

- Noetherian rings & modules (Hilbert basis theorem)
- Nilpotents, nilradical, Jacobson radical
- Determinant trick, Nakayama's lemma
- ?

Definition Let A be a ring, M an A -module, and $\{m_\alpha\}_{\alpha \in \Lambda}$ a collection of elements in M . The submodule $\langle m_\alpha \rangle^M$ generated by $\{m_\alpha\}$ is the smallest submodule of M containing every m_α . This is denoted $\langle m_\alpha | \alpha \in \Lambda \rangle$.

If $\{m_\alpha\} = \{m_1, \dots, m_k\}$ is a finite set, then we often write $\langle m_1, \dots, m_k \rangle$ for $\langle m_\alpha | \alpha \in \Lambda \rangle$.

Note: $\langle m_\alpha \rangle = \{a_1m_{\alpha_1} + \dots + a_km_{\alpha_k} \mid a_i \in A, i=1, \dots, k\}$,

i.e. $\langle m_\alpha \rangle$ is the set of finite linear combinations (with scalars from A) of elements in $\{m_\alpha | \alpha \in \Lambda\}$.

An A -module M is said to be finitely generated if there exist a finite number of elements $m_1, \dots, m_k \in M$ s.t. $M = \langle m_1, \dots, m_k \rangle$.

Since an ideal \mathfrak{a} of A is the same as an A -submodule of A , it makes to talk about finitely generated ideals in A .

2

There are three possibilities for denoting a principal ideal; $(a) = \langle a \rangle = aA$.

Theorem: Let A be a ring. The following are equivalent:

- (a) Every ideal of A is finitely generated
- (b) The ascending chain condition holds: Every ascending chain of ideals in A

$$I_1 \subset I_2 \subset I_3 \subset \dots \subset I_n \subset \dots$$

becomes stationary.

- (c) The maximal condition for ideals holds: If Σ is a non-empty set of ideals in A , then Σ contains a maximal element (w.r.t. inclusion).

Proof:

(a) \Rightarrow (b) Let

$$I_1 \subset I_2 \subset I_3 \subset \dots \subset I_n \subset \dots$$

be an ascending chain of ideals. Then

$$I = \bigcup_n I_n$$

is an ideal. By hypothesis, $I = \langle a_1, \dots, a_k \rangle$ for some $a_1, \dots, a_k \in A$. Each $a_i \in I_{j_i}$ for some j_i . Pick n s.t. $n \geq j_1, \dots, j_k$. Then $a_1, \dots, a_k \in I_{n+m}$, for all $m \geq 0$. It follows that

$$I = \langle a_1, \dots, a_k \rangle \subseteq I_{n+m} \subseteq I \quad \forall m \geq 0.$$

Hence $I = I_n = I_{n+1} = \dots = I_{n+m} = \dots$,

i.e. the chain of ideals $\dots \subset I_j \subset I_{j+1} \subset \dots$

becomes stationary.

(b) \Rightarrow (c). Suppose Σ is a non-empty collection of ideals in A . Suppose Σ does not have a maximal element. Pick $I_1 \in \Sigma$. Then there exists $I_2 \in \Sigma$ s.t. $I_1 \subsetneq I_2$. Suppose we have picked $I_1 \subsetneq I_2 \subsetneq \dots \subsetneq I_k$ with each $I_j \in \Sigma$. Since Σ does not have a max'l element, there exists $I_{k+1} \in \Sigma$ s.t. $I_k \subsetneq I_{k+1}$. We have therefore found an ascending chain of ideals which is not stationary, contradicting (b).

(c) \Rightarrow (a) Let I be an ideal which is not finitely generated. Pick $a_1 \in I$. Now $\langle a_1 \rangle \subsetneq I$, and hence $\exists a_2 \in I \setminus \langle a_1 \rangle$. Suppose we have picked $a_1, \dots, a_k \in I$ s.t.

$$\langle a_1 \rangle \subsetneq \langle a_1, a_2 \rangle \subsetneq \dots \subsetneq \langle a_1, \dots, a_k \rangle$$

Since I is not f.g., $\langle a_1, \dots, a_k \rangle \subsetneq I$, and hence we can find $a_{k+1} \in I \setminus \langle a_1, \dots, a_k \rangle$.

Then $\langle a_1, \dots, a_k \rangle \subsetneq \langle a_1, \dots, a_k, a_{k+1} \rangle$. Inductively we have constructed a collection of ideals $\{ \langle a_1, \dots, a_k \rangle \mid k=1, 2, \dots \}$ which has no max'l element. //

Definition: A ring A is said to be noetherian if it satisfies any of the equivalent conditions of the above theorem.

Definition: Let $f: A \rightarrow B$ be a ring homomorphism.

We say B is of finite-type over A (or finitely generated as an algebra over A) if there exist a finite number of elements $b_1, \dots, b_k \in B$ such that every member b of B can be written as finite sum of the form

$$b = \sum_{m_i \geq 0} f(a_{m_1, \dots, m_k}) b_1^{m_1} \cdots b_k^{m_k}, \quad a_{m_1, \dots, m_k} \in A.$$

Short exact sequences:

A sequence of A -modules

$$M^0: \cdots \rightarrow M_i \xrightarrow{d^i} M_{i+1} \xrightarrow{d^{i+1}} \cdots$$

is called a complex (or a cohomology complex) if $d^{i+1} \circ d^i = 0 \quad \forall i$.

M^i is said to be exact at i if

$$\ker(d^{i+1}) = \text{im}(d^i).$$

M^i is said to be exact if it is exact at every i .

A short exact sequence is a complex of the form

$$(*) \quad 0 \rightarrow M' \xrightarrow{\phi} M \xrightarrow{\psi} M'' \rightarrow 0$$

which is exact, i.e.,

- $\ker \phi = 0$
- $\text{im } \phi = \ker \psi$
- $\text{im } \psi = M''$

}

Let $(*)$ be exact:

A little thought shows that the following diagram commutes, with downward arrows being isomorphisms

$$\begin{array}{ccccccc}
 0 & \longrightarrow & M' & \xrightarrow{\phi} & M & \xrightarrow{\psi} & M'' \longrightarrow 0 \\
 & & \downarrow & & \downarrow & & \downarrow \\
 0 & \longrightarrow & K & \longrightarrow & M & \longrightarrow & M/K \longrightarrow 0 \\
 & & \uparrow & & \uparrow & & \\
 & & \text{ker } \psi & & \text{natural} & & \\
 & & & & \text{injection } (m \mapsto m + K) & & \\
 & & & & \text{natural} & & \\
 & & & & \text{inclusion} & &
 \end{array}$$

Lemma: Let A be a ring and

$$0 \longrightarrow M' \xrightarrow{\phi} M \xrightarrow{\psi} M'' \longrightarrow 0$$

a short exact sequence of A -modules. If M' and M'' are f.g. as A -modules then M is f.g. as an A -module.

Proof:

We will identify M' with $\ker(M \rightarrow M'')$ and M'' with $M/\ker(M \rightarrow M'')$ (see Remark above).

Suppose $M'' = \langle y_1, \dots, y_k \rangle$, $y_i \in M''$ and

$$M' = \langle x_1, \dots, x_k \rangle, x_i \in M'.$$

Since $M \rightarrow M''$ is surjective, we can (and will) pick pre-images $m_1, \dots, m_k \in M$ of y_1, \dots, y_k with $m_i \mapsto y_i$, $i=1, \dots, k$.

Let $m \in M$. Let $y = \psi(m)$. Then
 $\exists a_1, \dots, a_k \in A$ s.t.

$$y = a_1 y_1 + \dots + a_k y_k.$$

Now consider

$$z = m - (a_1 m_1 + \dots + a_k m_k) \quad \text{--- (*)}$$

$$\begin{aligned} \text{Clearly } \psi(z) &= \psi(m) - \sum_{i=1}^k a_i \psi(m_i) \\ &= \psi(m) - \psi(m) \\ &= 0 \end{aligned}$$

So $z \in \ker(\psi) = M'$. Since $M' = \langle x_1, \dots, x_d \rangle$,

$$z = \sum_{j=1}^d \alpha_j x_j, \quad \alpha_j \in A. \quad \text{--- (**)}$$

From (*) and (**), get

$$m = \sum_{j=1}^d \alpha_j x_j + \sum_{i=1}^k a_i m_i$$

It follows that $M = \langle x_1, \dots, x_d, m_1, \dots, m_k \rangle$. //

Theorem (Hilbert's Basis Theorem): Let A be a noetherian ring and B an A -algebra of finite type. Then B is also noetherian.

Proof:

Since B is of finite type, there is a surjective ring homomorphism

$$A[x_1, \dots, x_n] \longrightarrow B$$

where $A[x_1, \dots, x_n]$ is the poly. ring in n -variables over A .

In greater detail, suppose $b_1, \dots, b_n \in B$ are algebra generators for B over A . Consider the map

$$A[X_1, \dots, X_n] \longrightarrow B$$

given by

$$p \longmapsto p(b_1, \dots, b_n)$$

Since every element of B is of the form $\sum a_{m_1, \dots, m_n} b_1^{m_1} \dots b_n^{m_n}$, this map is surjective.

Clearly it is therefore enough to show that $A[X_1, \dots, X_n]$ is noetherian.

By recursion (or induction) it is enough to prove $A[X]$ is noetherian.