

Throughout A is a ring. Unless otherwise stated $X = \text{Spec } A$.

Proposition: (a) Let $\mathfrak{p}_1, \dots, \mathfrak{p}_n$ be prime ideals in A and \mathfrak{q} an ideal contained in $\bigcup_{i=1}^n \mathfrak{p}_i$. Then $\mathfrak{q} \subseteq \mathfrak{p}_i$ for some i .
 (b) Let $\mathfrak{q}_1, \dots, \mathfrak{q}_n$ be ideals in A, $\mathfrak{p} \in \text{Spec}(A)$ be such that $\mathfrak{p} \supseteq \bigcap_{i=1}^n \mathfrak{q}_i$. Then $\mathfrak{p} \supseteq \mathfrak{q}_i$ for some i . If $\mathfrak{p} = \bigcap_{i=1}^n \mathfrak{q}_i$ then $\mathfrak{p} = \mathfrak{q}_i$ for some i .

Proof: (a) We'll prove the contrapositive. In other words we'll show that

$$\mathfrak{q} \not\subseteq \mathfrak{p}_i \text{ for any } i \in \{1, \dots, n\} \Rightarrow \mathfrak{q} \not\subseteq \bigcup_{i=1}^n \mathfrak{p}_i.$$

The above statement is clearly true for $n=1$.

Assume it is true for $n=k-1$ for some $k \geq 1$. We'll show it is true for $n=k$.

By induction hypothesis for each $i=1, \dots, k$ we have

$$\mathfrak{q} \not\subseteq \mathfrak{p}_1 \cup \dots \cup \mathfrak{p}_{i-1} \cup \mathfrak{p}_{i+1} \cup \dots \cup \mathfrak{p}_k.$$

This means there exists, for each $i \in \{1, \dots, k\}$, an element $a_i \in \mathfrak{q}$ s.t. $a_i \notin \mathfrak{p}_j$ for $j \neq i$. If $a_i \notin \mathfrak{p}_i$ for any i we are done, for then $a_i \notin \bigcup_{j=1}^k \mathfrak{p}_j$. If $a_i \in \mathfrak{p}_i$ for each i in $\{1, \dots, k\}$, then consider the element

$$x = \sum_{j=1}^k a_1 a_2 \dots a_{j-1} a_{j+1} \dots a_k.$$

Clearly $x \in \mathfrak{q}$. Equally clearly $x \notin \mathfrak{p}_j$ for any j .
 So $x \in \bigcup_{j=1}^k \mathfrak{p}_j$. Hence we are done.

(b) Suppose $\mathfrak{p} \not\supseteq \mathfrak{q}_i$ for any i . Then for each $i \exists x_i \in \mathfrak{q}_i$ s.t. $x_i \notin \mathfrak{p}$. Then $x_1 \dots x_n \in \bigcap_{i=1}^n \mathfrak{q}_i$ and $x_1 \dots x_n \notin \mathfrak{p}$, i.e. $\mathfrak{p} \not\supseteq \bigcap_{i=1}^n \mathfrak{q}_i$. This proves the first part of (b). Now suppose $\mathfrak{p} = \bigcap_{i=1}^n \mathfrak{q}_i$. Then $\mathfrak{p} \subseteq \mathfrak{q}_j$ for every j . On the other hand, we know $\mathfrak{p} \supseteq \mathfrak{q}_i$ for some i . It follows that

$\phi = \alpha_i$ for this i . //

Topological properties of $\text{Spec}(A)$:

In this section

$$X := \text{Spec}(A).$$

Recall, if $\alpha \subseteq A$ is an ideal then

$$V(\alpha) := \{ \beta \in X \mid \beta \supseteq \alpha \}.$$

1. $V\left(\bigcap_{i=1}^n \alpha_i\right) = \bigcup_{i=1}^n V(\alpha_i).$

Pf: If $\beta \in V\left(\bigcap_{i=1}^n \alpha_i\right)$ then $\beta \supseteq \bigcap_{i=1}^n \alpha_i$, whence $\beta \supseteq \alpha_i$ for some $i \in \{1, \dots, n\}$, i.e. $\beta \in V(\alpha_i)$ for some $1 \leq i \leq n$. So L.S. \subseteq R.S.

Conversely, suppose $\beta \in \bigcup_{i=1}^n V(\alpha_i)$. Then $\beta \in V(\alpha_i)$ for some i , i.e. $\beta \supseteq \alpha_i$ for some i , i.e. $\beta \supseteq \bigcap_{i=1}^n \alpha_i$. Thus $\beta \in$ L.S. Thus R.S. \subseteq L.S. //

2. Suppose $\{\alpha_\alpha \mid \alpha \in \Sigma\}$ is a family of ideals. Then

$$V\left(\sum_{\alpha} \alpha_{\alpha}\right) = \bigcap_{\alpha \in \Sigma} V(\alpha_{\alpha})$$

Pf:

Suppose $\beta \in \bigcap_{\alpha} V(\alpha_{\alpha})$. Then $\beta \supseteq \alpha_{\alpha}$ for every $\alpha \in \Sigma$, and hence β contains the smallest ideal containing all the α_{α} , i.e. $\beta \supseteq \sum_{\alpha} \alpha_{\alpha}$, i.e. $\beta \in V\left(\sum_{\alpha} \alpha_{\alpha}\right)$

Conversely, suppose $\beta \in V\left(\sum_{\alpha} \alpha_{\alpha}\right)$. Then

$$\beta \supseteq \sum_{\alpha} \alpha_{\alpha}.$$

This means $\beta \supseteq \alpha_{\alpha}$ for every α . Hence $\beta \in V(\alpha_{\alpha})$ for every α . //

The above properties show that $X = \text{Spec } A$ is a topological space with its closed sets being $V(\mathfrak{a})$, or an ideal \mathfrak{a} . The only things to be verified are that \emptyset and X are in this collection $\{V(\mathfrak{a}) \mid \mathfrak{a} \text{ ideal of } A\}$. Now,

$$\emptyset = V(\langle 1 \rangle), \quad X = V(\langle 0 \rangle).$$

So ...

3. Recall, if U is an open set in X , then $U = X - V(\mathfrak{a})$, where \mathfrak{a} is an ideal. Now

$$\mathfrak{a} = \sum_{f \in \mathfrak{a}} \langle f \rangle$$

Then $V(\mathfrak{a}) = \bigcap_{f \in \mathfrak{a}} V(f)$

i.e.

$$U = \bigcup_{f \in \mathfrak{a}} (X - V(f))$$

For $f \in A$, denote $X - V(f)$ by $D(f)$

$$D(f) = X - V(f).$$

Therefore $U = \bigcup_{f \in \mathfrak{a}} D(f).$

Note also that

$$D(f) \cap D(g) = D(fg). \quad (\text{check!!}).$$

This means

$$\mathcal{B} = \{D(f) \mid f \in A\}$$

is a base for the topology on X . This is called the standard basis for the topology on X .

4. Let $\phi: A \rightarrow B$ be a ring map. Recall that $\phi^{-1}(P)$ is a prime ideal in A whenever P is a prime ideal of B . This gives a map

$$\begin{aligned} {}^a\phi: \text{Spec } B &\longrightarrow \text{Spec } A \\ P &\longmapsto \phi^{-1}(P). \end{aligned}$$

It is easy to see that for $f \in A$,

$$({}^a\phi)^{-1}(D(f)) = D(\phi(f))$$

This proves that ${}^a\phi: \text{Spec } B \longrightarrow \text{Spec } A$ is a continuous map.

Check the following:

If $A \xrightarrow{\phi} B \xrightarrow{\psi} C$ is a pair of ring maps, then the following diagram commutes.

$$\begin{array}{ccc} & \text{Spec } A & \\ {}^a(\phi \circ \psi) \swarrow & \uparrow & \downarrow {}^a\phi \\ \text{Spec } C & \curvearrowright & \text{Spec } B \\ & \searrow {}^a\psi & \end{array}$$

In other words: "Spec is a functor from the category of rings to the category of topological spaces".

This is NOT a faithful functor.

Take $A = k[T]/\langle T^2 \rangle$, T a variable, k a field.

Let $\varepsilon = T + \langle T^2 \rangle$. Then $A = k[\varepsilon]$, $\varepsilon^2 = 0$.

$A = \{a + b\varepsilon \mid a, b \in k\}$. Since $b\varepsilon$ is nilpotent, if $a \neq 0$, then $a + b\varepsilon$ is a unit. This means either an element is nilpotent or is a unit.

Let $M = \langle \varepsilon \rangle$. Since $k \cong A/M$, M is a maximal ideal. And from our argument, it is the

only proper ideal of A . This shows that

$$\text{Spec}(A) = \{M\}.$$

Now consider the map

$$\phi: A \longrightarrow A_{(M)} = k.$$

$${}^a\phi: \text{Spec}(k) \longrightarrow \text{Spec}(A)$$

is a homeomorphism since both topological spaces are singleton sets. However ϕ is not an isomorphism of rings.

5. Let $f \in A$, and in observation 4, let $B = A_f$, i.e. $B = S^{-1}A$, where $S = \{f^n \mid n \geq 0\}$. Recall we have a localization map

$$A \longrightarrow A_f.$$

The resulting map

$$\text{Spec}(A_f) \longrightarrow \text{Spec}(A)$$

is injective, its image is $\mathcal{D}(f)$, and finally the continuous map

$$\text{Spec}(A_f) \longrightarrow \mathcal{D}(f)$$

is a homeomorphism.