

The Construction of Tensor Products

Let A be a ring, and M, N two A -modules. Let F be the free module on the symbols $(m, n) \in M \times N$. In other words

$$F = \bigoplus_{(m, n) \in M \times N} F_{(m, n)}$$

where each $F_{(m, n)} = A$. For good book-keeping we will write $e(m, n)$ for the element $(e_{(m, n)})_{(m, n) \in M \times N} \in F$ where

$$e_{(m, n)} = \begin{cases} 0 & \text{if } (m, n) \neq (m, n) \\ 1 & \text{if } (m, n) = (m, n). \end{cases}$$

In other words $\{e_{(m, n)}\}_{(m, n)}$ is the standard basis of F .

Let $G \subseteq F$ be the submodule generated by elements of the following form:

- (1) $e_{(m+m', n)} - e_{(m, n)} - e_{(m', n)}, \quad m, m' \in M, n \in N$
- (2) $e_{(m, n+n')} - e_{(m, n)} - e_{(m, n')}, \quad m \in M, n, n' \in N$
- (3) $e_{(am, n)} - e_{(m, an)}, \quad a \in A, m \in M, n \in N$
- (4) $e_{(am, n)} - a e_{(m, n)}, \quad a \in A, m \in M, n \in N.$

For $m \in M, n \in N$, let $[m, n]$ be the coset $e_{(m, n)} + G \in F/G$.

Properties (1) — (4) translate to

(a) $[m+m', n] = [m, n] + [m', n]$ (b) $[m, n+n'] = [m, n] + [m, n']$ (c) $[am, n] = [m, an] = a[m, n]$	$\left. \begin{array}{l} a \in A, m, m' \in M \\ \text{and } n, n' \in N. \end{array} \right\}$
---	---

Note that every element of F/G is of the form $\sum_{i=1}^l [m_i, n_i], \quad m_i \in M, n_i \in N, \quad i=1, \dots, l$.

Let

$$B^*: M \times N \longrightarrow F/G$$

be the map $(m, n) \mapsto [m, n]$. From (a), (b), and (c) above, it is apparent that B^* is A -bilinear. Now suppose for $T \in \text{Mod}_A$ we have an A -bilinear map

$$B: M \times N \longrightarrow T$$

Define $\phi_B: F/G \longrightarrow T$ by the formula

$$\phi_B \left(\sum_i [m_i, n_i] \right) = \sum_i B(m_i, n_i).$$

To show this is well-defined, it is enough to show that

$$\sum_i B(m_i, n_i) = 0$$

for every $\sum_i [m_i, n_i] \in G$. For this it is enough to prove this for the generators of G . Since B is bilinear this is clear. Thus

$$\begin{array}{ccc} M \otimes N & & \\ \downarrow B^* & \searrow B & \\ F/G & \xrightarrow{\Phi_B} & T \end{array} \quad (\Delta)$$

commutes. Moreover, if $\Psi: T/B \rightarrow T$ any A -map s.t. $\Psi \circ B^* = B$, then $\Psi([m, n]) = \Psi(B^*(m, n)) = B(m, n)$, and hence Ψ and Φ_B agree on elements of the form $[m, n]$. By A -linearity, they agree on F/G . Thus Φ_B is the only A -map making diagram (Δ) commute.

Conclusion: Tensor products exist with.

$$F/G = M \otimes N, \quad B_n = B^*.$$

Remark: The exact "construction" of $M \otimes N$ is not important. The role of the above construction is to show that it exists.

Multilinear Maps:

Let M_1, M_2, \dots, M_d be A -modules (A , as usual, a ring).

Let $T \in \text{Mod}_A$. A map

$$\oplus: M_1 \times \dots \times M_d \longrightarrow T$$

is said to be A - d -linear (or simply d -linear) if the following conditions are satisfied for $m_i, m_i' \in M_i$ and $a \in A$

$$\oplus(m_1, m_2, m_3 + a m_3', \dots, m_d)$$

$$= \oplus(m_1, m_2, \dots, m_d) + a \oplus(m_1, m_2, \dots, m_3', m_4, \dots, m_d).$$

Note that

$$\oplus(a m_1, m_2, \dots, m_d) = \oplus(0 + a m_1, m_2, \dots, m_d)$$

$$= \oplus(0, m_2, \dots, m_d) + a \oplus(m_1, m_2, \dots, m_d)$$

$$= a \oplus (m_1, \dots, m_d).$$

$$(\oplus(0, m_2, \dots, m_d) = 0 \text{ via the usual tricks.})$$

Since only

$$\oplus(m_1, m_2, \dots, m_{i-1}, am_i, m_{i+1}, \dots, m_d)$$

$$= a \oplus (m_1, \dots, m_d)$$

Example: Let $M_i \in A^d$, $i=1, \dots, d$.

Write elements of A^d as column vectors. Define

$$\Delta: A^d \times \dots \times A^d \xrightarrow{\text{d-times}} A$$

by the rule

$$\Delta(c_1, \dots, c_d) = \det [c_1 \ c_2 \ \dots \ c_d]$$

where, as usual, $[c_1 \ c_2 \ \dots \ c_d]$ is the $d \times d$ matrix whose i^{th} column is c_i .

The tensor product of the M_i 's is an A d -linear map

$$\oplus_u: M_1 \times \dots \times M_d \longrightarrow M_1 \otimes_A \dots \otimes_A M_d$$

which has the obvious universal property for A d -linear maps, namely if $T \in \text{Mod}_A$ and $\oplus: M_1 \times \dots \times M_d \longrightarrow T$ is d -linear, then

$\exists!$ A -module map $\phi_{\oplus}: M_1 \otimes_A \dots \otimes_A M_d \longrightarrow T$ s.t. $T \circ \oplus = \oplus_u$.

$$\begin{array}{ccc} M_1 \times \dots \times M_d & & \\ \oplus_u \downarrow & \nearrow \oplus & \\ M_1 \otimes_A \dots \otimes_A M_d & \xrightarrow{\phi_{\oplus}} & T \end{array}$$

Suppose $d=3$. It is quite easy to see that $(M_1 \otimes_A M_2) \otimes_A M_3$ as well as $M_1 \otimes_A (M_2 \otimes_A M_3)$ satisfy the required universal property for 3-linear maps, by using the universal property of bilinear maps repeatedly.

Suppose $\sigma \in S_d$ is a permutation on $\{1, \dots, d\}$. It is clear that every multilinear map $M_1 \times \dots \times M_d \longrightarrow T$ gives rise to a unique multilinear map $M_{\sigma(1)} \times \dots \times M_{\sigma(d)} \longrightarrow T$, and from here it is not hard to see that

$$M_1 \otimes_A \dots \otimes M_d \xrightarrow{\cong} M_{\sigma(1)} \otimes_A \dots \otimes_A M_{\sigma(d)}.$$

Summary:

$$1. (M_1 \otimes_A M_2) \otimes_A M_3 \xrightarrow{\sim} M_1 \otimes_A (M_2 \otimes_A M_3) \xrightarrow{\sim} M_1 \otimes_A M_2 \otimes_A M_3.$$

$$2. M_1 \otimes_A \dots \otimes_A M_d \xrightarrow{\sim} M_{\sigma(1)} \otimes_A \dots \otimes_A M_{\sigma(d)} \quad \forall \sigma \in S_d.$$

Among other things, you can put brackets pretty much where you wish in $M_1 \otimes_A M_2 \otimes_A \dots \otimes_A M_d$.

$$(M_1 \otimes_A M_2) \otimes_A M_3 = M_1 \otimes_A (M_2 \otimes_A M_3) \otimes_A M_4$$

$$= M_1 \otimes_A ((M_2 \otimes_A M_3) \otimes_A M_4) \text{ etc, etc.}$$

You can permute the M_i 's too (per perm).

$\text{Hom}_A(M, N)$: Let $M, N \in \text{Mod}_A$. Let $\text{Hom}_A(M, N)$ be the set of A -linear maps from M to N . In other words

$$\text{Hom}_A(M, N) = \{ \varphi: M \rightarrow N \mid \varphi \text{ is } A\text{-linear} \}.$$

Pointwise addition gives an abelian group structure on $\text{Hom}_A(M, N)$. A scalar multiplication

$$A \times \text{Hom}_A(M, N) \longrightarrow \text{Hom}_A(M, N)$$

can be defined on $\text{Hom}_A(M, N)$ by the formula

$$(a, \varphi) \longmapsto \varphi \circ \mu_a, \quad a \in A, \varphi \in \text{Hom}_A(M, N)$$

where, as always, μ_a is the "multiplication by a " endomorphism on M , i.e. $\mu_a: M \rightarrow M$ is the map $m \mapsto am, m \in M$. If we also denote the "multiplication by a " map on N by μ_a , then note that $\varphi \circ \mu_a = \mu_a \circ \varphi$. In any case, this gives us a scalar multiplication on $\text{Hom}_A(M, N)$, a fact that is readily checked.

Thus, $\text{Hom}_A(M, N)$ is an A -module.

Next, suppose $f: A \rightarrow B$ is a ring homomorphism. Then every B -module M can be regarded as an A -module, where the scalar multiplication is

$$a \cdot m := f(a)m \quad a \in A, m \in M.$$

If, as above, $M \in \text{Mod}_B$ and $N \in \text{Mod}_A$, then regarding M as an A -module, we have an A -module $\text{Hom}_A(M, N)$. We claim that $\text{Hom}_A(M, N)$ is actually a B -module. The scalar multiplication

$$B \times \text{Hom}_A(M, N) \longrightarrow \text{Hom}_A(M, N)$$

is the map

$$(b, \phi) \mapsto \phi \circ \mu_b, \quad b \in B, \phi \in \text{Hom}_A(M, N),$$

where $\mu_b: M \rightarrow M$ has its usual meaning.

Hom- \otimes adjointness: Suppose $M, N, T \in \text{Mod}_A$. Next lecture we will show a natural isomorphism

$$\text{Hom}_A(M \otimes_A N, T) \xrightarrow{\sim} \text{Hom}_A(M, \text{Hom}_A(N, T))$$

The map is

$$B \mapsto m \mapsto (n \mapsto B(m, n))$$

where $B: M \times N \rightarrow T$ is a bilinear map (and hence regarded, by the unusual property \otimes -products, as an element of $\text{Hom}_A(M \otimes_A N, T)$).