

LECTURE 14

Date of Lecture: March 3, 2022

1. The Cohen-Seidenberg Going-Up Theorem

1.1. **The Going-up Theorem.** Throughout this subsection, we will assume $A \subset B$ is an integral extension. Let us recall the six results we proved for the integral extension in §3.2 of Lecture 13. We keep the numbering as in *loc.cit.*

1. Let A and B be integral domains. Then A is a field if and only if B is a field.
2. Let S be a multiplicative system in A . Then $S^{-1}A \subset S^{-1}B$ is also an integral extension. (We are using the fact that localization is exact to identify $S^{-1}A$ with a subring of $S^{-1}B$.)
3. Let \mathfrak{b} be an ideal in B and $\mathfrak{a} = \mathfrak{b}^c$, so that the natural map $A/\mathfrak{a} \rightarrow B/\mathfrak{b}$ is injective. Regard A/\mathfrak{a} as a subring of B/\mathfrak{b} in this manner. Then B/\mathfrak{b} is integral over A .
4. Suppose A is a local ring with maximal ideal \mathfrak{m} . A prime ideal \mathfrak{q} in B is maximal if and only if $\mathfrak{q}^c = \mathfrak{m}$.
5. If A is a field then all prime ideals of B are maximal.
6. The map $\phi: \text{Spec}(B) \rightarrow \text{Spec}(A)$ induced by $A \subset B$ is surjective.

To the above list, we add three more results.

7. The map $\phi: \text{Spec}(B) \rightarrow \text{Spec}(A)$ of 6 is a closed map.

Proof. Let Z be a closed subset of $\text{Spec}(B)$, say $Z = V(\mathfrak{b})$, where \mathfrak{b} is an ideal of B . Let $\mathfrak{a} = \mathfrak{b}^c$. By 3, $A/\mathfrak{a} \subset B/\mathfrak{b}$ is an integral extension and hence the induced map $\text{Spec}(B/\mathfrak{b}) \rightarrow \text{Spec}(A/\mathfrak{a})$ is surjective by 6. Now $Z = V(\mathfrak{b})$ can be identified with $\text{Spec}(B/\mathfrak{b})$ and $V(\mathfrak{a})$ with $\text{Spec}(A/\mathfrak{a})$ and we have just proved that $\phi(Z) = V(\mathfrak{a})$. Thus ϕ is a closed map. \square

8. If $\mathfrak{q}_1 \subset \mathfrak{q}_2$ is a chain of prime ideals in B such that $\mathfrak{q}_1^c = \mathfrak{q}_2^c$ then $\mathfrak{q}_1 = \mathfrak{q}_2$.

Proof. Let \mathfrak{p} be the common contraction of \mathfrak{q}_1 and \mathfrak{q}_2 to A . By a now familiar trick, using (2.2.1) and (2.2.2) of Lecture 13, we can assume A is a local ring and \mathfrak{p} its maximal ideal, by localizing A at \mathfrak{p} if necessary. By 4 we see that both \mathfrak{q}_1 and \mathfrak{q}_2 are maximal ideals of B . The assertion follows. \square

9. (Going-Up) Let $\mathfrak{p}_0 \subset \mathfrak{p}_1$ be a chain of prime ideals in A , and \mathfrak{q}_0 a prime ideal of B lying over \mathfrak{p}_0 . Then there exists $\mathfrak{q}_1 \in \text{Spec}(B)$ such that $\mathfrak{q}_0 \subset \mathfrak{q}_1$ and \mathfrak{q}_1 lies over \mathfrak{p}_1 .

Proof. We may assume, by localizing A at \mathfrak{p}_1 if necessary, and using (2.2.1) and (2.2.2) of Lecture 13, that A is a local ring with maximal ideal \mathfrak{p}_1 . Let \mathfrak{q}_1 be a maximal ideal of B containing \mathfrak{q}_0 (there always exists one by Zorn's Lemma, along the lines the first lemma of Lecture 2). According to 4, \mathfrak{q}_1 must contract to \mathfrak{p}_1 . \square

We are now in a position to state a part of the results of Cohen and Seidenberg [CS] (the paper can be accessed [here](#)).

Theorem 1.1.1. *Let $A \subset B$ be an integral extension of rings and $\phi: \text{Spec}(B) \rightarrow \text{Spec}(A)$ the induced map.*

- (a) *The map ϕ is surjective.*
- (b) *The map ϕ is closed.*
- (c) *If $\mathfrak{q}_1 \subset \mathfrak{q}_2$ is a chain of prime ideals in B such that $\mathfrak{q}_1^c = \mathfrak{q}_2^c$ then $\mathfrak{q}_1 = \mathfrak{q}_2$.*
- (d) *(The Going-Up Theorem of Cohen-Seidenberg) Let*

$$(\#) \quad \mathfrak{p}_1 \subset \mathfrak{p}_2 \subset \cdots \subset \mathfrak{p}_n$$

be a chain of prime ideals in A , and

$$(\dagger) \quad \mathfrak{q}_1 \subset \mathfrak{q}_2 \subset \cdots \subset \mathfrak{q}_m$$

a chain of prime ideals in B , with $1 \leq m \leq n$, such that \mathfrak{q}_i lies over \mathfrak{p}_i for $i = 1, \dots, m$. Then the chain (\dagger) can be extended to a chain of prime ideals $\mathfrak{q}_1 \subset \mathfrak{q}_2 \subset \cdots \subset \mathfrak{q}_n$ with \mathfrak{q}_i lying over \mathfrak{p}_i for $i = 1, \dots, n$.

2. Associated primes

2.1. Let A be a ring and $M \in \text{Mod}_A$. Recall from [Homework 4](#) that $\mathfrak{p} \in \text{Spec}(A)$ is an associated prime of M if there exists $m \in M$, $m \neq 0$, such that $\mathfrak{p} = \text{ann}(m)$.

One should point out that the concept of associated primes only makes sense for non-zero rings and modules.

Lemma 2.1.1. *Let $M \neq 0$ be a finitely generated module over a Noetherian ring A . If \mathfrak{a} is an ideal of A consisting only of zero divisors of M , then there is an $m \in M$, $m \neq 0$, such that $\mathfrak{a}m = 0$.*

Proof. By Problem 7 of [Homework 4](#), $\mathfrak{a} \subset \bigcup_{\mathfrak{p} \in \text{Ass}(M)} \mathfrak{p}$. By 8 (b) of *loc.cit.*, $\text{Ass}(M)$ is a finite set, whence $\mathfrak{a} \subset \mathfrak{p}$ for some $\mathfrak{p} \in \text{Ass}(M)$ (see the first proposition on p.1 of [Lecture 8](#)). The result follows. \square

Lemma 2.1.2. *Let A be a Noetherian ring, S a multiplicative system in A , and M an A -module. Then*

$$\text{Ass}(S^{-1}M) = \{S^{-1}\mathfrak{p} \mid \mathfrak{p} \in \text{Ass}(M), \mathfrak{p} \cap S = \emptyset\}.$$

Proof. Suppose $\mathfrak{p} \in \text{Ass}(M)$ and $\mathfrak{p} \cap S = \emptyset$. Then there exists $m \in M \setminus \{0\}$ such that $\mathfrak{p} = \text{ann}(m)$. It is immediate that $S^{-1}\mathfrak{p} \subset \text{ann}(m/1)$. Now suppose $a/s \in \text{ann}(m/1)$. Since $a/s = (s/1)^{-1}(a/1)$ and $s/1$ is a unit in $S^{-1}A$, therefore $(a/1)(m/1) = 0$. This means there exists $t \in S$ such that $tam = 0$, i.e. $ta \in \text{ann}(m) = \mathfrak{p}$. Now $t \notin \mathfrak{p}$, and so $a \in \mathfrak{p}$ and hence $a/s \in S^{-1}\mathfrak{p}$. Thus $S^{-1}\mathfrak{p} = \text{ann}(m/1)$. In other words, if $\mathfrak{p} \in \text{Ass}(M)$ and $S \cap \mathfrak{p} = \emptyset$, then $S^{-1}\mathfrak{p} \in \text{Ass}(S^{-1}M)$.

Conversely, suppose $Q \in \text{Ass}(S^{-1}M)$, say $Q = \text{ann}(m/t)$ for some $m \in M$ and $t \in S$. Since $t/1$ is a unit in A , $\text{ann}(m/t) = \text{ann}(m/1)$, and hence $Q = \text{ann}(m/1)$. According to [Problem 6 of HW 1](#), $Q = S^{-1}\mathfrak{p}$ for a unique prime \mathfrak{p} in A and in this case, $\mathfrak{p} \cap S = \emptyset$. In fact, by *loc.cit.*, $\mathfrak{p} = \{a \in A \mid a/1 \in Q\}$. We have to show that $\mathfrak{p} \in \text{Ass}(M)$. Since A is Noetherian, we have a finite number of elements $p_1, \dots, p_d \in \mathfrak{p}$ which generate \mathfrak{p} as an ideal. Now $p_i/1 \in S^{-1}\mathfrak{p} = \text{ann}(m/1)$, for $i = 1, \dots, d$. So there exist $s_i \in S$ such that $s_i p_i m = 0$ for $i = 1, \dots, d$. Let $s = s_1 \dots s_d$. Every p_i lies in $\text{ann}(sm)$, and so $\mathfrak{p} \subset \text{ann}(sm)$. Moreover, if $a \in \text{ann}(sm)$, then $a/1 \in \text{ann}(sm/1) = \text{ann}(m/1) = S^{-1}\mathfrak{p}$. This means $a \in \mathfrak{p}$. Thus $\mathfrak{p} = \text{ann}(sm)$, and so $\mathfrak{p} \in \text{Ass}(M)$. \square

REFERENCES

- [AM] M.F. Atiyah and I.G. Macdonald, *Introduction to Commutative Algebra*, Addison-Wesley, London, 1969.
- [CS] I.S. Cohen and A. Seidenberg, Prime ideals and integral dependence, *Bull. Amer. Math. Soc.*, **52**, 1946, 252–261.