

Notation: A ring. $\text{Spec}(A) := \left\{ \mathfrak{p} \mid \mathfrak{p} \text{ a prime ideal in } A \right\}$

The "prime spectrum" of A
or simply the "spectrum" of A.

Last time: The nilradical of A = $\bigcap_{\mathfrak{p} \in \text{Spec} A} \mathfrak{p}$.
 \uparrow
 $\sqrt{0}$.

Definition: Let A be a ring, $I \subseteq A$ an ideal.

The radical of I, denoted \sqrt{I} , is

$$\sqrt{I} = \{ a \in A \mid a^n \in I \text{ for some } n \geq 0 \}.$$

Note: $I \subseteq \sqrt{I}$.

Remarks:

1. \sqrt{I} is the unique ideal corresponding to the nilradical of A/I .

$$\sqrt{I} \subseteq A \iff \sqrt{0} \subseteq A/I.$$

2. It follows

$$\sqrt{I} = \bigcap_{\substack{\mathfrak{p} \in \text{Spec} A \\ \mathfrak{p} \supseteq I}} \mathfrak{p}$$

3. If $f \in \text{Spec } A$, then there is a maximal ideal M of A containing f . To see this, note that we proved A/f has a maximal ideal (Zorn's Lemma).

4. If I is an ideal of A , then $\exists f \in \text{Spec } A$ s.t. $f \supseteq I$. Once again, pick a prime ideal in A/I and argue as in 3.

Definition: Let A be a ring. The Jacobson radical of A , denoted either $\text{rad}(A)$ or $J(A)$, is the intersection of all maximal ideals of A .

Note: $J(A) \supseteq \text{nilradical of } A = \sqrt{0}$.

Remark: Let A be a ring. If $a \in A$ is a unit, then $\exists b \in A$ s.t. $ab = 1$, whence $\langle a \rangle = A$. In particular a does not lie in any proper ideal of A ; and hence is no maximal ideal of A . On the other hand if a is a non-unit, then $\langle a \rangle \subsetneq A$, and hence a lies in some maximal ideal of A .

Conclusion: Let $S = \bigcup_{\text{max}(A)} M$, then

$\text{max}(A)$ ← the set of maximal ideals of A .

$A - S = \text{set of units of } A$.

Lemma: Let A be a ring and a an element of $J(A)$.

Then $1+a$ is a unit in A . More generally, if u is a unit in A , then $u+a$ is a unit in A .

Proof:

Suppose $u+a$ is not a unit. Then, by the Remark above, $u+a \in M$ for some max'l ideal M of A . Since $a \in J(A)$, a must lie in M , whence $u \in M$, a contradiction, since $M \subsetneq A$. //

Remark: In particular, if a is nilpotent, then $u+a$ is a unit for every unit u in A . A simpler proof of this is:

Recall the geometric series

$$\frac{1}{1-x} = 1+x+x^2+\dots+x^n+\dots$$

If x is nilpotent, this actually makes sense, since $0=x^{n+1}=x^{n+2}=\dots$ for some $n \geq 1$, and one checks easily that

$$(1-x)(1+x+x^2+\dots+x^n) = 1.$$

From here to show $u+x$ is a unit is

easy: $u+x = u(1+u^{-1}x) = u[1 - \underbrace{(-u^{-1}x)}_{\text{nilpotent.}}]$

Exercise: Suppose $p = a_0 + a_1x + \dots + a_nx^n \in A[x]$.

Show that p is a unit if and only if a_1, a_2, \dots, a_n are nilpotent in A and a_0 is a unit in A .

The determinant trick and Nakayama's lemma:

Let A be a ring, $M \in \text{Mod}_A$, M f.g. as an A -module and I an ideal of A .

Set

$$M^d = M \oplus \dots \oplus M \quad \begin{matrix} \downarrow \\ d\text{-times} \\ \downarrow \end{matrix}$$

Write elements of M^d as columns: $\begin{bmatrix} m_1 \\ \vdots \\ m_d \end{bmatrix}$.

Can be identified

Note that $\text{End}_A(M^d) = M_{d \times d}$ ($\text{End}(M)$).

\uparrow $d \times d$ matrices.

?

$$\Phi: M \oplus \dots \oplus M \longrightarrow M \oplus \dots \oplus M$$

is an A -map, then Φ can be represented

as

$$\Phi = \begin{pmatrix} \varrho_{11} & \dots & \varrho_{1d} \\ \varrho_{21} & \dots & \varrho_{2d} \\ \vdots & & \vdots \\ \varrho_{d1} & \dots & \varrho_{dd} \end{pmatrix}, \quad \varrho_{ij} \in \text{End}(M)$$

with $\Phi \begin{pmatrix} m_1 \\ \vdots \\ m_d \end{pmatrix} = \begin{pmatrix} \sum_j \varrho_{1j} m_j \\ \vdots \\ \sum_j \varrho_{dj} m_j \end{pmatrix}$

Now suppose M is finitely generated say

$$m = \langle m_1, \dots, m_e \rangle.$$

Suppose further

$$M = IM.$$

Then we have elements $a_{ij} \in I$ $1 \leq i, j \leq e$

such that

$$m_{ij} = \sum_{j=1}^e a_{ij} m_j \quad \text{--- (1)}$$

Regard each a_{ij} as an element of $\text{End}(M)$ via "multiplication by a_{ij} ". We have a map

$$\begin{array}{ccc} M^e & \xrightarrow{\Phi} & M^e \\ \begin{bmatrix} x_1 \\ \vdots \\ x_e \end{bmatrix} & \mapsto & \left(a_{ij} \right) \begin{bmatrix} x_1 \\ \vdots \\ x_e \end{bmatrix} \end{array}$$

$$\text{Note } (I - \Phi) \begin{bmatrix} m_1 \\ \vdots \\ m_e \end{bmatrix} = 0. \quad (\text{from (1)})$$

Multiply on the left by the cofactor matrix, and we see

$$\begin{pmatrix} \det(I - \Phi) & 0 & \cdots & 0 \\ 0 & \det(I - \Phi) & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \det(I - \Phi) \end{pmatrix} \begin{bmatrix} m_1 \\ \vdots \\ m_e \end{bmatrix} = 0$$

$$= 0 .$$

In particular:

$$\underbrace{\left\{ \det(I - (a_{ij})) \right\}}_{\substack{\text{ii} \\ \Delta}} m_k = 0 \quad \text{for } k = 1, \dots, e.$$

Then $\Delta \cdot M = 0$, since $M = \langle m_1, \dots, m_e \rangle$.

Now

$$\Delta = \begin{vmatrix} 1-a_{11} & -a_{12} & \dots & -a_{1e} \\ -a_{21} & 1-a_{22} & \dots & -a_{2e} \\ \vdots & \vdots & & \vdots \\ -a_{e1} & -a_{e2} & \dots & 1-a_{ee} \end{vmatrix}$$

$$= 1+x, \text{ where } x \in I.$$

Reposition: Let A, I, M be as above, with $M = IM$.

Then $\exists x \in I$ such that $(1+x)M = 0$.

($\text{Pf: } \Delta \cdot M = 0$, and $\Delta = 1+x$).

Theorem (Nakayama's lemma): Let A be a ring, I an ideal contained in $J(A)$, M a f.g. A -module such that $IM = M$. Then $M = 0$.

Prof:

We know $\exists x \in I$ s.t. $(1+x)M = 0$. From earlier observations, $1+x$ is a unit, since $x \in J(A)$.

Hence $M = 0$.

Corollary 1 Suppose $N \subseteq M$ is such that

$M = N + IM$. Then $N = M$.

(since this is a corollary to the Thm, the hypothesis of the Thm stand; in particular $I \subset J(A)$)

Proof: Apply the theorem to M/N , and note that $I(M/N) = \frac{IM+N}{N}$. //

Corollary 2: Suppose we have $x_1, \dots, x_k \in M$ such that their images $\bar{x}_1, \dots, \bar{x}_k \in M/IM$ generate M/IM as an A -module. Then x_1, \dots, x_k generate M as an A -module.

Proof:

Let $N = \langle x_1, \dots, x_k \rangle \subseteq M$. Apply the previous corollary to N , for note that $M = IM + N$. //

The Spectrum of a commutative ring:

Let A be a ring. For an ideal I in A , define

$$V(I) = \{ \mathfrak{p} \in \text{Spec}(A) \mid \mathfrak{p} \supseteq I \}.$$

Note that $V(I)$ is non-empty if and only if I is a proper ideal of A .

Easy to see that there is a bijection

$$V(I) \longleftrightarrow \text{Spec}(A/I)$$

$$\wp \longleftrightarrow \wp/I$$

Facts:

$$V(\bigcap_{\alpha} I_{\alpha}) = \bigcup V(I_{\alpha}) \text{ for finite intersections of } I_{\alpha}$$

$$V(\sum_{\alpha} I_{\alpha}) = \bigcap V(I_{\alpha}), \text{ arbitrary sum of } I_{\alpha}.$$

$$V(A) = \emptyset$$

$$V(0) = \text{Spec}(A).$$

Therefore we can define a topology on $\text{Spec}(A)$ by decreeing that its closed sets are $V(I)$, I an ideal of A .

Remark: Suppose I is generated by $a_{\alpha}, \alpha \in \sum$.

Then $I = \sum_{\alpha \in \sum} \langle a_{\alpha} \rangle$. Hence, if you believe the above statements,

$$V(I) = \bigcap_{\alpha \in \sum} V(\langle a_{\alpha} \rangle).$$

Therefore open sets in $\text{Spec}(A)$ are given by unions of sets of the form

$$D(a) := \text{Spec}(A) - V(\langle a \rangle)$$

Clark (from comments made during the lecture
on localizations) that

$$D(a) = \text{Spec}(A_a)$$

Thus $\mathcal{B} = \{D(a) \mid a \in A\}$ is a base for
the topology on $\text{Spec}(A)$, and
 $D(a) \cap D(b) = D(ab)$, $a, b \in A$.