
LECTURE 16

Date of Lecture: March 10, 2022

Throughout this lecture A is a ring.

1. More primary decompositions

The main results we will be using are Theorems 1.2.8 (Existence), 1.2.9 (First
Uniqueness Theorem), and 1.2.10 (Second Uniqueness Theorem) of Lecture 15.

1.1. An irredundant primary decomposition is the same as a reduced primary
decomposition. Many authors prefer the term irredundant. I too prefer it (only
because that is what I am used to), and so will likely use it more often than
“reduced”.

Lemma 1.1.1. Assume A is Noetherian. Let m be a maximal ideal of A, and a an
ideal such that

√
a = m. Then a is m-primary. In particular, mn is m-primary for

every n ≥ 1.

Proof. Note that A/a 6= 0, for a ⊂ m $ A. Next, m =
√
a =

⋂
q∈V (a) q, whence m

is minimal amongst members of V (a). On the other hand m is a maximal ideal,
and hence it is the only member of V (a). Since annA(A/a) = a, it follows from
Proposition 1.1.1 of Lecture 15 that⋃

p∈AssA(A/a)

V (p) = SuppA(A/a) = V (a) = {m}.

Thus AssA(A/a) = {m}. �

Examples 1.1.2. Fix a field k in what follows.

1. Let

A =
k[X,Y, Z]

〈XY − Z2〉
.

Let x, y, and z denote the images of X, Y , and Z in A respectively. Let
p = 〈x, z〉. Then p is a prime ideal of A. However p2 is not p-primary. Indeed
xy = z2 ∈ p2, x /∈ p2, but no power of y is in p2.

2. Let A = k[X,Y ] and a = 〈X,Y 2〉. Let m = 〈X, Y 〉. Then m is a maximal ideal
and clearly

√
a = m. Hence a is m-primary. However a is not a power of m.

3. Let A = k[X,Y ] and a = 〈X2, XY 〉. Then for every n ≥ 1 we have

a = 〈X〉 ∩ 〈X2, Y 〉 = 〈X〉 ∩ 〈X2, XY, Y n〉.

The two intersections on the right are both irredundant primary decompositions
of a. Thus irredundant primary decompositions are not unique.
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2. Chain and cochain complexes

2.1. Definitions. A chain complex (C•, d•) of A-modules is a collection of A-
modules {Cn | n ∈ Z} together with a sequence of A-maps

(2.1.1) . . .
dn+1−−−−→ Cn+1

dn−−−−→ Cn
dn−1−−−−→ Cn−1

dn−2−−−−→ . . .

such that dn−1 ◦dn = 0, n ∈ Z. Elements of Cn are called n-chains or just chains.
The maps dn, n ∈ Z are called boundary maps or differentials. The nth map dn is
sometimes called the nth boundary map or the nth differential of C•. We set

(2.1.2) Bn(C•) := im(dn) and Zn(C•) := ker (dn−1), n ∈ Z.

When the context is clear, we write Bn and Zn for Bn(C•) and Zn(C•) respec-
tively. The elements of Zn are called n-cycles or simply cycles, and those of Bn,
n-boundaries or boundaries. Since dn ◦dn+1 = 0, Bn ⊂ Zn for n ∈ Z. The nth

homology module Hn(C•) of C• is

(2.1.3) Hn(C•) := Zn(C•)/Bn(C•), n ∈ Z.

We sometimes write dC•
n or dn(C•) for the nth boundary map of C•, if we wish to

emphasise the role of the complex C•. It is also very common to drop the index
n and write d for dn. In that case, the relation dn−1 ◦dn = 0 is written is a more
compact form as d2 = 0.

An element z ∈ Zn is said to be homologous to an element z′ ∈ Cn is z′−z ∈ Bn.
Note that in this case z′ is actually a cycle, i.e. it lies in Zn.

Dual to the notion of a chain complex is that of cochain complex. The two
notions are equivalent. A cochain complex of A modules is a collection of A-modules
{Cn | n ∈ Z} together with maps dn : Cn → Cn+1, n ∈ Z, such that if Cn := C−n

and dn = d−(n+1), then (C•, d•) is a chain complex. The cochain complex C• is
schematically represented in the following way:

(2.1.4) . . .
dn−2

−−−−→ Cn−1 dn−1

−−−−−−→ Cn dn

−−→ Cn+1 dn+1

−−−−→ . . .

Elements of Cn are called n-cochains or just chains. The map dn is called the
nth coboundary or the nth-differential. For n ∈ Z, we set Bn(C•) = B−n(C•)
and Zn(C•) = Z−n(C•). We often write Zn and Bn for Zn(C•) and Bn(C•)
respectively. The elements of Cn are called n-cocycles, or simply cocycles, and
those of Bn, n-coboundaries or boundaries. The following relations are obvious:

(2.1.5) Bn(C•) = im(dn−1) and Zn(C•) = ker (dn), n ∈ Z.

The nth cohomology module Hn(C•) of C• is

(2.1.6) Hn(C•) := Zn(C•)/Bn(C•), n ∈ Z.

Note that Hn(C•) = H−n(C•). As expected, an element z ∈ Zn is said to coho-
mologous to z′ ∈ Cn if z − z′ ∈ Bn. Note that if this is the case, then z′ is also an
n-cocycle.

2.1.7. It is clear that given a chain complex there is an associated cochain complex,
and vice-versa, and that there is really no essential difference between them. Such
differences that exist are notational differences. The process of converting a chain
complex into a cochain complex is that of “raising indices” ((−)

n
= (−)−n) and

that of converting cochain complexes into chain complex is the process “lowering
indices”. (For differentials, one has to be a little more careful with indices.)
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2.2. Maps of complexes. Let C• and D• be two cochain complexes. A colllection
of maps ϕ = {ϕn | n ∈ Z} is said to be a cochain map between C• and D•, written
ϕ : C• → D•, if the following diagram commutes for every n ∈ Z,

(2.2.1)

Cn

ϕn

��

dn
C• // Cn+1

ϕn+1

��
Dn

dn
D•

// Dn+1

A map of chain complexes is defined in a similar manner. I leave it to you to define
a map ϕ : C• → D• between to chain complexes C• and D•.

It is clear that if ϕ : C• → D• and ψ : D• → E• are two cochain maps, then
ψ ◦ϕ := {ψn ◦ϕn} is a cochain map from C• to E•. Similarly maps of chain com-
plexes can also be composed to produce a chain complex. the upshot is that cochain
complexes (respectively, chain complexes) of A-modules “form a category”.

2.3. Our conventions. For us, a complex will mean a cochain complex. We will
often refer to a cochain map as a “map of complexes”. In view of the observations
made in 2.1.7, by the simple trick of lowering indices, every result we prove for
cochain complexes, proves one for chain complexes. The translations from one
language to another is totally transparent.

2.4. Cohomology as a functor. Let ϕ : C• → D• be a map of complexes. Let z ∈
Zn(C•). Then dn(ϕn(z)) = ϕn+1(dn(z)) = 0, whence ϕn(z) ∈ Zn(D•). Similarly,
if b ∈ Bn(C•), so that b = dn−1x for some x ∈ Cn−1, then ϕn(b) = dn−1(ϕn−1(x)),
whence ϕn(b) ∈ Bn(D•). We therefore have a well defined map of A-modules

(2.4.1) Hn(ϕ) : Hn(C•) −→ Hn(D•), [z] 7−→ [ϕn(z)],

where [z] (respectively [ϕn(z)]) is the coset z + Bn(C•) (respectively ϕn(z) +
Bn(D•)). It is easy to verify that if ψ : D• → E• is a second map of complexes
then

(2.4.2) Hn(ψ) ◦Hn(ϕ) = Hn(ψ ◦ϕ), n ∈ Z.

Equation (2.4.2) is way of saying that each Hn is a “functor” from the “category”
of complexes of A-modules to the “category” ModA.
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