
LECTURE 15

Date of Lecture: March 8, 2022

1. Primary decomposition

Throughout A is a ring and M an A-module.

1.1. The support of M and Ass(M). The basic proposition is the following:

Proposition 1.1.1. Let A be Noetherian, M 6= 0 and finitely generated. Then

Supp(M) =
⋃

p∈Ass(M)

V (p).

Proof. We will use the equality Supp(M) = V (ann(M)) established in Problem 2
of Homework 4.

Since ann(M) = ∩m∈Mann(m), we have ann(M) ⊂ ∩p∈Ass(M)p. Since V (−)
reverses inclusions, it follows that Supp(M) = V (ann(M)) ⊃ V (∩p∈Ass(M)p) =
∪p∈Ass(M)V (p).

Conversely, suppose q ∈ Supp(M). Then Mq 6= 0. By Problem 6 of Homework
4, AssAq

(Mq) is non-empty. By Lemma 2.1.2 of Lecture 14, there exists p0 ∈
AssA(M) such that (p0)q ∈ AssAq

(Mq), and p0 ⊂ q. Thus q ∈ V (p0), whence
q ∈ ∪p∈Ass(M)V (p). This proves that Supp(M) ⊂ ∪p∈Ass(M)V (p). �

Corollary 1.1.2. With the above hypotheses√
ann(M) =

⋂
p∈Ass(M)

p.

Proof. From the theorem and the fact that Supp(M) = V (ann(M)), we get

V (ann(M)) = ∪p∈Ass(M)V (p) = V (∩p∈Ass(M)p).

Now ∩p∈Ass(M)p is a radical ideal, being the intersection of radical ideals. We use

the fact that V (a) = V (b) for ideals a and b if and only if
√
a =
√
b to arrive at

the required conclusion.
We point out that the conclusion is true even if M = 0, for then both sides equal

A, the right side because Ass(M) = ∅. �

Definition 1.1.3. An element a ∈ A is said to nilpotent for M is theA-endomorphism
µn
a on M is zero for some n ≥ 1. Here, as before, µa : M → M is the A-

endomorphism m 7→ am, m ∈M .

Clearly a is nilpotent for M if and only if a ∈
√

ann(M). An immediate conse-
quence is the following result.

Lemma 1.1.4. Suppose A is Noetherian and M is finitely generated. The following
are equivalent

(a) a ∈ A is nilpotent for M ;
(b) a ∈

⋂
p∈Ass(M) p.
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Proof. This follows immediately from Corollary 1.1.2 and the fact that a is nilpotent
for M if and only if a ∈

√
ann(M). �

1.2. Primary submodules and primary decomposition. We begin with a
definition.

Definition 1.2.1. A submodule N of M is called primary if Ass(M/N) consists of
a single element. In this case, if Ass(M/N) = {p}, then N is said to be p-primary,
or, if one is feeling expansive, a p-primary submodule of M .

Lemma 1.2.2. If A is Noetherian and M finitely generated, then a submodule N
of M is primary if and only if every zero divisor of M/N is nilpotent for M/N .

Proof. Let ZD(M/N) be the set of zero divisors of M/N and Nil(M/N) the set of
nilpotent elements in A for M/N . Clearly Nil(M/N) ⊂ ZD(M/N). Therefore we
have to show that N is primary if and only if ZD(M/N) = Nil(M/N). We first note
that by Problem 7 of Homework 4, ZD(M/N) ∪p∈Ass(M/N) p. From Lemma 1.1.4,
wehave Nil(M/N) = ∩p∈Ass(M/N)p. Thus ZD(M/N) = Nil(M/N) if and only if⋃

p∈Ass(M/N)

p =
⋂

p∈Ass(M/N)

p.

The above is true when and only when Ass(M/N) = {p}. �

Remark 1.2.3. There is a classical notion of primary ideals which predates the
modern approach via associated primes. Classically, an ideal a of A is said to be
primary if it has the following property: If a, b ∈ A are such that ab ∈ a, b /∈ a,
then an ∈ a for some n ≥ 1. Lemma 1.2.2 shows that when A is Noetherian, a is
primary in the classical sense if and only if a is a primary submodule of A. The
modern treatment through associated primes is due to Bourbaki.

Recall from Problem 3 of Homework 4 that a submodule N of M is said to be
irreducible if two submodules N1 and N2 of A have intersection equal to N only
when one of them equals N .

Proposition 1.2.4. Let A be Noetherian, M finitely generated, and N a proper
submodule of M (i.e. N 6= M). If N is irreducible then N is primary.

Proof. By Problem 6 of Homework 4, Ass(M/N) 6= ∅, for M/N 6= 0. Suppose
N is irreducible. Let p1 and p2 be two elements of Ass(M/N). By problem 4
(c) of Homework 4, there exist submodules N1/N and N2/N of M/N such that
Ni/N ∼= A/pi, i = 1, 2. Since A/pi 6= 0, N $ Ni, for i = 1, 2. The irreducibility of
N then ensures that N $ N1∩N2. Let x ∈ (N1∩N2)rN and let x̄ be its image in
M/N . Now 0 6= x̄ ∈ (N1/N) ∩ (N2/N). Since Ni/N ∼= A/pi, ann(x̄) = pi, i = 1, 2.
It follows that p1 = p2, i.e. Ass(M/N) has exactly one element. �

For Noetherian rings we have the following sastisfying result.

Lemma 1.2.5. If A is Noetherian then the intersection of finitely many p-primary
submodules of M is p-primary.

Proof. It is enough to prove that the intersection of two p-primary submodules
of M is again p-primary. So suppose N1 and N2 are p-primary submodules of
M . If N1 ⊂ N2, there is nothing to prove. So assume that N1 ∩ N2 * N1, i.e.
N1/(N1∩N2) 6= 0. Using the fact that N1/(N1∩N2) ∼= (N1 +N2)/N2 ⊂M/N2, we
see that Ass(N1/(N1 ∩N2)) ⊂ Ass(M/N2) = {p}. (We are using 5 (a) of Homework
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4 to arrive at this conclusion.) Since A is Noetherian and N1/(N1 ∩ N2) 6= 0, by
Problem 6 of Homework 4, Ass(N1/(N1 ∩N2)) 6= ∅, whence Ass(N1/(N1 ∩N2)) =
{p}. Consider the exact sequence

0 −→ N1/(N1 ∩N2) −→M/(N1 ∩N2) −→M/N1 −→ 0.

By 5 (b) of Homework 4, we see that Ass(M/(N1∩N2)) ⊂ {p}, i.e. either Ass(M/(N1∩
N2)) = ∅ or Ass(M/(N1 ∩N2)) = {p}. Using the fact that A is Noetherian and the
fact that M/(N1 ∩ N2) 6= 0 the first possibility can be eliminated (see Problem 6
of Homework 4). �

Here is the important definition (see [Ku, pp.179–180, Definition 2.16]):

Definition 1.2.6. A submodule N of M is said to have a primary decomposition
if there exist primary submodules N1, . . . , Nd of M such that

(∗) N = N1 ∩ · · · ∩Nd.

The primary decomposition (∗) is said to be reduced if

(a) If Ni is pi-primary (i = 1, . . . , d), then the pi are distinct for i = 1, . . . , d.
(b)

⋂
i6=j pi * pi for i = 1, . . . d.

1.2.7. In view of Lemma 1.2.5 it is clear that if A is Noetherian and N is a
submodule of M which has a primary decomposition, then N has a reduced primary
decomposition. Indeed the Lemma allows to write a primary decomposition (∗) of
N which satisfies (a) above. The condition (b) is easily met by dropping any Ni

which lies in the intersection of the remaining primary submodules ocurring in (∗).

Theorem 1.2.8. (Existence) Let A be Noetherian and M finitely generated. Every
submodule module N of M such that N 6= M has a reduced primary decomposition.

Proof. This is Problem 3 of Homework 4 combined with Proposition 1.2.4 and the
observation in 1.2.7. �

Theorem 1.2.9. (The First Uniqueness Theorem)Let A be Noetherian, M finitely
generated, and N a submodule of M . Let N = N1 ∩ · · · ∩Nd be a reduced primary
decomposition of N with Ass(M/Ni) = {pi}, i = 1, . . . , d. Then Ass(M/N) =
{p1, . . . , pd}.

Proof. Let Hi = ∩j 6=ipj , for i = 1, . . . , d. Since 0 6= Hi/N ∼= (Hi + Ni)/Ni ⊂
M/Ni, we have ∅ 6= Ass(Hi/N) ⊂ Ass(M/Ni) = {pi}. Thus Ass(Hi/N) = {pi}.
Since Ass(Hi/N) ⊂ Ass(M/N), pi ∈ Ass(M/N) for i = 1, . . . d. It follows that
{p1, . . . , pd} ⊂ Ass(M/N).

To show that Ass(M/N) ⊂ {p1, . . . , pd}, we proceed by induction. If d = 1, the
statement is obvious. Suppose it is true for any reduced primary decomposition with
d− 1 primary submodules in the decomposition. Then AssM/Hi ⊂ {{pj | J 6= i}.
From the exact sequence

0 −→ Hi/N −→M/N −→M/Hi −→ 0

we get Ass(M/N) ⊂ Ass(Hi/N) ∪ Ass(M/Hi) ⊂ {p1, . . . , pd}. We are once again
using the isomorphism Hi/N ∼= (Hi + Ni)/Ni for i = 1, . . . , d and our earlier
computation that Ass((Hi +Ni)/Ni) = {pi}. �

Before stating the second uniqueness theorem, i.e.Theorem 1.2.11 below, I would
like to discuss the behaviour of reduced primary decompositions under localization.
To that end, suppose N is a p-primary submodule of M and S a multiplicative
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system in A. According to Lemma 2.1.2 of Lecture 14, Ass(S−1(M/N)) = {S−1p},
whence S−1N is an S−1p-primary submodule of S−1M . Moreover, we claim that
in this case, if m ∈M is such that m/1 ∈ S−1N , then m ∈ N . To see this, suppose
m/1 = x/s where x ∈ N and s ∈ S. Then, there exists t ∈ S such that tsm = tx.
Suppose m /∈ N . Then ts is a zero divisor for M/N (see Problem 7 of Homework
4), which in turn means that ts ∈ p contradicting the fact that pi ∩ S = ∅. Thus
m ∈ N .

Now suppose p ∩ S 6= ∅. Assume further that A is Noetherian and M is finitely
generated. Since p∩S 6= ∅, S has a zero divisor of M/N , say s. By Lemma 1.2.2, s
is nilpotent for M/N . This means the unit s/1 in S−1A is nilpotent for S−1(M/N).
It is immediate that S−1(M/N) = 0, i.e. S−1N = S−1M .

We are ready to make a formal statement of what we just discussed.

Proposition 1.2.10. Let A be Noetherian, M finitely generated, and N a submod-
ule of M . Let S be a multiplicative system in A.

(a) Suppose N is p-primary (as a submodule of M). If p ∩ S = ∅, then S−1N is
an S−1p-primary submodule of S−1M . In this case, if m ∈ M is such that
m/1 ∈ S−1N , then m ∈ N . If p ∩ S 6= ∅, then S−1N = S−1M .

(b) If N =
⋂d

i=1Ni is a reduced primary decomposition of N , with Ni being pi-
primary submodules of M , then

S−1N =
⋂

pi∩S=∅

S−1Ni

is a reduced primary decomposition of S−1N as a submodule of S−1M .

Proof. We only have to prove (b), since (a) has been proved in the discussion
leading to this proposition. Part (b) is an immediate consequence of the fact hat
localization commutes with intersection. �

Theorem 1.2.11. (The Second Uniqueness Theorem) Let A be Noetherian, M
finitely generated, N a submodule of M . Suppose

(†) N =
d⋂

i=1

Ni

is a reduced primary decomposition of N . For p ∈ Ass(M/N), let N(p) be the
unique p-primary submodule occurring in the collection {N1, . . . , Nd}. If p is a
minimal prime ideal in Ass(M/N) then N(p) is the inverse image of Np under the
localization map M →Mp.

Orienting remark. One important consequence of the theorem is that if p is a
minimal associated prime of M/N , then the p-primary component of N in any
reduced primary decomposition of N is uniquely determined. This property need
not hold if p is not a minimal element in Ass(M/N). If all the primes in Ass(M/N)
are minimal, then N has a unique reduced primary decomposition.

Proof. Let S = Ar p. If q ∈ Ass(M/N) is such that q ∩ S = ∅ then q ⊂ p, whence
q = p by the minimality of p. Part (b) of Proposition 1.2.10 then implies that
Np = N(p)p. The required result follows from part (a) of the proposition. �
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