

Recall from last time: A ring, then $\text{Spec}(A)$ is the set of prime ideals of A . (If $A = 0$, then $\text{Spec}(A) = \emptyset$.)

If \mathfrak{a} is an ideal of A , then

$$V(\mathfrak{a}) := \{ \mathfrak{p} \in \text{Spec}(A) \mid \mathfrak{p} \supseteq \mathfrak{a} \}$$

Turns out (will be proven later):

$$V\left(\sum_{\alpha} \mathfrak{a}_{\alpha}\right) = \bigcap_{\alpha} V(\mathfrak{a}_{\alpha})$$

and

$$V\left(\bigcap_{i=1}^n \mathfrak{a}_i\right) = \bigcup_{i=1}^n V(\mathfrak{a}_i)$$

$$V(\langle 0 \rangle) = \text{Spec}(A)$$

$$V(A) = \emptyset$$

Can define a topology on $\text{Spec}(A)$ by declaring the $V(\mathfrak{a})$'s to be the closed sets in our topology.

Also for $f \in A$, if $D(f) = \{ \mathfrak{p} \in \text{Spec}(A) \mid f \notin \mathfrak{p} \}$ then

$D(f)$ is an open set in $\text{Spec}(A)$, $\mathcal{B} = \{ D(f) \mid f \in A \}$ is a basis for the topology on $\text{Spec}(A)$ and finally $D(f)$ can be identified (as a top. space) with $\text{Spec}(A_f)$.

Witt's Nullstellensatz

Artin-Tate:

Theorem (Artin-Tate Lemma): Let $A \rightarrow B \rightarrow C$ be ring homomorphisms with $B \rightarrow C$ an inclusion. Suppose A is Noetherian and C is a finite type algebra over A . If C

is finitely generated as a module over B , then B is also of finite type over A .

Proof:

Let c_1, \dots, c_n be a set of generators for C as an A -algebra. Let r_1, \dots, r_m be generators of C as a B -module.

Pick r_1, \dots, r_m so that $\{r_1, \dots, r_m\} \supset \{c_1, \dots, c_n\}$.

We have $b_{ij} \in B$, $1 \leq i \leq n$, $1 \leq j \leq m$

$$c_i = \sum_{j=1}^m b_{ij} r_j \quad i=1, \dots, n. \quad (\star)$$

We also have $\beta_{ijk} \in B$, $i, j, k = 1, \dots, m$ such that

$$r_i r_j = \sum_{k=1}^m \beta_{ijk} r_k \quad i, j = 1, \dots, m. \quad (\star\star)$$

Let B_0 be the A -algebra generated by the b_{ij} and the β_{ijk} . Then B_0 is of finite type over A .

Since A is Noetherian, by Hilbert's Basis Theorem, B_0 is also Noetherian.

We claim that C is finitely generated as a B_0 -module.

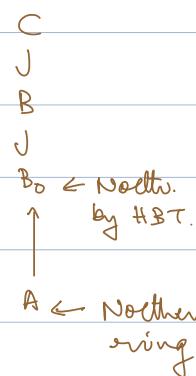
Indeed, given an element $c \in C$, it can be written a polynomial expression

$p(c_1, \dots, c_n)$ in c_1, \dots, c_n with coefficients in A , and whence

as a polynomial in r_1, \dots, r_m with coefficients in the

A -algebra generated by the b_{ij} defined above. (Use (\star))

Now any monomial in the r_j 's can be re-written



as a linear combination in the r_j with coefficients coming B_0 (use $(**)$). This proves the claim for we have just shown that r_1, \dots, r_m are B_0 -module generators of C .

Now, as observed earlier, B_0 is Noetherian (by HBT), and since C is f.g. as a B_0 -module, it is a Noetherian B_0 -module (by the HBT for modules). It follows that B is a f.g. B_0 -module.

Let x_1, \dots, x_d be B_0 -module generators of B .

So any element $b \in B$ can be written as

$$b = \sum_{i=1}^d \Delta_i x_i, \quad \Delta_i \in B_0.$$

Now Δ_i is a polynomial expression over A in the b_{ij}, B_{ijk} , and hence b can be written as a polynomial expression over A in $\{b_{ij}, B_{ijk}, x_i, \dots\}$.

In other words B is of finite type over A . //

Two lemmas:

Lemma 1: Suppose k is a field, and t is element (in a field extension of k) which is transcendental over k .

Then $k(t)$ is not of finite type over $k[t]$.

Explanation of notations: Let $A \rightarrow B$ be a ring map, and b_1, \dots, b_n elements in B . By $A[b_1, \dots, b_n]$ we mean the subring of B generated over A by b_1, \dots, b_n , i.e.,

the image of the ring map

$$A[X_1, \dots, X_n] \longrightarrow \mathbb{R}$$

given by $p \longmapsto p(a_1, \dots, a_n)$

where $A[X_1, \dots, X_n]$ is the poly. ring in n -variables over A .

By $k(t)$ we mean the field of fractions of $k[t]$, i.e. "rational functions" of the form $p(t)/q(t)$, $q(t) \neq 0$, p, q polynomials in t with coeffs in k .

$$k(t)$$

$$\downarrow \quad \hookrightarrow$$

$$k[t] \subset L$$

$$\downarrow \quad \subset$$

Prop. 2) Lemma: Since t is transcendental over k , $k[t]$ is the polynomial ring in one variable over k . Suppose $k(t)$ is of finite type over the polynomial ring $A = k[t]$. Let

$b_1, \dots, b_n \in k(t)$ be A -algebra generators of $k(t)$.

say $b_i = \frac{a_i(t)}{q_i(t)}$ where $a_i(t)$ and $q_i(t)$ are in $A = k[t]$, with $q_i(t)$ non-zero. Since $k[t]$ has an infinite number

of irreducible polynomials, we can find an irreducible polynomial $p(t) \in k[t]$ such that $p(t)$ is not a factor

of any of the $q_i(t)$, $i = 1, \dots, n$. Since b_1, \dots, b_n generate

$k(t)$ as an A -algebra, therefore $\frac{1}{p}$ is a polynomial

expression in $b_i = \frac{a_i(t)}{q_i(t)}$, $i = 1, \dots, n$ with coeffs in A .

This is not possible since $p(t)$ does not divide any

of the $q_i(t)$. Thus $k(t)$ is not of finite type over A . \square

$$\frac{1}{p} = \sum_i \alpha_{j_1 \dots j_n}(x) \left(\frac{a_1(t)}{a_{j_1}(t)} \right)^{j_1} \dots \left(\frac{a_n(t)}{a_{j_n}(t)} \right)^{j_n}$$

(Zariski's Lemma)

Lemma 2 (Zariski's version of the Nullstellensatz): Let $k \rightarrow L$

be an extension of fields such that L is of finite type over k . Then L is a finite dim'l vector space over k .