

## LECTURE 12

Date of Lecture: Feb 22, 2022

### 1. Irreducible components of $\text{Spec } A$

Let  $X$  be a topological space. Recall that  $X$  is said to be *irreducible* if  $X = F_1$  or  $X = F_2$  whenever  $X = F_1 \cup F_2$ , with  $F_1$  and  $F_2$  closed in  $X$ . A subset  $Z$  is said to be an irreducible subset if it is irreducible in the topology it inherits from  $X$ . If  $Z$  is irreducible, so is its topological closure  $\overline{Z}$ .

Recall further that a subset  $Z$  of  $X$  is an *irreducible component of  $X$*  if it is a maximal irreducible subset of  $X$ . Irreducible components are necessarily closed subsets (consider their closure).

We saw in the last lecture that every irreducible set is contained in an irreducible component and that  $X$  is the union of its irreducible components.

For the rest of this section,  $A$  is a ring and  $X = \text{Spec } A$ .

**1.1. Reduced rings.**  $A$  is said to be *reduced* if it contains no non-zero nilpotent elements, i.e. if  $x^n = 0$  for some  $x \in A$ , then  $x = 0$ . In other words,  $A$  is reduced if  $\sqrt{0} = 0$ , where  $\sqrt{0}$  is the nilradical of  $A$ . In other words  $A$  is reduced if  $0$  is a radical ideal.

It is clear that  $I$  is a radical ideal of  $A$  if and only if  $A/I$  is reduced since the nilradical of  $A/I$  is clearly  $\sqrt{I}/I$ .

Since  $\sqrt{I} = \{f \in A \mid f^n \in I \text{ for some } n \geq 1\}$ , it is clear that if  $I$  and  $J$  are radical ideals, then so is  $I \cap J$ .

We saw in [Lecture 5](#) (with input from [Lecture 4](#)) that

$$(1.1.1) \quad \sqrt{I} = \bigcap_{\mathfrak{p} \in V(I)} \mathfrak{p}.$$

Some immediate consequences of (1.1.1) are:

- $V(I) = V(\sqrt{I})$ .
- $\sqrt{I}$  is a radical ideal.
- If  $J$  is an ideal containing  $I$ , then  $\sqrt{J/I} = \sqrt{J}/I$ . Note that both sides are ideals in  $A/I$ .
- There is an inclusion reversing bijective correspondence between radical ideals and closed subsets of  $X$ , the correspondence being  $I \longleftrightarrow V(I)$ .

From these observations one deduces that the ring

$$(1.1.1) \quad A_{\text{red}} := A/\sqrt{0}$$

is a reduced ring.  $A_{\text{red}}$  is called the *reduced ring associated with  $A$* . Since  $V(I)$  can be identified as a topological space with  $\text{Spec}(A/I)$ , therefore the relationship  $V(0) = V(\sqrt{0})$  shows that  $\text{Spec } A$  and  $\text{Spec}(A_{\text{red}})$  can be identified. More precisely, if  $\pi: A \rightarrow A_{\text{red}}$  is the natural surjection then the induced map of topological spaces,

namely  ${}^a\pi: \text{Spec}(A_{\text{red}}) \rightarrow \text{Spec } A$ , is a homeomorphism. Setting  $X_{\text{red}} = \text{Spec}(A_{\text{red}})$  we have the identification

$$(1.1.2) \quad X_{\text{red}} = X.$$

**Proposition 1.1.3.**  *$X$  is irreducible if and only if  $A_{\text{red}}$  is an integral domain.*

*Proof.* Without loss of generality we may assume, by replacing  $A$  by  $A_{\text{red}}$  if necessary, that  $A$  is reduced. We have to show that  $X$  is irreducible if and only if  $A$  is an integral domain.

Suppose  $f$  and  $g$  are *non-zero* elements of  $A$  such that  $fg = 0$ . Since neither  $f$  nor  $g$  is a unit,  $\langle f \rangle$  and  $\langle g \rangle$  are proper ideals, whence  $X$  is not equal to either  $V(\langle f \rangle)$  or  $V(\langle g \rangle)$ . We have

$$X = V(0) = V(\langle fg \rangle) = V(\langle f \rangle) \cup V(\langle g \rangle)$$

showing that  $X$  is not irreducible.

Conversely, suppose  $A$  is an integral domain. Suppose  $X = F_1 \cup F_2$  where  $F_1$  and  $F_2$  are closed subsets of  $X$ . Then  $F_1 = V(I)$  and  $F_2 = V(J)$  where  $I$  and  $J$  are radical ideals. We have  $X = V(I \cap J)$ . Now  $I \cap J$  is a radical ideal, and since  $A$  is an integral domain, so is  $0$ . We have  $V(0) = X = V(I \cap J)$ , and by the bijective correspondence between radical ideals and closed subsets of  $X$ , we get  $0 = I \cap J$ . According to the very first Proposition in [Lecture 8](#), this means that either  $I$  or  $J$  is equal to  $0$ , since  $\mathfrak{p} = 0$  is a prime ideal,  $A$  being an integral domain. This proves  $X$  is irreducible.  $\square$

**Corollary 1.1.4.** *A closed subset  $Z$  of  $X$  is irreducible if and only if  $Z = V(\mathfrak{p})$  for some prime ideal  $\mathfrak{p}$  of  $A$ .*

*Proof.* Let  $Z = V(I)$  where  $I$  is a radical ideal. We know that  $Z$  is homeomorphic to  $\text{Spec}(A/I)$ , the map being  $\mathfrak{p} \mapsto \mathfrak{p}/I$ ,  $\mathfrak{p} \in V(I)$ . Since  $A/I$  is reduced ( $I$  being a radical ideal), according to the Proposition,  $Z$  is irreducible if and only if  $A/I$  is an integral domain, i.e. if and only if  $I$  is a prime ideal.  $\square$

## 2. Noetherian topological spaces

2.1. Let  $X$  be a topological space.  $X$  is said to be *Noetherian* if it satisfies the descending chain condition for closed subsets, i.e. every descending chain of closed subsets

$$(2.1.1) \quad Z_0 \supset Z_1 \supset \cdots \supset Z_n \supset \dots$$

is stationary.

**Remarks 2.1.2.** The following facts are established by standard arguments.

- (i) If  $A$  is a Noetherian ring, then  $\text{Spec } A$  is a Noetherian topological space.
- (ii)  $X$  is a Noetherian topological space if and only if the open subsets of  $X$  satisfy the ascending chain condition for open sets in  $X$ ; if and only if every non-empty collection of open sets has a maximal element (with respect to inclusion); if and only if every non-empty collection of closed subsets of  $X$  has a minimal element (with respect to inclusion).

Here is the main theorem concerning Noetherian topological spaces. The fact that a non-empty collection of closed sets has a minimal element plays a crucial role in the proof.

**Theorem 2.1.3.** (See [Ku, p.13, Proposition 2.14]) *Let  $X$  be a Noetherian topological space.*

- (a)  *$X$  has only a finite number of irreducible components.*
- (b) *No irreducible component of  $X$  is contained in the union of the remaining components.*

*Proof.* Let  $\Sigma$  be the collection of closed subsets of  $X$  which *cannot* be written as a finite union of irreducible sets. Suppose  $\Sigma$  is not empty. Then it has a minimal element  $Y$ . Now  $Y$  cannot be irreducible, for  $Y \in \Sigma$ . We can therefore find closed subsets  $Y_1, Y_2$  of  $Y$ , with  $Y_i \neq Y$ ,  $i = 1, 2$  such that  $Y = Y_1 \cup Y_2$ . Now  $Y_i \notin \Sigma$ ,  $i = 1, 2$ , and hence each  $Y_i$  can be written as a finite union of irreducible sets. It follows that  $Y$  can be written as a finite union of irreducible sets, contradicting the fact that  $Y \in \Sigma$ . Thus  $\Sigma = \emptyset$ . This means every closed set can be written as a finite union of irreducible sets.

Since  $X$  is closed,  $X$  too can be written as a finite union of irreducible sets. Since every irreducible set is contained in an irreducible component,  $X$  can in fact be written as finite union of irreducible components, say

$$X = \bigcup_{i=1}^n X_i$$

with  $X_i$  distinct irreducible components. We next establish that  $X_1, \dots, X_n$  are the only irreducible components of  $X$ . To that end, suppose  $Y$  is an irreducible component of  $X$ . Then

$$Y = \bigcup_{i=1}^n (Y \cap X_i).$$

Since  $Y$  is irreducible, this implies that  $Y = Y \cap X_i$  for some  $i$ , i.e.  $Y = X_i$ .

Finally, suppose for some  $i$ ,  $X_i \subset \bigcup_{j \neq i} X_j$ . Then

$$X_i = \bigcup_{j \neq i} (X_j \cap X_i)$$

whence  $X_i = X_j \cap X_i$  for some  $j \neq i$ . This means  $X_i = X_j$  for this  $j$ , contradicting the fact that the  $X_i$  are distinct.  $\square$

#### REFERENCES

[Ku] E. Kunz *Introduction to Commutative Algebra and Algebraic Geometry*, Birkhäuser, Boston, Basel, 1985.