

(Zariski's Lemma)

Lemma 2 (Zariski's version of the Nullstellensatz): Let $k \rightarrow L$ be an extension of fields such that L is of finite type over k . Then L is a finite dim'l vector space over k .Proof:

First note that $F = k[\theta_1, \dots, \theta_n]$ is a field extension of k with each θ_i algebraic over k , then $k[\theta_1, \dots, \theta_n]$ is finite dim'l as a k -vector space.

Case $n=1$: $F = k[\theta]$. Let $p \in k[x] \subset$ (the poly. ring in one var / k) be the irreducible poly. of θ over k .

Then $F \cong \frac{k[x]}{\langle p \rangle}$. (e.g. $\mathbb{C} = \frac{\mathbb{R}[x]}{\langle x^2+1 \rangle}$)

with θ mapping to $x + \langle p \rangle$. Let

$$d = \deg p.$$

Then $1, \theta, \theta^2, \dots, \theta^{d-1}$ forms a basis of F over k (char).

If $n > 1$, then apply the above to F over $k[\theta_1, \dots, \theta_{n-1}]$.

In view of this, it is enough for us to prove that every element in L is algebraic over k .

Let ξ_1, \dots, ξ_m be k -algebra generators of L .

Suppose L has transcendental elements. Then one ξ_i 's is transcendental. We can re-order the ξ_i 's

so that ξ_1 is transcendental over k

ξ_2 is transcendental over $k(\xi_1)$

\vdots

ξ_d is transcendental over $k(\xi_1, \dots, \xi_{d-1})$

and ξ_{d+1}, \dots, ξ_m are algebraic over

$$K = k(\xi_1, \dots, \xi_d)$$

$$\xi_1, \dots, \xi_d, \boxed{\xi_{d+1}, \dots, \xi_m}$$

The situation is as follows:

$$L = K[\xi_{d+1}, \dots, \xi_m]$$

\downarrow *algebraic*

$$K = k(\xi_1, \dots, \xi_d)$$

\downarrow *transcendental*.

k

From our earlier observations, L is a finite dim'l K -vector space. By Artin-Tate K is of finite type over k (since L is of finite type over K , and K is Noetherian). In particular K is of finite type over $k(\xi_1, \dots, \xi_{d-1})$. In other words

$$K = k(\xi_1, \dots, \xi_d) = k(\xi_1, \dots, \xi_{d-1}) (\xi_d)$$

is of finite type over $k(\xi_1, \dots, \xi_{d-1})$. This is not possible from what we proved in the last lecture since ξ_d is transcendental over $k(\xi_1, \dots, \xi_{d-1})$. //

Corollary: Suppose k is an algebraically closed field and L a field ext k of k which is of finite type over k . Then the ext k $k \rightarrow L$ is an isomorphism.

Proof:

We've shown that L is algebraic over k , and we know that k is alg. closed. //

Hilbert's Nullstellensatz:

The theorem says the "zero set" of a proper ideal of a polynomial ring over an algebraically closed field is non-empty.

Suppose k is algebraically closed.

Let $\vec{x} = (x_1, \dots, x_n) \in k^n$. Let $A = k[X_1, \dots, X_n]$ be the poly. ring / k in n -variables.

Let $M_{\vec{x}} = \langle X_1 - x_1, X_2 - x_2, \dots, X_n - x_n \rangle$

Let

$f \in A = k[X_1, \dots, X_n]$.

We can write f as a polynomial in

$X_1 - x_1, \dots, X_n - x_n$:

$$\begin{aligned} f &= f(X_1, \dots, X_n) = f(X_1 - x_1 + x_1, \dots, X_n - x_n + x_n) \\ &= c_0 + \sum c_{\mu_1, \dots, \mu_n} (X_1 - x_1)^{\mu_1} \dots (X_n - x_n)^{\mu_n} \end{aligned}$$

Clearly $f(x_1, \dots, x_n) = c_0$.

In other words

$$f = f(x_0, \dots, x_n) + (x_1 - x_0)g_1 + \dots + (x_n - x_0)g_n$$

$$g_1, \dots, g_n \in k(x_0, \dots, x_n)$$

Note $(x_1 - x_0)g_1 + \dots + (x_n - x_0)g_n \in M_x$.

Consider the surjective ring map

$$A = k[x_0, \dots, x_n] \longrightarrow k$$

given by $f \longmapsto f(x_0, \dots, x_n)$

The "substitution map"

From what we've seen above, the kernel is M_x .

$$h: A/M_x \xrightarrow{\sim} k$$

where M_x is a maximal ideal.

Suppose M is a maximal ideal of A .

Then we have a pair of ring maps

$$k \longrightarrow A = k[x_0, \dots, x_n] \longrightarrow A/M = L$$

↑ natural inclusion ↑ natural surjection
 $f \mapsto f + M$.

Clearly L is of finite type over k , being generated by the images of x_0, \dots, x_n .

By Zariski's Lemma, since k is alg. closed,

$k \longrightarrow L$ is an isomorphism. Let

$\Psi: k \longrightarrow L$ be the above isomorphism,

and $\phi: L \longrightarrow k$ its inverse. Let $\xi_i = \Psi(x_i) \in L$, $i = 1, \dots, n$, and let $x_i = \phi(\xi_i)$, $i = 1, \dots, n$.

$$\begin{array}{c}
 k[x_1, \dots, x_n] \xrightarrow{\quad \text{onto} \quad} L \\
 x_i \mapsto \tilde{x}_i \\
 x_i \leftarrow \\
 x_i - x_i \mapsto \tilde{x}_i - \tilde{x}_i \\
 = 0
 \end{array}$$

Now $x_i - x_i$ maps to $\tilde{x}_i - \tilde{x}_i = 0$
 for $i = 1, \dots, n$ under the natural
 map $A = k[x_1, \dots, x_n] \xrightarrow{\quad \text{onto} \quad} L = A/\mathfrak{m}$.

Hence $x_i - x_i \in \mathfrak{m}$ $\forall i$.

In particular, with $\vec{x} = (x_1, \dots, x_n)$
 $\mathfrak{m}_{\vec{x}} \subseteq \mathfrak{m}$.

Now $\mathfrak{m}_{\vec{x}}$ is a max'l ideal (we just proved
 this moments ago!). So

$$\mathfrak{m}_{\vec{x}} = \mathfrak{m}.$$

Theorem (Hilbert's Nullstellensatz) Let k be an algebraically
 closed field, $A = k[x_1, \dots, x_n]$ a polynomial ring
 in n -variables over k with $n \geq 1$, and I a proper
 ideal of A . Then:

(a) There exists at least one point $\vec{x} = (x_1, \dots, x_n) \in k^n$
 such that $f(\vec{x}) = 0$ for all $f \in I$.

(b) If \mathfrak{m} is a maximal ideal of A , then
 there exists a unique point $\vec{x} = (x_1, \dots, x_n) \in k^n$
 such that $\mathfrak{m} = \langle x_1 - x_1, \dots, x_n - x_n \rangle$.

Proof:

We have already proved (b). To prove (a),
 pick a max'l ideal \mathfrak{m} containing I . From
 (b), $\mathfrak{m} = \langle x_1 - x_1, \dots, x_n - x_n \rangle$ for a unique
 $(x_1, \dots, x_n) \in k^n$. It follows that $I \subseteq \langle x_1 - x_1, \dots, x_n - x_n \rangle$,

whence $f(x_1, \dots, x_n) = 0$ for all $f \in I$. \checkmark

Remarks: 1. Recall if R is the ring of continuous functions on $I = [a, b] \subseteq \mathbb{R}$, then the maximal ideals of R are in bijection correspondence with points of I : If $x \in I$, set M_x equal to the set ofcts functions vanishing at x . Then M_x is max'l and $x \longleftrightarrow M_x$ is the bijection correspondence.

2. The statement of the above theorem is often called the "weak nullstellensatz" though it is equivalent to all other forms of the nullstellensatz.

Theorem (Hilbert's Nullstellensatz - II): Let k be an alg. closed field and I a proper ideal of $A = k[x_1, \dots, x_n]$ where $n \geq 1$. Let

$$V(I) = \{ \vec{x} \in k^n \mid g(\vec{x}) = 0 \ \forall g \in I \}$$

If $f \in A$ is such that $f(\vec{x}) = 0 \ \forall \vec{x} \in V(I)$, then there exists a positive integer m such that $f^m \in I$. In other words $f \in A$ vanishes at all points of $V(I)$ if and only if $f \in \sqrt{I}$.

Proof:

Suppose $f \in A$ such that $f^m \notin I$ for any positive integer m . By what we've proved in

earlier lectures, there exists a prime ideal \mathfrak{p} of A containing I such that $f \notin \mathfrak{p}$. This is because

$$\sqrt{I} = \bigcap_{\substack{\mathfrak{p} \supseteq I \\ \mathfrak{p} \in \text{Spec}(A)}} \mathfrak{p}$$

Recall: $\sqrt{I} := \{g \in A \mid g^m \in I \text{ for some } m\}$

Let

$$B = \left(\frac{A}{\mathfrak{p}} \right)_f.$$

Then B is of finite type over \mathbb{k} .

Reason: $B = \left(\left(\frac{A}{\mathfrak{p}} \right)^{[y]} \right) / \langle f^{y-1} \rangle$.

Let M be a max'l ideal of B and for $i=1, \dots, n$,

let x_i be the image of χ_i under the composite

$$A \rightarrow A/\mathfrak{p} \rightarrow B \rightarrow B/M. \quad \text{By Zariski's lemma,}$$

x_i may be regarded as an element of \mathbb{k} . It is clear (?) that $f(x_1, \dots, x_n) \neq 0$.

//