a sub-double complex of A®®, in
general AL, needn’t be one. On the other hand A, is a quotient double complex
of A®*®, but A%}, in general, need not be one.

For every m € Z we have a short exact sequence of double complexes

(1.5.2) 0— A%, — A®* — A, — 0.

Theorem 1.5.3. Let A*® be a double complex whose columns (respectively rows)
are exact. Then Tot®(A®®) if one of the following holds:

(a) A**® is bounded to the right and to the left (respectively, above and below);
(b) A*® is bounded below and to the left;
(c) A**® is bounded above and to the right.

Proof. By using the transpose of A*® and the isomorphism (1.4.1) if necessary, we
only need to consider the case where the columns of A®® are exact.

Let us assume (a). We prove (b). Without loss of generality, we may assume
(by translating if necessary), that A®® lives in the first quadrant, i.e. AP = 0
if p or g is negative. In this case, clearly H"(Tot®(A®*)) = H"(Tot* (AL, ).
By (a), H*(Tot*(A%, ;) = 0 since A%, ., is bounded to the left and to the
right. This proves (b). Next we prove (c¢), assuming (a). This time we assume,
without loss of generality, that A®® lives in the third quadrant. In this case, clearly
H"(Tot®(A*®*)) = H"(Tot* (A%}, _,)), and A%}, is bounded to the right and to the
left.
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It remains to prove (a). The assertion is obvious if all but one column of A®® is
zero. Assume without loss of generality, that A®® is bounded on the left by zero,
ie. A®® = A;o' Since A°®® is also bounded on the right, there exists n > 0 such
that A*® = Agn. By way induction, we assume that the assertion is true when

n = m — 1 for some m > 0. Now suppose n = m. Then A;’ has all its columns

m
equal to zero except (possibly) its m*™ column. The exact sequence (1.5.2) gives us
an exact sequence of complexes

(#) 0 — Tot*(ASS,) — Tot*(A**) — Tot®(AS,,) — 0.

Since A%}, is has all except (possibly) one column equal to zero, Tot®(A%S ) is
exact. By our induction hypothesis, Tot®(A2%,,) is exact. It follows from the long
exact sequence associated to (#) that Tot®(A®®) is exact. O

1.5.4. Terminology. Before stating the next result, some terminology is in order.
We say that the double complex A®® is bounded on the left by m if AP1 = 0 for
p < m, ie. if Adubull — A%, In this case we say m is a left bound of A®®. A®® is
bounded to the right by m if A*® = AL, . If A*® is bounded on the right by m, then
m is called a right bound of A®®. Similarly one can define what it means for A®® to
be bounded above by m or bounded below by m. An upper bound, (respectively, a
lower bound) of bounded above (respectively bounded below) double complex can
be defined in an obvious way.

The double complex A®® is said to be concentrated in the m'™ column (respec-
tively m'" row) if AP = 0 for p # m (respectively ¢ # m). Note that in this
happens if and only if A®® is bounded on the left and right (repectively above and
below) by m.

Theorem 1.5.5. Let A®® be double complex which is bounded to the left by m and
bounded below by n.

(a) Let Z** be a double complex concentrated in the m*™ column, ¢: Z*® — A®*® a
map of double complexes, such that for each q € Z the sequence

0 Zm.q o™ A™a 01 Amtla 01 01 Am-‘rk,q 01

is exact. Then Tot(yp): Tot®(Z*®) — Tot*(A®®) is a quasi-isomorphism.
(b) Let Z°*® be a double complex concentrated in the nt™ row, p: Z** — A*® a map
of double complexes, such that, for each p € Z the sequence

L 6] o 1é) 17) o)
00—z 2, qon P2y g1 B2 02, 02 ppmtk D2

is ezact. Then Tot(yp): Tot®(Z°*®) — Tot®(A®®) is a quasi-isomorphism.

Proof. Clearly (b) follows from (a) by taking transposes. It remains to prove (a).
Without loss of generality, assume m = 0 and n = 0 so that A®® is a first quadrant
double complex. Let A®*® be the double complex obtained by setting

0 ifp<—1
APt = { 700 ifp— 1
APY ifp #£ -1
with the horizontal and vertical differentials that of A®® in the first quadrant, and

with the vertical differential on the (—1)th column being that of the 0" column

of Z**. The horizontal differential on the (—1)™
5
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straightforward to see that A** is indeed a double complex. By Theorem 1.5.3,
Tot®(A®®) is exact. Moreover, if ¢ = Tot(y), then it is easy to check that

Tot*(A**) = C},

where C7, is the mapping cone of 9. Since C}, is exact, ¢ = Tot(p) is a quasi
isomorphism, as asserted. O

1.5.6. Analogous statements can be made for complexes bounded to the right and
above (translates of third quadrant double complexes). I leave the formulation and
proof to you. An easy proof is obtained by working with 7 °, the opposite category
of o/. Then the result just falls out.

2. The homotopy category
2.1. A basic result. The following result is extremely useful

Proposition 2.1.1. Let C*® be bounded below exact sequence of R-modules, E® a
complex of injectives modules, and ¢: C* — E® a map of complexes. Then ¢ ~ 0.

Proof. By translating C* and E*® if necessary, we may assume C? = 0 for p < 0.
We have a commutative diagram of complexes with the top row exact:

n—2 n—1 ’
de dg ¢ p d& d¢

0 co ot . cn1ie s on fes
i d)oi (bll ¢'n1i ¢nl
E1 EO E'— .. Enl s B
& & 25 T

Set k' = 0 for 4 < 0. Since the top row is exact, C° — C! is an injective map.
Since E is an injective object, we get a map k': C' — E° such that k'od2 = ¢°.
Let n be a positive integer. Suppose k% have been defined for i < n — 1 so that the
homotopy condition is satisfied up to the (n — 2)th stage. We have

dTEL—Q o (¢n72 o (knfl Odg—Q)) _ d%—Q o (dTEL—3oknf2) _ (d%_Q OdTEL—f&) Okn72 =0
whence

dTEL‘72kn—ld’rCl'72 — d%72¢n_2 — ¢n_1d872.

The image of di? is B"~1(C*®) = Z"~1(C*), the latter equality due to the fact
that C*® is exact. Thus the map

dn72
Cn72 C anl(co)
is an epimorphism. Therefore, using the fact that dy 2k"~1dy 2 = ¢"~1dy 2, we
get that d%_an71|Zn—l(C.) = ¢"*1|Zn,71(c.). In other words
("' = dE k™) g1 ey = 0.

It follows that there is a map x: C"~1/Z"~1(C®) — E"~! such that the following
diagram commutes:

Cn—l o Cn—l/Zn—l(Co)

n—1_ n—2;n—1
) —dy "k i /

Enfl
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Now C"~t/Zzn=1(C*) = B"(C*) = Z"(C®) is a subobject of C™. Since E"~!
is injective, therefore x can be “extended” from Z"(C*®) to C™ giving us a map
k™: C™ — E"~L. By the construction of k™ we have k"dy ™" + dfy k"1 = ¢ L.
In other words we have defined k™ so that the homotopy condition for ¢ extends
to the (n — 1)™ stage. This completes the proof. O

2.2. The category K(R). As before, let C(R) be the category of complexes of of
R-modules (morphisms being maps of complexes), and let K(R) be the category
whose objects are the same as the objects of C(R), but whose morphisms are
homotopy equivalence classes of maps in C(R). The notion of a quasi-isomorphism
continues to make sense in K(R) in view of Problem 8 of Homework 5. K*(R) will
denote the full subcategory of K(R) consisting of complexes which are bounded
below.

2.2.1. The embedding of Modg into C(R) and K(R) First note that Modg
embeds into C(R) where we are using the notations of §2.2. Indeed if M € Modg,
then M can be identified with the complex which is M at the 0'" spot and zero
elsewhere. It is clear that if M, N € Modg then a map a: M — N in C(R)
is exactly the same as map in Modpg (check!). Moreover, since M and N when
regarded as complexes are zero in non-zero degrees, « is the only morphism in its
homotopy class, since any map k™ from the n'" spot of M to the (n — l)st spot of
N must be the zero map since one of the source or the target of k™ is zero. Thus
R embeds into K(R) too. Sometimes, when we wish to think of an A-module M
as a complex, we write M|0].

Note that if B® is a complex with B™ = 0 for n < 0, and A € Modg, then a map
a: A — B*® in K(R) corresponds to a unique map A — B*® in C(R), which we also
denote a. To give such a map amounts to giving a map A — B°, which we again
denote by «, such that we get a complex

(2.2.2) 0—A->B"—B"— ... —B"— ...
with A sitting on the (—1)" spot.
Here is a reinterpretation of Proposition 2.1.1

Proposition 2.2.3. Let C* and E® be bounded below complexes, with C® exact
and E® a complex of injectives. Then

H" (Hom;{(cz E')) =0, nezZ
Proof. We have
H" (Homk(C’, E')) =H’ (Hom;z(c.’ E®) [n])
=1 (Hom}i(C", E‘[n])).

By Problem 8 of Homework 5, H?(Hom$,(C*®, E*[n])) is the group of cochain maps

from C* to E*[n] modulo the subgroup of cochain maps which are homotopic to

zero. Now C* is bounded below and exact and E*[n] is an injective complex. It

follows by Proposition 2.1.1 that H’(Hom%(C*®, E*[n])) = 0. O
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2.3. Resolutions. Let A € Modg. A (classical) resolution of A by a complex B®
with B™ = 0 for n < 0 is an exact sequence

(2.3.1) 0—A—=—B"—B' —-B' —...—B"— ...

where the arrows (other than ¢) are the coboundaries in B®. This is equivalent to
giving a mapA = B*® in C(R) or K(R) which is a quasi-isomorphism. Classically,
the map ¢ is called the augumentation map. Nowadays we often simply think of it as
a quasi-isomorphism. Often, in modern terminology, we drop the requirement that
B* be concentrated in non-negative degrees and simply call any quasi-isomorphism
A — B® a resolution of A. In fact, we sometimes disregard the requirement of A
being an object of R and call any quasi-isomorphism A® — B® (with A® in C(R)
or K(R)), a resolution of A® by B*).

2.3.2. If we use homology complexes (chain complexes), then resolutions of A €
Modg are (classically) exact sequences of the form

(2.3.2.1) ve.™ B, —...Bj — By — A—=0

where B, is a homology complex concentrated in non-negative degrees. All the
remarks and observations made about resolutions involving cohomology complexes
(cochain complexes) apply in this situation too, with suitable modifications.

One immediate consequence of Proposition 2.2.3 (the re-interpretation of Propo-
sition 2.1.1) is,

Proposition 2.3.3. Consider a diagram in the K(R)

A.
S
B*— —>FE°*

where A®* and B® are bounded below, ¢ is a quasi isomorphism, and E® a complex of
injectives. Then there exists a unique map §: B®* — E* in K(R) filling the broken
arrow above in a manner such that the resulting diagram commutes in K(R).

Proof. Take any representative f: A* — B® in C(R) of ¢ € K(R). Let C*® be the
mapping cone of f. Consider the associated exact sequence of complexes

(1) 0—B*—C*— A®]1] — 0

associated to the map f. Since ¢ (and hence f) is a quasi-isomorphism, C*® is exact,
whence by Proposition 2.2.3 we have H"(Hom%(C*®, E®)) = 0 for all n € Z. The
exact sequence () is semi-split, i.e. for each n € Z, the exact sequence

()n 0—B" —C"— A" 0

arising from (t), is split. Since (}),, is split, for every M € Modpg, the sequence
arising from taking “transposes”

0 — Homp (A" M) — Hompg(C™, M) — Homp(B", M) — 0
also splits, since Hompg(—, M) respects direct sums. In particular, the above se-
quence is exact. From this it follows that we have an exact sequence of complexes
0 — Hom®(A4°*[1], E*) — Hom*(C*, E*) — Hom*(B*,E*®) — 0.
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Since H"(Hom3(C*, E®)) = 0 for every integer n, the long exact sequence of
groups induced by the short exact sequence of complexes above gives us isomor-
phisms

H" (Hom'(B',E')) EEESNN (Hom'(A',E°)), neZ.
via ¢
Setting n = 0 in the above family of isomorphisms, we get the asserted result. In
greater detail, the element o € H°(Hom®(B®, E*)) gives us an element on the right
side of the isomorphism
H° (Hom'(B',E')) —~ . H(Hom®(A*, E®)).
via ¢

There is a unique element 3 on the left side corresponding to it. This 3 fills the
dotted arrow in the statement of the Proposition and is the unique one which does
SO. (]
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