
LECTURE 13

Date of Lecture: March 1, 2022

For a module M over a ring A, and an ideal a of A, we have the well-known
relation

(#) M/aM = M ⊗A A/a.

The universal A-bilinear map Bu : M×A/a→M/aM is (m, a+a) 7→ am+aM . Bu
is well defined, as is readily verified (a proof at the speed of light is: if a+a = 0+a,
i.e. if a ∈ a, then am + aM = 0). Any A-bilinear map B : M × A/a → T must
necessarily send all elements of the form (am, a′ + a), a ∈ a, to zero, whence the
map ϕB : M/aM → T , m+ aM 7→ B(m, 1 + a) is well defined. It is clear that ϕB
is the unique map such that ϕB ◦Bu = B. Once again, I would like to stress the
importance of universal properties, for this allows us to write (#) as an equality
rather than as an isomorphism.

1. Extension and contraction of ideals

1.1. The ideals ae and bc. We follow the notations of Atiyah-Macdonald [AM] in
this subsection (see [AM, pp.9–10]). Let f : A→ B be a ring homomorphism. For
an ideal b in B, we often write bc for the ideal f−1(b) in A. The ideal bc is called
the contraction of b to A, explaining the superscript “c”. Similarly, if a is an ideal
in A, we write ae for the ideal aB of B generated by images of elements in a, and
ae is called the extension of a to B. I prefer the symbol aB over ae, but I might use
the latter notation occasionally. Note that aB consists of finite sums of the form∑
i aibi with ai ∈ a and bi ∈ B, the product aibi being scalar multiplication in the

A-module B.
Note that aB is the smallest ideal in B containing f(a).
If A is a subring of B, f the inclusion map A ⊂ B, and b an ideal in B , then

clearly bc = b ∩A, explaining the term “contraction”. In this case, a is an ideal in
A, ae is the smallest ideal in B containing a.

It is clear that qc is a prime ideal in A if q is a prime ideal in B. In fact we have
proven this in class. The map

af : Spec(B)→ Spec(A)

induced by f , and defined on page 4 of Lecture 8, is precisely the map q 7→ qc.

Definition 1.1.1. A prime ideal q of B is said to lie over a prime ideal p of A if
qc = p. In this case we say p lies below or lies under q.

1.2. The inverse image of a closed set. In the above situation, if a is an ideal
in A, and q is a prime ideal in B such that qc contains a, then clearly q ⊃ f(a)
whence q ⊃ aB, since aB is the smallest ideal in B containing f(a). Conversely, if
q ⊃ aB, then q ⊃ f(a), and hence qc = f−1(q) ⊃ f−1(f(a)) ⊃ a. Thus

qc ∈ V (a)⇐⇒ q ∈ V (aB).
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Another way of saying this is

(1.2.1) (af)−1(V (a)) = V (aB).

Incidentally, this is another proof that af : Spec(B)→ Spec(A) is continuous.

2. Localization and relative topology

We make one notational change, just for this section. Let φ : R → R′ be a ring
map. Suppose S is a multiplicative system in R. We will write

(†) φS : S−1R −→ S−1R′

for the map S−1φ. This notation is typographically a tad more convenient for the
story we spin in this section. Recall that if T = φ(S), then S−1R′ = T−1R′, and
so φS(x/s) = φ(x)/s = φ(x)/φ(s).

2.1. A homeomorphism. Let A be a ring, S a multiplicative system in A. For
A-module M , iM : M → S−1M will denote the localization map. In particular
we have iA : A → S−1A, which is more than a A-module map, since it is a ring
homomorphism. Let X = Spec(A) and XS = Spec(S−1A). We then have a
continuous map

(2.1.1) aiA : XS −→ X.

Let D(S) = {p ∈ X | p ∩ S = ∅}. We have seen (from Problem 6 of HW 1)
that aiA factors through D(S), that it is injective, and its image is D(S). In other
words we have a commutative diagram

(2.1.2)

XS

aiA !!C
CC

CC
CC

CC
// D(S)

_�

inclusion

X

with the horizontal arrow being bijective. The inverse of the horizontal arrow in
(2.1.2) is p 7→ S−1p. We claim the horizontal arrow, namely

(2.1.3) XS → D(S), q 7→ aiA(q) = qc,

is a homeomorphism, where D(S) is given the subspace topology from X. Since
(2.1.3) is continuous and bijective, we only have to show that it is an open map,
which we now proceed to do.

It is enough for us to show that aiA(D(g/s)) = D(g) ∩ D(S) for g ∈ A and
s ∈ S. Since s/1 is a unit in S−1A, D(g/s) = D(g/1), and so it is enough to show
that aiA(D(g/1)) = D(g) ∩ D(S). If q ∈ D(g/1), and p = aiAq = i−1A (q), then
g /∈ p, whence p ∈ D(g), i.e. p ∈ D(S) ∩ D(g). Conversely, if p ∈ D(S) is such
that g/1 ∈ S−1p, then g/1 = x/s, for some x ∈ p, and s ∈ S. It follows that there
exists t ∈ S such that tsg = tx, i.e. tsg ∈ p. We therefore have g ∈ p, since ts /∈ p.
Thus p /∈ D(g). In other words, if p ∈ D(g) ∩ D(S), then S−1p ∈ D(g/1). This
establishes our claim.

In main takeaway is that the map (2.1.3) is a homeomorphism. As a special case
we see that if f ∈ A, then Spec(Af ) is homeomorphic to D(f).
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2.2. The inverse image of D(S). Let A and S be as above. We retain the nota-
tions of §2.1. Let f : A→ B be a ring homomorphism. Let Y = Spec(B). Consis-
tent with our notation XS for Spec(S−1A), we write Yf(S) or YS for Spec(S−1B).
We have a continuous map af : Y → X and a subset D(f(S)) of Y . Recall that
D(f(S)) is the collection of prime ideals q in B such that q ∩ f(S) = ∅. We claim
that

(2.2.1) (af)−1(D(S)) = D(f(S)).

This follows from the equivalence:

(∗) f(S) ∩ q = ∅ ⇐⇒ S ∩ f−1(q) = ∅.

The (⇒) direction of (∗) follows from the inclusion

S ∩ f−1(q) ⊂ f−1(f(S)) ∩ f−1(q) = f−1(f(S) ∩ q).

The (⇐) direction is seen as follows. Suppose f(S)∩q 6= ∅. Then there exists s ∈ S
such that f(s) ∈ q. Thus S ∩ f−1(q) is a non empty set since s lies in it.

The relation (2.2.1) can (should?) be interpreted as follows: The commutative
diagram

S−1B S−1A
fSoo

B

iB

OO

A
f

oo

iA

OO

induces a commutative diagram

Yf(S)

aiB

��

afS // XS

aiA

��
Y

af
// X

which, in view of (2.2.1), can be expanded to the following commutative diagram
(with the isomorphisms being isomorphisms in the category of topological spaces,
i.e. homeomorphisms):

(2.2.2)

Yf(S)

��

aiB

##

˜

��

afS // XS

˜

��

aiA

||

D(f(S))

(2.2.1)

af−1(D(S))� _

af // D(S)� _

Y
af

// X

If we identify XS with D(S) and Yf(S) with D(f(S)), and regard aiA and aiB as the

inclusions D(S) ⊂ X, and D(f(S)) ⊂ Y respectively, then (af)−1(XS) = Yf(S) and
3



the map afS is the restriction of af to Yf(S). This is the interpretation of (2.2.1)
that is most useful.

2.3. The fibre af−1(p). Let A be a ring and a an ideal. The bijective correspon-
dence between ideals of A/a and ideals of A containing a shows that V (I) and
Spec(A/a) can be identified as topological spaces. More precisely, if π : A � A/a
is the canonical surjection, then the map aπ : Spec(A/a) → Spec(A) is such that
aπ(Spec(A/a)) = V (a) and the induced map Spec(A/a) → V (a) is a homeomor-
phism. In other words we have a commutative diagram

(2.3.1)

Spec(A/a)
aπ

))RRR
RRRR

RRRR
RRR˜

��
V (a)

� �

natural inclusion
Spec(A)

The downward pointing isomorphism (on the left) is an isomorphism in the category
of topological spaces, i.e. it is a homeomorphism. One does not distinguish between
Spec(A/a) and V (a). This identification has uses as we will see below.

Now suppose f : A → B is a ring homomorphism, X = Spec(A) and Y =
Spec(B).

Proposition 2.3.2. The natural map Spec(Bp/pBp) → Y induced by the ring
homomorphism B → Bp/pBp maps Spec(Bp/pBp) homeomorphically on to the
fibre af−1(p).

Proof. First assume A is a local ring and p is the maximal ideal of A. The Propo-
sition follows (in this special case) from the commutative diagrams (1.2.1) and
(2.3.1), since Bp = B in this case.

In the general case let S = A r p. Identifying D(S) with XS and D(f(S) with
YS = Yf(S) with as we did in (2.1.3), we see from (2.2.2) that the fibre of af over p

can be identified with the fibre of afS over S−1p = pAp. We are then done by the
special case we considered above, since XS = Spec(Ap), YS = Spec(Bp), fS is the
natural map fp : Ap → Bp, and pAp is the maximal ideal of the local ring Ap. �

2.3.3. A couple of observations are in order.

1. Let κ(p) = Ap/pAp, the residue field of the local ring Ap. By (#), Bp/pBp =
Bp⊗AA/p = B⊗AAp⊗AA/p = B⊗A κ(p). It is worth pointing out that since
B⊗AAp⊗AA/p = B⊗AA/p⊗AAp, we have B⊗A κ(p) = Bp/pBp = (B/pB)p.
Proposition 2.3.2 is usually remembered by algebraic geometers via the formula

(2.3.3.1) af−1(p) = Spec(B ⊗A κ(p)).

2. Most of the discussion so far in this lecture is an elaborate solution to Exercise
21 in Chapter 3 of [AM].

3. Integral extensions

3.1. Let A be a subring of a ring B. An element x ∈ B is said to be integral over
A if there exist an integer n ≥ 1 and elements a1, . . . , an ∈ A such that

(3.1.1) xn + a1x
n−1 + · · ·+ an−1x+ an = 0.

In other words x is a root of a monic polynomial

(3.1.2) Xn + a1X
n−1 + · · ·+ an−1X + an ∈ A[X]
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over A. The ring B is said to be an integral extension over A if every element of
B is integral over A. We often abbreviate the phrase “B is an integral extension
over A” to “B is integral over A”. Alternately, we may say “A ⊂ B is an integral
extension”.

3.2. Toward the going up theorem. Throughout this subsection, we will as-
sume A ⊂ B is an integral extension.

1. Let A and B be integral domains. Then A is a field if and only if B is a field.
Proof. Suppose A is a field. Let x be a non-zero element of B. Let polynomial
(3.1.2) be a monic polynomial of least degree satisfied by x. Since B is an
integral domain, an 6= 0, for otherwise xn−1 + a1x

n−1 + · · ·+ an−2x+ an−1 = 0,
violating the condition that the polynomial in (3.1.2) is a polynomial of minimal
degree satisfied by x. Clearly

x(xn−1 + a1x
n−1 + · · ·+ an−2x+ an−1) = −an.

Since A is a field and an 6= 0, an is a unit in A and hence in B. In other words,
x is a unit in B.

Conversely, suppose B is a field and let a be non-zero element of A. Let x be
the multiplicative inverse of a in B. Assume again that x satisfies the equation
(3.1.1) and that the associated polynomial in (3.1.2) is a monic polynomial of
least degree for which x is a zero. Once again, clearly an 6= 0 because of the
minimality condition. Now multiplying (3.1.1) by an and using the fact that
ax = 1 we get

a

{
−

n∑
k=1

aka
k−1

}
= 1.

Since the expression in braces is an element in A, a is a unit in A. �

2. Let S be a multiplicative system in A. Then S−1A ⊂ S−1B is also an integral
extension. (We are using the fact that localization is exact to identify S−1A
with a subring of S−1B.)
Proof. Suppose x/s ∈ S−1B, with x ∈ B and s ∈ S. Assume x satisfies the
integral relation (3.1.1). Consider the monic polynomial g in (S−1A)[X] given
by

g = Xn +
a1
s
Xn−1 +

a2
s2
Xn−2 + · · ·+ an−1

sn−1
X +

an
sn
.

It is clear that g(x/s) = 0, whence x/s is integral over S−1A. �

3. Let b be an ideal in B and a = bc, so that the natural map A/a → B/b is
injective. Regard A/a as a subring of B/b is this manner. Then B/b is integral
over A.
Proof. For a ∈ A, let ā = a + a ∈ A/a and for x ∈ B, let x̄ = x + b ∈ B/b. If
x ∈ B satisfies (3.1.1), then it is clear that

x̄n + ā1x̄
n−1 + · · ·+ ān−1x̄+ ān = 0.

giving the required result. �
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4. Suppose A is a local ring with maximal ideal m. A prime ideal q in B is maximal
if and only if qc = m.
Proof. Suppose q is a prime ideal in B such that qc = m. Then B/q is integral
over A/m by 3. The rings A/m and B/q are integral domains. By 1, B/q is a
field, i.e. q is a maximal ideal of B.

Conversely, suppose q is a maximial ideal of B and p = qc. Then B/q is
integral over A/p. The rings A/p and B/q are both integral domains. Invoking
1 again we see that p is a maximal ideal of A, and hence p = m. �

5. If A is a field then all prime ideals of B are maximal.
Proof. This is an immediate consequence of 4. �

6. The map φ : Spec(B)→ Spec(A) induced by A ⊂ B is surjective.
Proof. Let p be a prime ideal of A. Let φp : Spec(Bp) → Spec(Ap) be the map
induced by the integral extension Ap ⊂ Bp. By Proposition 2.3.2, or better still,
by the commutative diagram (2.2.2), the fibre φ−1(p) can be identified with the
fibre φ−1p (pAp). By 4, every maximal ideal of Bp lies in φ−1p (pAp), which means

φ−1p (pAp), and hence φ−1(p), is non-empty. This shows that φ is surjective.
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