

We were proving Hilbert's Basis Theorem:

"If A is Noetherian and B is a finite type algebra over A , then B is Noetherian."

We'd reduced to the case $B = A[X]$.

Suppose $A[X]$ is not Noetherian. Then we can find an ascending

$$I_1 \subsetneq I_2 \subsetneq \dots \subsetneq I_n \subsetneq \dots$$

of ideals of $A[X]$ which doesn't become stationary.

Let $I = \bigcup_n I_n$. Let $f_i \in I$ be an element

s.t. $0 \neq f_i$ and $\deg(f_i) \leq \min \{ \deg(f) \mid f \in I \}$.

We know that $\langle f_i \rangle \subsetneq I$.

Now pick $f_2 \in I \setminus \langle f_1 \rangle$ such that $f_2 \neq 0$ and $\deg f_2 = \min \{ \deg(f) \mid f \in I \setminus \langle f_1 \rangle \}$

Continue this way. If we've picked f_1, \dots, f_k , then pick f_{k+1} s.t. $f_{k+1} \neq 0$ and $f_{k+1} \in I \setminus \langle f_1, \dots, f_k \rangle$.

Let $n_i = \deg(f_i)$. Then

$$n_1 \leq n_2 \leq \dots \leq n_k \leq \dots$$

Let $a_k = \text{leading coefficient of } f_k$, $k \in \mathbb{N}$.

So $a_k \in A$.

Since A is Noetherian, the chain of ideals

$$\langle a_1 \rangle \subset \langle a_1, a_2 \rangle \subset \dots \subset \langle a_1, \dots, a_k \rangle \subset \dots$$

in A must become stationary. Therefore, for some k we have

$$\langle a_1, \dots, a_k \rangle = \langle a_1, \dots, a_k, a_{k+1} \rangle$$

Therefore there exist $c_1, \dots, c_k \in A$ s.t.

$$a_{k+1} = \sum_{j=1}^k c_j a_j$$

$$\text{Let } g = f_{k+1} - \sum_{j=1}^k c_j X^{n_{k+1} - n_j} f_j \in A[X]$$

Now $g \notin \langle f_1, \dots, f_k \rangle$, for if it did, then

$f_{k+1} \in \langle f_1, \dots, f_k \rangle$. Therefore, by our choice

of f_{k+1} and the defn of n_{k+1} ,

$$\deg(g) \geq n_{k+1}.$$

On the other hand, clearly $\deg(g) < n_{k+1}$

(check!). This is a contradiction. //

Remark: We've used the fact that if A is Noetherian, $A \xrightarrow{\phi} B$ a surjective ring homomorphism, then B is also Noetherian. Indeed, if J is an ideal of B , then $J = I /_{\ker \phi}$ for a unique ideal I of A containing $\ker \phi$. By hyp., $I = \langle a_1, \dots, a_k \rangle$, and hence $J = \langle \phi(a_1), \dots, \phi(a_k) \rangle$.

Definition: Let A be a ring. An A -module M is said to be a Noetherian A -module if every submodule of M is finitely generated.

Remark: TFAE

1. M is Noetherian
2. Every chain of submodules of M

$$M_1 \subset M_2 \subset \dots \subset M_n \subset \dots$$
 stabilizes (i.e. becomes stationary).
3. Every non-empty collection of submodules of M has a maximal element (w.r.t. inclusion).

Prof: - old hat. //

Theorem (Hilbert's Basis Theorem for modules): Let A be a Noetherian ring and M a f.g. A -module. Then M is a Noetherian module.

Prof:

Note that the isomorphic image of a Noetherian module is Noetherian (prof exactly as in an earlier remark).

Since M is f.g., there is a surjective A -map

$$A^n \xrightarrow{\quad \quad \quad} M, \quad e_i \mapsto m_i$$

$\underset{\substack{n \text{ "def."} \\ \bigoplus_{i=1}^n A}}{\longrightarrow}$

 \uparrow standard basis of A^n
 \uparrow m_1, \dots, m_n
 \uparrow generators of M .

Therefore, without loss of generality, we may assume $M = A^n$. We will to assume.

Since A is Noetherian, we are done if $n=1$.

Assume A^{n-1} is Noetherian, for $n>1$.

We can identify A^{n-1} with the submodule

$$\{(0, a_2, a_3, \dots, a_n) \mid a_2, \dots, a_n \in A\}$$

of A^n .

Let

$$\pi: A^n \longrightarrow A$$

be the projection to the first coordinate, i.e.,

$$\pi(a_1, \dots, a_n) = a_1.$$

Now π is surjective.

Let $U \subseteq A^n$ be an A -submodule. Let

$I = \pi(U) \subseteq A$. Then I is an ideal in A , and

A being Noetherian, I is f.g.

Note $\ker(U \rightarrow I) = U \cap A^{n-1}$, where we are identifying A^{n-1} with a submodule of A^n as above. Do we have a short exact sequence

$$0 \longrightarrow U \cap A^{n-1} \longrightarrow U \xrightarrow{\pi|_U} I \longrightarrow 0$$

f.g. by induction hypothesis

f.g. since A is Noetherian as a ring.

It follows that U is f.g. //

Remark: Let $A \xrightarrow{f} B$ be a ring map, and \mathfrak{p} a prime ideal in B . Then $f^{-1}(\mathfrak{p}) = \mathfrak{p}'$ is a prime ideal in A . Indeed if $x, y \in A$ and $xy \in \mathfrak{p}'$, then $f(xy) = f(x)f(y) \in \mathfrak{p}$, whence either $f(x)$ or $f(y)$ is in \mathfrak{p} , say $f(x)$ for definiteness. Then $x \in \mathfrak{p}$. (You may use this if you wish in Problem 6 of HW 1).

Localization at an element: Let A be a ring and $f \in A$ an element. Let $S = \{1, f, f^2, \dots, f^n, \dots\}$. Note that S is a multiplicative system. We write M_f for $S^{-1}M$, for $M \in \text{Mod}_A$.

From problems in HW 1, the prime ideals of A_f obtained as follows: let

$$\begin{aligned} A &\xrightarrow{L} A_f \\ x &\mapsto x_1 \end{aligned}$$

be the localization map. Then $\mathfrak{q} \subseteq A_f$ is a prime ideal of A_f if and only if $f = L^{-1}(\mathfrak{q})$ is a prime ideal of A s.t. $f \notin \mathfrak{q}$.

The Nilradical and the Jacobson radical:

Let A be a ring. An element $a \in A$ is said to be nilpotent if $a^n = 0$ for some $n \geq 0$.

Proposition: The set of nilpotent elements of a ring A is an ideal of A .

Proof:

Let N be the set of nilpotents of A .

If $a \in A$, and $x \in N$, then clearly $ax \in N$.

Suppose $x, y \in N$. We have a non-negative integer n such that

$$x^n = y^n = 0.$$

Then

$$(x+y)^{2n} = \sum_{i=0}^{2n} \binom{2n}{i} x^i y^{2n-i} = 0 \quad //$$

Definition: The set of nilpotent elements of a ring A is called the nilradical of A . It is often denoted $\sqrt{0}$. (Also often as $\text{rad}(A)$).

Theorem: $\sqrt{0} = \bigcap_{\substack{\beta \text{ a prime} \\ \text{ideal of } A}} \beta$

Proof:

Note the left side is contained in the right, for if x is nilpotent and β a prime ideal, then $x^n = 0 \in \beta$ for some $n \geq 0$, where $x \in \beta$.

It remains to show that if an element lies in every prime ideal it must be nilpotent.

We'll prove the contrapositive namely, if $a \in A$ is not nilpotent then there is a prime ideal β of A which does not contain a .

Consider the localization A_a . We have shown (earlier) that every ^{non-zero} ring has a prime ideal.

Claim: $A_a \neq 0$.

Pf: If $A_a = 0$, then $\frac{a}{1} = 0$, i.e. for some $n \geq 0$, $a^n = 0$, i.e. a is nilpotent.

Therefore A_a has a prime ideal, say \mathbb{Q} .

Let β be the inverse image of \mathbb{Q} under the localization map $A \rightarrow A_a$. We've seen that β is a prime ideal of A which is disjoint from $S = \{a^n \mid n \geq 0\}$. It follows that $a \notin \beta$. //

(Have used Problem 6 from HW1).

Edit: Should be \notin and not \in .