
LECTURE 14

Date of Lecture: March 3, 2022

1. The Cohen-Seidenberg Going-Up Theorem

1.1. The Going-up Theorem. Throughout this subsection, we will assume A ⊂
B is an integral extension. Let us recall the six results we proved for the integral
this integral extension in § 3.2 of Lecture 13. We keep the numbering as in loc.cit.

1. Let A and B be integral domains. Then A is a field if and only if B is a field.
2. Let S be a multiplicative system in A. Then S−1A ⊂ S−1B is also an integral

extension. (We are using the fact that localization is exact to identify S−1A
with a subring of S−1B.)

3. Let b be an ideal in B and a = bc, so that the natural map A/a → B/b is
injective. Regard A/a as a subring of B/b is this manner. Then B/b is integral
over A.

4. Suppose A is a local ring with maximal ideal m. A prime ideal q in B is maximal
if and only if qc = m.

5. If A is a field then all prime ideals of B are maximal.
6. The map φ : Spec(B)→ Spec(A) induced by A ⊂ B is surjective.

To the above list, we add three more results.

7. The map φ : Spec(B)→ Spec(A) of 6 is a closed map.
Proof. Let Z be a closed subset of Spec(B), say Z = V (b), where b is an ideal
of B. Let a = bc. By 3, A/a ⊂ B/b is an integral extension and hence the
induced map Spec(B/b) → Spec(A/a) is surjective by 6. Now Z = V (b) can
be identified with Spec(B/b) and V (a) with Spec(A/a) and we have just proved
that φ(Z) = V (a). Thus φ is a closed map. �

8. If q1 ⊂ q2 is a chain of prime ideals in B such that qc1 = qc1 then q1 = q2.
Proof. Let p be the common contraction of q1 and q2 to A. By a now familiar
trick, using (2.2.1) and (2.2.2) of Lecture 13, we can assume A is a local ring
and p its maximal ideal, by localizing A at p if necessary. By 4 we see that both
q1 and q2 are maximal ideals of B. The assertion follows. �

9. (Going-Up) Let p0 ⊂ p1 be a chain of prime ideals in A, and q0 a prime ideal of
B lying over p0. Then there exists q1 ∈ Spec(B) such that q0 ⊂ q1 and q1 lies
over p1.
Proof. We may assume, by localizing A at p1 if necessary, and using (2.2.1) and
(2.2.2) of Lecture 13, that A is a local ring with maximal ideal p1. Let q1 be
a maximal ideal of B containing q0 (there always exists one by Zorn’s Lemma,
along the lines the first lemma of Lecture 2). According to 4, q1 must contract
to p1. �

1

https://www.cmi.ac.in/~pramath/MATH423_2022/Lectures/Lecture13.pdf
https://www.cmi.ac.in/~pramath/MATH423_2022/Lectures/Lecture13.pdf
https://www.cmi.ac.in/~pramath/MATH423_2022/Lectures/Lecture13.pdf
https://www.cmi.ac.in/~pramath/MATH423_2022/Lectures/Lecture13.pdf
https://www.cmi.ac.in/~pramath/MATH423_2022/Lectures/Lecture2.pdf


We are now in a position to state a part of the results of Cohen and Seidenberg
[CS] (the paper can be accessed here).

Theorem 1.1.1. Let A ⊂ B be an integral extension of rings and φ : Spec(B) →
Spec(A) the induced map.

(a) The map φ is surjective.
(b) The map φ is closed.
(c) If q1 ⊂ q2 is a chain of prime ideals in B such that qc1 = qc1 then q1 = q2.
(d) (The Going-Up Theorem of Cohen-Seidenberg) Let

(#) p1 ⊂ p2 ⊂ · · · ⊂ pn

be a chain of prime ideals in A, and

(†) q1 ⊂ q2 ⊂ · · · ⊂ qm

a chain of prime ideals in B, with 1 ≤ m ≤ n, such that qi lies over pi for
i = 1, . . . ,m. Then the chain (†) can be extended to a chain of prime ideals
q1 ⊂ q2 ⊂ · · · ⊂ qn with qi lying over pi for i = 1, . . . , n.

2. Associated primes

2.1. Let A be a ring and M ∈ ModA. Recall from Homework 4 that p ∈ Spec(A)
is an associated prime of M is there exists m ∈M , m 6= 0, such that p = ann(m).

One should point out that the concept of associated primes only makes sense for �

non-zero rings and modules.

Lemma 2.1.1. Let M 6= 0 be a finitely generated module over a Noetherian ring
A. If a is an ideal of A consisting only of zero divisors of M , then there is an
m ∈M , m 6= 0, such that am = 0.

Proof. By Problem 7 of Homework 4, a ⊂ ∪p∈Ass(M)p. By 8 (b) of loc.cit., Ass(M)
is a finite set, whence a ⊂ p for some p ∈ Ass(M) (see the first proposition on p.1
of Lecture 8). The result follows. �

Lemma 2.1.2. Let A be a Noetherian ring, S a multiplicative system in A, and
M an A-module. Then

Ass(S−1M) = {S−1p | p ∈ Ass(M), p ∩ S = ∅}.
Proof. Suppose p ∈ Ass(M) and p ∩ S = ∅. Then there exists m ∈ M r {0}
such that p = ann(m). It is immediate that S−1p ⊂ ann(m/1). Now suppose
a/s ∈ ann(m/1). Since a/s = (s/1)−1(a/1) and s/1 is a unit in S−1A, therefore
(a/1)(m/1) = 0. This means there exists t ∈ S such that tam = 0, i.e. ta ∈
ann(m) = p. Now t /∈ p, and so a ∈ p and hence a/s ∈ S−1p. Thus S−1p =
ann(m/1). In other words, if p ∈ Ass(M) and S ∩ p = ∅, then S−1p ∈ Ass(S−1M).

Conversely, suppose Q ∈ Ass(S−1M), say Q = ann(m/t) for some m ∈ M and
t ∈ S. Since t/1 is a unit in A, ann(m/t) = ann(m/1), and hence Q = ann(m/1).
According to Problem 6 of HW 1, Q = S−1p for a unique prime p in A and in
this case, p ∩ S = ∅. In fact, by loc.cit., p = {a ∈ A | a/1 ∈ Q}. We have to
show that p ∈ Ass(M). Since A is Noetherian, we have a finite number of elements
p1, . . . , pd ∈ p which generate p as an ideal. Now pi/1 ∈ S−1p = ann(m/1),
for i = 1, . . . , d. So there exist si ∈ S such that sipim = 0 for i = 1, . . . , d.
Let s = s1 . . . sd. Every pi lies in ann(sm), and so p ⊂ ann(sm). Moroever, if
a ∈ ann(sm), then a/1 ∈ ann(sm/1) = ann(m/1) = S−1p. This means a ∈ p.
Thus p = ann(sm), and so p ∈ Ass(M). �
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