
LECTURES 19 AND 20

Dates of Lectures: March 22 and 24, 2022

We fix a ring R throughout these lectures. All modules appearing are R-modules,
unless otherwise specified. Complexes will be complexes of R-modules, unless oth-
erwise specified. I have combined Lectures 19 and 20, and changed the order of
presentation of the topics.

1. Split exact sequences

1.1. Standard split exact sequences. A standard split exact sequence is a se-
quence of R-modules of the form

(1.1.1) 0 −→M
i−→M ⊕N π−−→ N −→ 0

where i is the canonical inclusion and π the canonical surjection. In other words
i = [ 1M0 ] and π = [0 1N ] in the notation we introduced in § 1.1 of Lecture 18.

A split exact sequence is a sequence

(1.1.2) 0 −→M
α−−→ C

β−−→ N −→ 0

which is isomorphic to a standard split exact sequence. In other words we have a
commutative diagram with the middle downward arrow an isomorphism:

0 // M
α // C˜

��

β // C // 0

0 // M
i
// M ⊕N

π
// N // 0

The following result is elementary.

Proposition 1.1.3. Let

0 −→M
α−−→ C

β−−→ N −→ 0

be a short exact sequence. The following are equivalent.

(a) The sequence is split exact.
(b) There exists an R-map τ : C →M such that τ ◦α = 1M .
(c) There exists an R-map σ : N → C such that β ◦σ = 1N .

Proof. Omitted, since the proof is straightforward. If you wish to have some fun,
see if you can prove it without chasing elements, using only the universal properties
of kernels and cokernels, so that your proof now works on additive and abelian
categories (whatever these are). The proof without elements is also easy, but the
novelty might be interesting. �
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2. Functorial properties of Hom•R

2.1. Let ϕ : A• → B• be a map of complexes. Let C• be a third complex. For
each n ∈ Z we have a map

(∗) Homn
R(C•, A•)

via ϕ−−−→ Homn
R(C•, B•)

given by (f j)j∈Z 7→ (ϕj ◦f j)j∈Z. Similarly, we have maps, one for each integer n,

(∗∗) Homn
R(B•, C•)

via ϕ−−−→ Homn
R(A•, C•)

given by (gj)j∈Z 7→ (gj ◦ϕj)j∈Z. As n varies one checks that the maps (∗) and (∗∗)
give maps of complexes, namely:

(2.1.1) Hom•R(C•, ϕ) : Hom•R(C•, A•) −→ Hom•R(C•, B•)

and

(2.1.2) Hom•R(ϕ,C•) : Hom•R(B•, C•) −→ Hom•R(A•, C•).

The verification that (∗) and (∗∗) give rise to maps of complexes is left to you
as is the verification that Hom•R(C•, ψ ◦ϕ) = Hom•R(C•, ψ) ◦Hom•R(C•, ϕ) and
Hom•R(ψ ◦ϕ,C•) = Hom•R(ϕ,C•) ◦Hom•R(ψ,C•) for a second map ψ such that
ψ ◦ϕ is meaningful.

3. Injective Modules

3.1. Another definition of injective modules. For E ∈ ModR we know that
hE = HomR(−, E) is left exact. For hE to be exact it is therefore sufficient
(and clearly necessary) to check that HomR(N,E) → HomR(M,E) is surjective
whenever 0 → M → N is an exact sequence. In other words E is an injective
module if and only if for every diagram of R-maps of the kind below, the broken
arrow can be filled to make the diagram commute.1

E

0 // M //

f

>>~~~~~~~~
N

∃g

OO�
�
�

(exact)

This is often given as the definition of an injective module. We will use this char-
acterisation of injectivity in what follows.

3.2. Baer’s criterion. Here is an extremely useful result.

Theorem 3.2.1. (Baer’s Criterion) A module E is injective if and only if every
R-map φ : I → E from an ideal I of R extends to an R-map ψ : R→ E, i.e. if and
only if the natural map HomR(R,E) → HomR(I, E) (given by “restriction to I”)
is surjective for every ideal I of R.

Proof. If E is injective, clearly E-valued R-maps from ideals of R can always be
extended to E-valued R-maps on R.

Suppose E-valued R-maps from ideals of R can always be extended to E-valued
R-maps on R. We wish to show that E is injective. To that end, suppose M is a
submodule of a module N and f : M → E is an R-map. We have to prove that
there exists an R-map g : N → E such that g|M = f . Let Σ be the set of pairs

1The phrase “to make the diagram commute” is often omitted, and I will do so in what follows.
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(M ′, f ′), where M ′ is a submodule of N containing M , and f ′ : M → N an R-map
extending f . Since (M,f) ∈ Σ, Σ 6= ∅. Define a partial order ≺ on Σ in the obvious
way: (M ′, f ′) ≺ (M ′′, f ′′) if M ′ ⊂ M ′′ and f ′ = f ′′|M ′ . If {(Mλ, fλ)}λ is a totally
ordered chain in Σ, then M∗ = ∪λMλ is a submodule of N (the total order is
needed for this). Moreover, if x ∈M ′, then x ∈Mλ for some λ, and we can define
f ′(x) to be fλ(x). If x also lies Mλ1

, then by the total order on our chain, either
Mλ ⊂Mλ1

or Mλ1
⊂Mλ. In either case fλ1

(x) = fλ(x). We therefore have a well
defined map f ′ : M ′ → E, and f |Mλ

= fλ. Thus (M ′, f ′) ∈ Σ. By Zorn’s Lemma,

Σ has a maximal element (M̃, f̃).

We have to show that M̃ = N . Suppose it is not. Then there exists an element

x ∈ N r M̃ . Let
I = {r ∈ R | rx ∈ M̃}.

I is evidently an ideal of R. Define

φ : I −→ E

by the rule φ(r) = f̃(rx) for r ∈ I. It is easy to see that φ is an R-map. By our
hypotheses on E, we have an R-map ψ : R → E which restricts to φ on I. Let

T = 〈M̃, x〉. Then M̃ ⊂ T and M̃ 6= T .

Let h : T → E be defined by the rule h(m̃ + rx) = f̃(m̃) + ψ(r), where m̃ ∈ M̃
and r ∈ R. We need to check that this is well defined. Suppose m̃1, m̃2 ∈ M̃ ,

r1, r2 ∈ R are such that m̃1 + r1x = m̃2 + r2x. Then (r2 − r1)x = m̃1 − m̃2 ∈ M̃ .

This means r2 − r1 ∈ I, whence ψ(r2 − r1) = φ(r2 − r1) = f̃((r2 − r1)x). In other

words ψ(r1) + f̃(m̃1) = ψ(r2) + f̃(m̃2). Thus h is well defined. It is clear that h is

an R-map. Now h is clearly an extension of f̃ . Hence (T, h) is in Σ, contradicting

the maximality of (M̃, f̃) in Σ. Thus M̃ = N and we are done. �

3.3. Direct sums and direct product of injectives. Injectives are well behaved
with respect to direct sums and finite direct sums. In the Noetherian case, they
are well behaved with respect to arbitrary direct sums.

Lemma 3.3.1. A direct summand of an injective module is injective.

Proof. Let E be injective, and suppose E′ is a direct summand of E. Then E =
E′ ⊕ E′′. Let i : E′ ↪→ E be the natural inclusion and π : E → E′ the obvious
projection. Suppose M is a submodule of a module N and we have an R-map
f : M → E′. Since E is injective, the map i ◦f : M → E extends to an R map
h : N → E. Let g : N → E′ be given by g = π ◦h. Then g is an extension of f .
Thus E′ is injective. �

Lemma 3.3.2. An arbitrary direct product of injective modules is injective.

Proof. Suppose we have a diagram of R-modules (this means all arrows are R-maps)
with the row being exact, ∏

λ∈ΛEλ

0 // M //

f
::vvvvvvvvv
N

∃g

OO�
�
�

with each Eλ, λ ∈ Λ, injective. We would like to fill the broken arrow. Let
E =

∏
λ∈ΛEλ, and for λ ∈ Λ, let πλ : E → Eλ be the canonical projection. Then
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f = (fλ), where fλ = πλ ◦f , λ ∈ Λ. Each fλ extends to an R-maps gλ : N → Eλ,
since Eλ is injective. Set g = (gλ). It is clear that the broken arrow in the diagram
can be filled by g. �

Corollary 3.3.3. A finite direct sum of injective modules is injective.

Proof. A finite direct sum is the same as a finite direct product. �

Remark 3.3.4. It is not true in general that the arbitrary direct sum of injectives
is injective. However, if the underlying ring R is Noetherian this is true, and that
is what we prove next.

Proposition 3.3.5. Let R be Noetherian. Then an arbitrary direct sum of injec-
tives is injective.

Proof. Suppose we have a diagram of R-maps with the Eλ, λ ∈ Λ injective, I an
ideal of R, and the row the natural exact sequence (i.e. the arrow I → R is the
natural inclusion). ⊕

λ∈ΛEλ

0 // I //

φ
;;vvvvvvvvv
R

∃ψ

OO�
�
�

According to Baer’s Criterion, it is enough for us to fill the broken arrow. Since
R is Noetherian, I is finitely generated. It follows that φ(I) is a finitely generated
submodule of

⊕
λ∈ΛEλ. Therefore there exist a finite number of indices λ1, . . . , λd

in Λ such that φ(I) ⊂
⊕d

i=1Eλi = E′ (say). Then φ factrors as

I
φ′

−→ E′ ⊂
⊕
λ∈Λ

E.

Since E′ is injective, being a finite direct sum of injectives, we have and R-map

g′ : R→ E′ extending φ′. Define g : R→ E as the composite R
g′−→ E′ ⊂

⊕
λ∈ΛE.

Clearly g fills the broken arrow in the diagram above. �

3.4. Divisible modules. . An element of r ∈ R is a non zero dvisior of R if the

“multiplication by r” map R
r−→ R is injective. We often just write “r is an NZD”

or “r is an NZD of R” instead of the longer form above. NZD(R) denotes the set
of NZDs in R.

A module M is said to be divisible if for every non zero divisor r of R and every
element m ∈ M , we can find m′ ∈ M such that m = rm′. In other words M is

divisible if for every NZD r of R, the map M
r−→M is surjective.

Lemma 3.4.1. An injective module is divisible.

Proof. Let r ∈ NZD(R). We have an exact sequence

0 −→ R
r−→ R

Let us apply the exact functor HomR(−, E) to the above sequence. We get the
exact sequence

HomR(R,E)
r // HomR(R,E) // 0

E
r

// E // 0
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Thus E
r−→ E is surjective. �

The converse need not be true. However, if R is a PID, we have the following
result.

Proposition 3.4.2. Let R be a PID, and M a divisible R-module. Then M is
injective.

Proof. Since R is a PID, it is Noetherian, and hence we can apply Baer’s criterion.
Accordingly, suppose I is an ideal of R and φ : I → M an R-map. We have to
extend φ to R. If I = 0 there is nothing to prove. We assume I 6= 0. Since R
is a PID, I = 〈x〉 for some non zero element x ∈ R. Let m = φ(x). Since R is
an integral domain, x is a NZD of R. Now M is divisible, and hence there exists
m′ ∈M such that m = xm′. Define

ψ : R→M

by the rule ψ(r) = rm′, r ∈ R. For r ∈ R we have ψ(rx) = rxm′ = rm =
rφ(x) = φ(rx), and hence ψ extends φ. Moreover, it is clearly an R-map. Thus M
is injective. �

Examples 3.4.3. One can generate a number of examples of injective modules
using Proposition 3.4.2.

1. Let R be a PID and K = Q(R) its quotient field, i.e. its field of fractions. Then
K is a divisible R-module (by definition of the field of fractions!) and hence it
is injective.

2. Let R be PID and E an injective module. Then every quotient E/M of E by
a submodule M of E, is injective. Indeed, E being injective, is divisible. If
0 6= r ∈ R, and [x] = x + M is an element of E/M (with x ∈ E), then we can
find y ∈ E such that x = ry, and it is immediate that [x] = r[y]. Thus E/M is
divisible, and since R is a PID, it is injective.

3. A ring R is said to be Gorenstein if it has a finite injective resolution, i.e. there
is a finite length exact sequence

0 −→ R −→ E0 −→ E1 −→ . . . −→ En−1 −→ En −→ 0

with each Ei injective. Such rings are special and important in commutative
algebra and in algebraic geometry. Combining the above two examples, if R is
a PID and K its fraction field, then

0 −→ R −→ K −→ K/R −→ 0

is an injective resolution of R. Thus every PID is Gorenstein.
4. From 1, Q is an injective Z-module. From 3, so is Q/Z.

3.5. ModR has enough injectives. Here is the first step towards the theory of
derived functors in homological algebra.

Lemma 3.5.1. Let M be a Z-module. Then M can be embedded into an injective
Z-module.

Proof. Let mλ, λ ∈ Λ, be a set of generators for M . There exists a surjective Z-map⊕
λ∈Λ

Z −−→→M
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given by eλ 7→ mλ, where {eλ} is the canonical basis for the free Z-module
⊕

λ∈Λ Z.
Let K be the kernel of this map. Then

M ∼=
⊕

λ∈Λ Z

K
⊂

⊕
λ∈Λ Q

K
.

From 4 of 3.4.3, we know that Q is an injective Z-module. Since Z is Noetherian,⊕
λ∈Λ Q is an injective Z-module. From 3 of 3.4.3,

⊕
λ∈Λ Q/K is an injective

Z-module. �

3.5.2. The above statement is usually phrased as “the category ModZ has enough
injectives”. Enough to define and use right derived functors, that is. More gener-
ally an abelian category A (whatever that is) is said to have enough injectives if
every object of A can be embedded in an injective object. Sheaves on topological
spaces have enough injectives, which is why, from a certain point of view, there is
a cohomology theory on topological spaces.

Theorem 3.5.3. ModR has enough injectives. In other words, every R-module
can be embedded into an injective R-module.

Proof. Let M ∈ ModR. Let MZ be M regarded as a Z-module. Since ModZ

has enough injectives, there exists an injective Z-module E such that we have an
injective Z-map MZ ↪→ E . Let E = HomZ(R,E ). We saw in Lecture 9 (see pp.4–
5) that E is an R-module. By Problem 4 of Homework 3, we know that E is an
injective R-module. We claim there is an embedding j : M ↪→ E of M into E. For
m ∈ M , set j(m) = φm where φm : R → E is the Z-map r 7→ rm. Now j(m) = 0
if and only if φm = 0, and this is so if and only if rm = 0 for every r ∈ R. Taking
r = 1, we get m = 0. Thus j is an embedding, and we are done. �

3.6. Characterising injective modules. In Subsection 3.1 we gave an alternate
definition of an injective module which was obviously equivalent to the one we gave
earlier in the course. Here is a theorem giving that and other characterisations.

Theorem 3.6.1. Let E ∈ ModR. The following are equivalent.

(a) E is injective.
(b) If M is a submodule of a module N , then every R-map f : M → E can be

extended to an R-map g : N → E.
(c) Given a diagram of R-maps

E

0 // M //

f

>>~~~~~~~~
N

∃g

OO�
�
�

(exact)

with the row exact (as indicated), the broken arrow can be filed to make the
diagram commute.

(d) If E is a submodule of a module M , then E is a direct summand of M , i.e.
there exists a submodule T of M such that M = E ⊕ T .

Proof. For the equivalence of (a), (b), and (c), see § 3.1. Let us prove (c) implies
(d). We know that the broken arrow in the diagram below can be filled, say by the
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map τ : M → E.

E

0 // E //

1E

??~~~~~~~~
M

OO�
�
�

(exact)

Then, according to Proposition 1.1.3, τ induces a splitting of the exact sequence

0 −→ E −→M −→M/E −→ 0.

This proves (d).
To prove (d) implies (a), embed E in an injective module E . Then E = E ⊕K

for some R-module K. By Lemma 3.3.1 E must be injective. �
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