LECTURE 14

Date of Lecture: March 3, 2022

1. The Cohen-Seidenberg Going-Up Theorem

1.1. The Going-up Theorem. Throughout this subsection, we will assume A C
B is an integral extension. Let us recall the six results we proved for the integral
this integral extension in § 3.2 of Lecture 13. We keep the numbering as in loc.cit.

1.
2.

Let A and B be integral domains. Then A is a field if and only if B is a field.
Let S be a multiplicative system in A. Then S~'A C S~!'B is also an integral
extension. (We are using the fact that localization is exact to identify S—'1A
with a subring of S~!B.)

. Let b be an ideal in B and a = b, so that the natural map A/a — B/b is

injective. Regard A/a as a subring of B/b is this manner. Then B/b is integral
over A.

. Suppose A is a local ring with maximal ideal m. A prime ideal q in B is maximal

if and only if q¢ = m.

. If A is a field then all prime ideals of B are maximal.
. The map ¢: Spec(B) — Spec(A) induced by A C B is surjective.

To the above list, we add three more results.

. The map ¢: Spec(B) — Spec(A) of 6 is a closed map.

Proof. Let Z be a closed subset of Spec(B), say Z = V(b), where b is an ideal
of B. Let a = b° By 3, A/a C B/b is an integral extension and hence the
induced map Spec(B/b) — Spec(A/a) is surjective by 6. Now Z = V(b) can
be identified with Spec(B/b) and V(a) with Spec(A/a) and we have just proved
that ¢(Z) = V(a). Thus ¢ is a closed map. O

. If g1 C g2 is a chain of prime ideals in B such that qf = qf then q; = qs.

Proof. Let p be the common contraction of q; and g to A. By a now familiar
trick, using (2.2.1) and (2.2.2) of Lecture 13, we can assume A is a local ring
and p its maximal ideal, by localizing A at p if necessary. By 4 we see that both
g1 and o are maximal ideals of B. The assertion follows. O

. (Going-Up) Let pg C p1 be a chain of prime ideals in A, and qo a prime ideal of

B lying over po. Then there exists q; € Spec(B) such that qo C q1 and q; lies
over pj.

Proof. We may assume, by localizing A at p; if necessary, and using (2.2.1) and
(2.2.2) of Lecture 13, that A is a local ring with maximal ideal p;. Let q; be
a maximal ideal of B containing qq (there always exists one by Zorn’s Lemma,
along the lines the first lemma of Lecture 2). According to 4, q; must contract
to ps1. O
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We are now in a position to state a part of the results of Cohen and Seidenberg
[CS] (the paper can be accessed here).

Theorem 1.1.1. Let A C B be an integral extension of rings and ¢: Spec(B) —
Spec(A) the induced map.

(a) The map ¢ is surjective.

(b) The map ¢ is closed.

(¢) If g1 C q2 is a chain of prime ideals in B such that qf = q then q1 = q2.

(d) (The Going-Up Theorem of Cohen-Seidenberg) Let

(#) p1Cp2aC--- Cpn
be a chain of prime ideals in A, and

(1) G1CqaC - C QGm
a chain of prime ideals in B, with 1 < m < n, such that q; lies over p; for
i=1,...,m. Then the chain (1) can be extended to a chain of prime ideals

g1 C q2 C -+ C qy with q; lying over p; fori=1,...,n.
2. Associated primes

2.1. Let A be aring and M € Mody4. Recall from Homework 4 that p € Spec(A)
is an associated prime of M is there exists m € M, m # 0, such that p = ann(m).

One should point out that the concept of associated primes only makes sense for
non-zero rings and modules.

Lemma 2.1.1. Let M # 0 be a finitely generated module over a Noetherian ring
A. If a is an ideal of A consisting only of zero divisors of M, then there is an
m € M, m # 0, such that am = 0.

Proof. By Problem 7 of Homework 4, a C Uyeass(aryh- By 8 (b) of loc.cit., Ass(M)
is a finite set, whence a C p for some p € Ass(M) (see the first proposition on p.1
of Lecture 8). The result follows. O

Lemma 2.1.2. Let A be a Noetherian ring, S a multiplicative system in A, and
M an A-module. Then

Ass(STIM) = {S7p | p € Ass(M), pN S = 0}.

Proof. Suppose p € Ass(M) and p NS = (. Then there exists m € M ~ {0}
such that p = ann(m). It is immediate that S~'p C ann(m/1). Now suppose
a/s € ann(m/1). Since a/s = (s/1)71(a/1) and s/1 is a unit in S~1A, therefore
(a/1)(m/1) = 0. This means there exists ¢ € S such that tam = 0, i.e. ta €
ann(m) = p. Now t ¢ p, and so a € p and hence a/s € S~'p. Thus S~ lp =
ann(m/1). In other words, if p € Ass(M) and SNp = ), then S~1p € Ass(S~1M).

Conversely, suppose @ € Ass(S™1M), say Q = ann(m/t) for some m € M and
t € S. Since t/1 is a unit in A, ann(m/t) = ann(m/1), and hence Q = ann(m/1).
According to Problem 6 of HW 1, Q = S~!p for a unique prime p in A and in
this case, pNS = (. In fact, by loc.cit., p = {a € A | a/1 € Q}. We have to
show that p € Ass(M). Since A is Noetherian, we have a finite number of elements
P1,--.,pa € p which generate p as an ideal. Now p;/1 € S~!p = ann(m/1),
for i = 1,...,d. So there exist s; € S such that s;p;m = 0 for i = 1,...,d.
Let s = s1...584. Every p; lies in ann(sm), and so p C ann(sm). Moroever, if
a € ann(sm), then a/1 € ann(sm/1) = ann(m/1) = S~'p. This means a € p.
Thus p = ann(sm), and so p € Ass(M). O
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