LECTURE 16

Date of Lecture: March 10, 2022

Throughout this lecture A is a ring.

1. More primary decompositions

The main results we will be using are Theorems 1.2.8 (Existence), 1.2.9 (First
Uniqueness Theorem), and 1.2.10 (Second Uniqueness Theorem) of Lecture 15.

1.1. An idrredundant primary decomposition is the same as a reduced primary
decomposition. Many authors prefer the term irredundant. I too prefer it (only
because that is what I am used to), and so will likely use it more often than
“reduced”.

Lemma 1.1.1. Assume A is Noetherian. Let m be a mazximal ideal of A, and a an
ideal such that \/a = m. Then a is m-primary. In particular, m" is m-primary for
every n > 1.

Proof. Note that A/a # 0, for a Cm G A. Next, m = \/a = ﬂqu(a) q, whence m
is minimal amongst members of V(a). On the other hand m is a maximal ideal,
and hence it is the only member of V(a). Since anny(A/a) = a, it follows from
Proposition 1.1.1 of Lecture 15 that

U V() =Suppa(4/a) = V(a) = {m}.
pEAssa(A/a)
Thus Ass4(A/a) = {m}. O

Examples 1.1.2. Fix a field k in what follows.

1. Let

k[X,Y, Z)

(XY — Z72)°

Let z, y, and z denote the images of X, Y, and Z in A respectively. Let

p = (x,z). Then p is a prime ideal of A. However p? is not p-primary. Indeed
xy = 2% € p2, x ¢ p?, but no power of y is in p2.

A:

2. Let A=Fk[X,Y] and a = (X,Y?). Let m = (X, Y). Then m is a maximal ideal
and clearly v/a = m. Hence a is m-primary. However a is not a power of m.
3. Let A=Fk[X,Y] and a = (X2, XY). Then for every n > 1 we have
a=(X)N(X%Y)=(X)N (X% XY, Y"™).

The two intersections on the right are both irredundant primary decompositions
of a. Thus irredundant primary decompositions are not unique.
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2. Chain and cochain complexes

2.1. Definitions. A chain complex (Co,ds) of A-modules is a collection of A-
modules {C™ | n € Z} together with a sequence of A-maps
dn—1

dn dp—2

dn
(2.1.1) L On+1 Chr Ch-1

such that d,,_10d, = 0, n € Z. Elements of C,, are called n-chains or just chains.
The maps d,,, n € Z are called boundary maps or differentials. The n*® map d,, is
sometimes called the n'" boundary map or the n'" differential of C,. We set

(2.1.2) B, (Ce):=1im(d,) and Z,(C,):=ker(d,_1), n € Z.

When the context is clear, we write B,, and Z,, for B,,(C,.) and Z,(C,) respec-
tively. The elements of Z,, are called n-cycles or simply cycles, and those of B,
n-boundaries or boundaries. Since d,od,.1 = 0, B, C Z, for n € Z. The nth
homology module H, (C,) of C, is

(2.1.3) H,(Co)i= Zn(Ca)/Ba(Cy),  neZ

We sometimes write df' or d,(C,) for the n* boundary map of C,, if we wish to
emphasise the role of the complex Cs. It is also very common to drop the index
n and write d for d,. In that case, the relation d,,_1od, = 0 is written is a more
compact form as d? = 0.

An element z € Z,, is said to be homologous to an element 2z’ € C,, is 2’ —z € B,,.
Note that in this case 2’ is actually a cycle, i.e. it lies in Z,.

Dual to the notion of a chain complex is that of cochain complex. The two
notions are equivalent. A cochain complex of A modules is a collection of A-modules
{C™ | n € Z} together with maps d": C™ — C"*1 n € Z, such that if C,,:= C™"
and d,, = d~ (™1 then (C,,d,) is a chain complex. The cochain complex C*® is
schematically represented in the following way:

dn—l Fid dn+1

cnr Cn+1
Elements of C™ are called n-cochains or just chains. The map d” is called the
n™ coboundary or the n't-differential. For n € Z, we set B"(C*) = B_,(C,)
and Z"(C*) = Z_,(C,). We often write Z™ and B"™ for Z"(C*) and B"(C*)
respectively. The elements of C™ are called n-cocycles, or simply cocycles, and
those of B™, n-coboundaries or boundaries. The following relations are obvious:

n—2
(2.1.4) L ot

(2.1.5) B™"(C*) =im(d"™!) and Z"(C*) = ker (d"), n € Z.
The n't cohomology module H™(C*®) of C* is
(2.1.6) H"(C*):=Z"(C*)/B"(C*), neZ.

Note that H*(C®) = H_,,(C,). As expected, an element z € Z" is said to coho-
mologous to 2z’ € C™ if z — 2/ € B™. Note that if this is the case, then 2’ is also an
n-cocycle.

2.1.7. It is clear that given a chain complex there is an associated cochain complex,
and vice-versa, and that there is really no essential difference between them. Such
differences that exist are notational differences. The process of converting a chain
complex into a cochain complex is that of “raising indices” ((—)" = (=) _,,) and
that of converting cochain complexes into chain complex is the process “lowering
indices”. (For differentials, one has to be a little more careful with indices.)
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2.2. Maps of complexes. Let C* and D® be two cochain complexes. A colllection
of maps ¢ = {¢"™ | n € Z} is said to be a cochain map between C* and D®, written
p: C* — D*, if the following diagram commutes for every n € Z,

Cn dg' Cn+1
(221) sa"l J/(pn+1
D" — . Dn+1
De®

A map of chain complezes is defined in a similar manner. I leave it to you to define
a map ¢: Ce — D, between to chain complexes Cy and D,.

It is clear that if ¢: C* — D® and ¢: D®* — E°® are two cochain maps, then
Pop:= {Yp" o™} is a cochain map from C*® to E®. Similarly maps of chain com-
plexes can also be composed to produce a chain complex. the upshot is that cochain
complexes (respectively, chain complexes) of A-modules “form a category”.

2.3. Our conventions. For us, a complex will mean a cochain complex. We will
often refer to a cochain map as a “map of complexes”. In view of the observations
made in 2.1.7, by the simple trick of lowering indices, every result we prove for
cochain complexes, proves one for chain complexes. The translations from one
language to another is totally transparent.

2.4. Cohomology as a functor. Let ¢: C* — D* be a map of complexes. Let z €
Z"(C*®). Then d"(p"(2)) = ¢" 1 (d"(z)) = 0, whence ¢"(z) € Z"(D*®). Similarly,
if b € B*(C*®), so that b = d" 'z for some x € C" 1, then ¢"(b) = d" (" (x)),
whence ¢"(b) € B"(D*®). We therefore have a well defined map of A-modules

(2.4.1) H"(¢): H*(C*) — H"(D®), [z — [¢"(2)],
where [z] (respectively [¢™(z)]) is the coset z + B™(C*®) (respectively ¢™(z) +

z
B"™(D*®)). Tt is easy to verify that if ¢): D®* — E* is a second map of complexes
then

(2.4.2) H'(4)oH'(p) = H'(Yop),  neZ
Equation (2.4.2) is way of saying that each H™ is a “functor” from the “category”
of complexes of A-modules to the “category” Mod 4.
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