
LECTURE 17

Date of Lecture: March 15, 2022

1. Short exact sequence of complexes

1.1. The connecting homomorphism. We defined the notion of an exactness
on pp.3–4 of Lecture 10. It is clear that a complex C• is exact at the nth place if
and only if Hn(C•) = 0 and it is exact if and if Hn(C•) = 0 for all n ∈ Z.

For a cochain map ϕ : P • → Q•, we will write ϕ∗ for Hn(ϕ), and suppress the
superscript n.

Let

(1.1.1) 0 −→ P •
ϕ−→ Q•

ψ−→ R• −→ 0

be a short exact sequence of complexes, i.e. in the following commutative diagram
(which has an infinite number of rows), every row is exact.

(1.1.2)

...
...

...

0 // Pn+1 ϕn+1

//

d

OO

Qn+1 ψn+1

//

d

OO

Rn+1 //

d

OO

0

0 // Pn
ϕn

//

d

OO

Qn
ψn

//

d

OO

Rn //

d

OO

0

0 // Pn−1
ϕn−1

//

d

OO

Qn−1
ψn−1

//

d

OO

Rn−1 //

d

OO

0

...

d

OO

...

d

OO

...

d

OO

Given a short exact sequence of complexes, there are the so called “connecting
maps” from Hn(R•) to Hn+1(P •). To define them we first define a map from
Zn(R•) to Hn+1(P •), and this map “descends” to Hn(R•). In defining this map it
will be useful to look at the commutative diagram (1.1.2) to see where the elements
which come up in the “diagram chase” live.

To reduce notational baggage, we will drop superscripts for maps (e.g. we will
write ϕ for ϕj). Let r ∈ Zn(R•), and pick a pre-image q ∈ Qn of r (under ψ).
Then ψ(dq) = dr = 0. This means there is a unique element p ∈ Pn+1 such
that ϕ(p) = dq. Moreover, since ϕ(dp) = d(dq) = 0, whence dp = 0 (ϕ being
injective). In other words p ∈ Zn+1(P •). Let [p] ∈ Hn+1(P •) be the cohomology
class determined by p (or, in plain terms, let [p] = p+Bn+1(P •)). The situation is
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perhaps best portrayed in the following schematic way:

(1.1.3)

p
� // dq

q
_

OO

� // r

We claim that [p] does not depend upon the choice the element q ∈ Qn mapping
to r, i.e. the association r 7→ [p] just described gives a well defined map Zn(R•)→
Hn+1(P •). To that end, suppose q′ ∈ Qn is another element such that ψ(q′) = r.
Then ψ(q′ − q) = 0, whence there is a unique element p∗ ∈ Pn such that ϕ(p∗) =
q′ − q. It is easy to check that dq′ = ϕ(p+ dp∗). Since [p+ dp∗] = [p], our claim is
proved. Thus we have a well defined map

δ′ : Zn(R•) −→ Hn+1(P •).

We will now show that δ′(Bn(R•)) = 0. To see this, suppose r ∈ Bn(R•), say
r = dr∗. Let q∗ ∈ Qn−1 be an element such that ψ(q∗) = r∗. Such a q∗ exists
because ψ is surjective. Let q = dq∗. Then ψ(q) = r. Further, dq = d2q∗ = 0. The
unique element p ∈ Pn+1 mapping to dq is therefore p = 0. Since δ′(r) = [p] = 0,
we are done. One consequence of this observation is that we now have a well defined
map

(1.1.4) δ = δn : Hn(R•) −→ Hn+1(P •)

such that the following diagram commutes

Zn(R•)

����

δ′

((RRRRRRRRRRRRR

Hn(R•)
δ

// Hn+1(P •)

The connecting maps turn out to be functorial. This means the following. Sup-
pose we have a commutative diagram of complexes

(1.1.5)

0 // P ′•
ϕ′ // Q′•

ψ′ // R′• // 0

0 // P •
ϕ
//

α

OO

Q•
ψ
//

β

OO

R• //

γ

OO

0

with the two rows being short exact sequences of complexes. Then the following
diagram commutes for every n ∈ Z.

(1.1.6)

Hn(R′
•
)

δ // Hn+1(P ′
•
)

Hn(R•)
δ

//

γ∗

OO

Hn+1(P •)

α∗

OO

The proof of the commutativity of (1.1.6) is straightforward. Let [r] ∈ Hn(R•)
and let [p] = δ([r]) ∈ Hn+1(P •). Then we can choose representatives r and p for
the respective cohomology classes so that there is an element q ∈ Qn such that

dq = ϕ(p). Let r′, q′, p′ be the images of r, p, and q in R′
n
, Q′

n
, and P ′

n+1
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respectively. The proof is obtained by contemplating the following 3D version of
diagram (1.1.3).

(1.1.7)

p′ � // dq′

p
@

@@��������� // dq
=

>>}}}}}}}}
q′

_

OO

� // r′

q � //
>

>>~~~~~~~~_

OO

r
?

??���������

1.2. The long exact sequence associated to a short exact sequence of
complexes. The connecting map δ of (1.1.4) is part of a long exact sequence of
modules associated to the short exact sequence of complexes (1.1.1). Here is the
precise statement.

Theorem 1.2.1. Given the short exact sequence of complexes (1.1.1) the sequence

. . .
ψ∗−−→ Hn−1(R•)

δ−→ Hn(P •)
ϕ∗−−→ Hn(Q•)

ψ∗−−→ Hn(R•)
δ−→ Hn+1(P •)

ϕ∗−−→ . . .

is exact, where the maps labelled δ are the connecting homomorphisms (1.1.4). This
association of the long exact sequence above with (1.1.1) is functorial in the following
sense: If we have a commutative diagram of complexes of the form (1.1.5), with the
rows being exact sequence of complexes, then the following diagram commutes.

. . .
ψ′∗ // Hn−1(R′

•
)

δ // Hn(P ′
•
)

ϕ′∗ // Hn(Q′
•
)

ψ′∗ // Hn(R′
•
)

δ // . . .

. . .
ψ∗

// Hn−1(R•)
δ
//

γ∗

OO

Hn(P •)
ϕ∗
//

α∗

OO

Hn(Q•)
ψ∗

//

β∗

OO

Hn(R•)
δ
//

γ∗

OO

. . .

Proof. The second part of the theorem is straightforward. The squares not involving
δ commute since Hn respects compositions of maps of complexes and so must respect
commutative diagrams of complexes (see equation (2.4.2) of Lecture 16). The
squares that do involve the connecting maps δ commute by (1.1.6).

We only have to prove the first part. First let us show that the displayed sequence
of maps forms a complex. Since ψ ◦ϕ = 0 therefore ψ∗ ◦ϕ∗ = (ψ ◦ϕ)∗ = 0. It remains
to prove that ϕ∗ ◦δ = 0. This is a simple consequence of the schematic diagram
(1.1.3). In greater detail, suppose x ∈ Hn(R•), and say x = [r] with r ∈ Zn(R•).
Let r, q, p be as in (1.1.3), so that δ(x) = [p]. Then ϕ∗(δ(x)) = ϕ∗[p] = [ϕ(p)] =
[dq] = 0.

Exactness at Hn(R•). Suppose x ∈ Hn(R•) is such that δ(x) = 0. Write x = [r]
with r ∈ Zn(R•). Let q and p be as in diagram (1.1.3). Since [p] = 0, we see
that there exists p∗ ∈ Pn such that dp∗ = p. Let q′ = q − ϕ(p∗). Then q′ is also
a pre-image of r, and dq′ = dq − dϕ(p∗) = dq − ϕ(dp∗) = dq − dq = 0. Thus
q′ ∈ Zn(Q•), and ψ∗([q

′]) = [r] = x. This proves exactness at Hn(R•).

Exactness at Hn(Q•). Suppose x ∈ Hn(Q•) is such that ψ∗x = 0. Write x = [q] for
q ∈ Zn(Q•). Letr = ψ(q). Since ψ∗x = 0, we have r = ψ(q) ∈ Bn(R•), i.e. r = dr∗

for some r∗ ∈ Rn−1. Pick a pre-image q∗ of r∗ in Qn−1. Then ψ(q − dr∗) = 0, and
hence there exists p ∈ Pn such that ϕ(p) = q−dr∗. Since d(q−r∗) = dq−d2r∗ = 0
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(since q ∈ Zn(Q•)), we see, by the injectivity of ϕ that dp = 0. Thus p ∈ Zn(P •)
and clearly ϕ∗[p] = [q]. This proves exactness at Hn(Q•).

Exactness at Hn+1(P •). Let x ∈ Hn+1(P •) be such that ϕ∗x = 0. Pick p ∈
Zn+1(P •) such that x = [p]. Since ϕ∗x = 0, ϕ(p) ∈ Bn+1(Q•). Thus ϕ(p) = dq
for some q ∈ Qn. Let r = ψ(q). Then dr = d(ψ(q)) = ψ(dq) = ψ(ϕ(p)) = 0. The
elements r, q, dq, p fit into the schematic diagram (1.1.3), and hence δ[r] = [p] = x,
proving exactness at Hn+1(P •). �

Proposition 1.2.2. (The Snake Lemma) Let

(#)

P
ϕ //

α

��

Q
ψ //

β

��

R //

γ

��

0

0 // P ′
ϕ′
// Q′

ψ′
// R′

be a commutative diagram with exact rows. Then we have an A-map δ : ker γ →
cokerα such that the sequence

(##) kerα −→ kerβ −→ ker γ
δ−→ cokerα −→ cokerβ −→ coker γ

is exact. Moreover, if ϕ is injective then the first map kerα → kerβ is injective,
and if ψ′ is surjective, the last map cokerβ → coker γ is surjective.

The exact sequence (##) is functorial in the diagram (#).

Proof. This is an easy consequence of Theorem 1.2.1. The details are left as an
exercise. Some pointers: if ϕ is injective and ψ′ is surjective, then the Proposition
is in fact an immediate consequence of Theorem 1.2.1. Reduce to this case by
replacing P with its image in Q, and R′ with the image of Q′ in R′. Justify the
reduction. �

1.2.3. In reducing the Snake Lemma to a special case of Theorem 1.2.1, it might
be useful to note that if we have a pair of A-maps M → N → T , with M → N
surjective, then ker (M → T ) surjects on to ker (N → T ). In fact the latter can
be identified with ker (M → T )/ ker (M → N). The dual statement is also useful
for the recommended reduction, the dual statement being that if T → N → M
is a pair of maps such that N → M is injective, then coker (T → N) injects into
coker (T →M).
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