

LECTURE 18

Date of Lecture: March 17, 2022

We fix a ring R throughout the lecture, and all modules appearing are R -modules. Complexes will be complexes of R -modules.

1. Mapping cones

1.1. Conventions. Let $M = \bigoplus_{j=1}^e M_j$ and $N = \bigoplus_{i=1}^d N_i$ be R -modules. We will represent an R -map $\varphi: M \rightarrow N$ in a matrix form

$$\varphi = \begin{bmatrix} \varphi_{11} & \dots & \varphi_{1e} \\ \vdots & \ddots & \vdots \\ \varphi_{d1} & \dots & \varphi_{de} \end{bmatrix}$$

where $\varphi_{ij} \in \text{Hom}_R(M_j, N_i)$, $1 \leq i \leq d$ and $1 \leq j \leq e$. If we write elements of M (respectively N) as column vectors, with the j^{th} (respectively i^{th}) entry from M_j (respectively N_i), then one checks easily that for $m \in M$ whose j^{th} component is m_j ,

$$\varphi(m) = \begin{bmatrix} \varphi_{11} & \dots & \varphi_{1e} \\ \vdots & \ddots & \vdots \\ \varphi_{d1} & \dots & \varphi_{de} \end{bmatrix} \begin{bmatrix} m_1 \\ \vdots \\ m_e \end{bmatrix}$$

In these matters, it is useful to make a distinction between the row matrix $[m_1 \dots m_e]$ and the d -tuple (m_1, \dots, m_e) . We identify the latter with the column vector $\begin{bmatrix} m_1 \\ \vdots \\ m_e \end{bmatrix}$. Thus

$$(1.1.1) \quad (m_1, \dots, m_e) \neq [m_1 \dots m_e].$$

Each side is the transpose of the other. In particular, elements of M can be written as d -tuples which is typographically more convenient.

It is easy to see that if $L = \bigoplus_{k=1}^f L_k$ and $\psi: L \rightarrow M$ is second map, and $\psi = [\psi_{jk}]$ the corresponding matrix representation, then $\varphi \circ \psi$ is represented by the matrix multiplication $[\varphi_{ij}][\psi_{jk}]$.

1.2. Translations. Let A^\bullet be a complex and n an integer. The *translation of A^\bullet by n units* is the complex $A^\bullet[n]$, where

$$(1.2.1) \quad (A^\bullet[n])^i = A^{n+i} \quad \text{and} \quad d_{A^\bullet[n]}^i = (-1)^n d_{A^\bullet}^{n+i}.$$

If $n > 0$, $A^\bullet[n]$ is essentially the translation of A^\bullet by n units to the left. Note that

$$(1.2.2) \quad H^i(A^\bullet[n]) = H^{n+i}(A^\bullet).$$

1.3. Mapping cones. Let $\varphi: A^\bullet \rightarrow B^\bullet$ be a map of complexes. Define the *mapping cone of φ* to be the complex C_φ^\bullet whose n^{th} graded piece is

$$(1.3.1) \quad C_\varphi^n = B^n \oplus A^{n+1}$$

and whose differentials $d_{C_\varphi}^n: C_\varphi^n \rightarrow C_\varphi^{n+1}$ are given by the formula

$$(1.3.2) \quad d_{C_\varphi}^n = \begin{bmatrix} d_B^n & \varphi^{n+1} \\ 0 & -d_A^{n+1} \end{bmatrix}$$

Now $\begin{bmatrix} d_B^{n+1} & \varphi^{n+2} \\ 0 & -d_A^{n+2} \end{bmatrix} \begin{bmatrix} d_B^n & \varphi^{n+1} \\ 0 & -d_A^{n+1} \end{bmatrix} = \begin{bmatrix} d_B^{n+1}d_B^n & d_B^{n+1}\varphi^{n+1} - \varphi^{n+1}d_A^{n+1} \\ 0 & d_A^{n+2}d_A^{n+1} \end{bmatrix} = 0$, where we are

using the fact that φ is a cochain map to conclude that $d_B^{n+1}\varphi^{n+1} - \varphi^{n+2}d_A^{n+1} = 0$. In other words $(C_\varphi^\bullet, d_{C_\varphi}^\bullet)$ is indeed a complex.

There is an obvious short exact sequence of graded R -modules

$$(1.3.3) \quad 0 \longrightarrow B^\bullet \xrightarrow{i} C_\varphi^\bullet \xrightarrow{\pi} A^\bullet[1] \longrightarrow 0$$

where $i^n: B^n \rightarrow C_\varphi^n = B^n \oplus A^{n+1}$ is the canonical inclusion, and $\pi^n: B^n \rightarrow A^{n+1}$ is the canonical projection $B^n \oplus A^{n+1} \rightarrow A^{n+1}$. In matrix notation

$$i^n = \begin{bmatrix} \mathbf{1} \\ 0 \end{bmatrix} \quad \text{and} \quad \pi^n = \begin{bmatrix} 0 & \mathbf{1} \end{bmatrix}.$$

Thus, at the n^{th} level (1.3.3) is standard split exact sequence

$$0 \longrightarrow B^n \longrightarrow B^n \oplus A^{n+1} \longrightarrow A^{n+1} \longrightarrow 0$$

We claim that (1.3.3) is a short exact sequence of complexes (upgrading it from a mere short exact sequence of graded modules). This follows from elementary “matrix multiplication”, in other words from the following readily verified identities:

$$\begin{bmatrix} \mathbf{1} \\ 0 \end{bmatrix} [d_B^n] = \begin{bmatrix} d_B^n & \varphi^{n+1} \\ 0 & -d_A^{n+1} \end{bmatrix} \begin{bmatrix} \mathbf{1} \\ 0 \end{bmatrix} \quad \text{and} \quad [0 \quad \mathbf{1}] \begin{bmatrix} d_B^n & \varphi^{n+1} \\ 0 & -d_A^{n+1} \end{bmatrix} = [-d_A^{n+1}] [0 \quad \mathbf{1}]$$

Before we give in to our natural instinct and write out the long exact sequence associated to (1.3.3), let us work out the connecting map $\delta: H^n(A^\bullet[1]) \rightarrow H^{n+1}(B^\bullet)$. To that end, suppose $a \in Z^n(A^\bullet[1]) = Z^{n+1}(A^\bullet)$. A pre-image in C_φ^n is $(0, a)$ (keep in mind our conventions, see especially (1.1.1) and the conventions mentioned around that relation). Now $d_{C_\varphi}(0, a) = (\varphi(a), -d_A(a)) = (\varphi(a), 0) = i(\varphi(a))$. Hence $\delta[a] = [\varphi[a]]$. In other words $\delta = \varphi_*$. In greater detail, the following diagram commutes

$$(1.3.4) \quad \begin{array}{ccc} H^n(A^\bullet[1]) & \xrightarrow{\delta} & H^{n+1}(B^\bullet) \\ \parallel & & \parallel \\ H^{n+1}(A^\bullet) & \xrightarrow{\varphi_*} & H^{n+1}(B^\bullet) \end{array}$$

The long exact sequence associated with (1.3.3) then is:

$$(1.3.5) \quad \dots \longrightarrow H^n(A^\bullet) \xrightarrow{\varphi_*} H^n(B^\bullet) \xrightarrow{i_*} H^n(C_\varphi^\bullet) \xrightarrow{\pi_*} H^{n+1}(A^\bullet) \xrightarrow{\varphi_*} \dots$$

1.4. Quasi-isomorphisms. A map of complexes $\varphi: A^\bullet \rightarrow B^\bullet$ is said to be a *quasi-isomorphism* if $\varphi_*: H^n(A^\bullet) \rightarrow H^n(B^\bullet)$ is an isomorphism for every $n \in \mathbf{Z}$.

Here is the main theorem

Theorem 1.4.1. *A map of complexes $\varphi: A^\bullet \rightarrow B^\bullet$ is a quasi-isomorphism if and only if the mapping cone C_φ^\bullet is exact.*

Proof. Consider the induced exact sequence (1.3.5). If C_φ^\bullet is exact, then $H^n(C_\varphi^\bullet) = 0$ for all n , whence $0 \rightarrow H^n(A^\bullet) \xrightarrow{\varphi_*} H^n(B^\bullet) \rightarrow 0$ is exact for all n , which means $\varphi_*: H^n(A^\bullet) \rightarrow H^n(B^\bullet)$ is an isomorphism for every n .

For the converse, suppose φ is a quasi-isomorphism. From the exact sequence (1.3.5) one deduces that $\ker i_* = \text{im}(\varphi_*) = H^n(B^\bullet)$, whence $i_*: H^n(B^\bullet) \rightarrow H^n(C_\varphi^\bullet)$ is the zero map. Since $\text{im}(\pi_*) = \ker \varphi_* = 0$, we see that $\pi_*: H^n(C_\varphi^\bullet) \rightarrow H^{n+1}(A^\bullet)$ is the zero map. Since the incoming and the outgoing maps at $H^n(C_\varphi^\bullet)$ are zero in the exact sequence (1.3.5), $H^n(C_\varphi^\bullet) = 0$. In other words C_φ^\bullet is exact. \square

REFERENCES

[I] B. Iversen, *Cohomology of Sheaves*, Universitext, Springer-Verlag, Berlin, 1986.