

Fix a ring A , and let $X = \text{Spec } A$.

For a subset Z of X , let

$$I(Z) := \{f \in A \mid f \in P, \forall p \in Z\}.$$

Remark: $I(Z)$ is clearly an ideal.

Z in X .

Lemma: $\bar{Z} = V(I(Z))$ where \bar{Z} denotes the closure

Proof:

It is clear, by definition of $I(Z)$, that $Z \subseteq V(I(Z))$, and hence $\bar{Z} \subseteq V(I(Z))$. Suppose now that

$$Z \subset V(J)$$

for some ideal J of A . If $f \in J$, then $f \in P \forall p \in Z$, whence $f \in I(Z)$. Thus $J \subseteq I(Z)$, which in turn implies that $V(I(Z)) \subseteq V(J)$. Thus $\bar{Z} = V(I(Z))$ //

Further remarks:

Recall that for an ideal I , $\sqrt{I} := \{f \in A \mid f^n \in I \text{ for some } n > 0\}$, and

$$\sqrt{I} = \bigcap_{P \in V(I)} P.$$

It is clear that if I, J are ideals of A , then $V(I) = V(J)$ if and only if $\sqrt{I} = \sqrt{J}$. An ideal I is called a radical ideal if $I = \sqrt{I}$. From these remarks it is clear that there is a bijective correspondence between radical ideals and closed subsets of X , and the correspondence is s.t. $I \subset J \iff V(I) \supset V(J)$.

$D(f)$ and $\text{Spec } (A_f)$:

For $f \in A$, let

$$i^f: A \longrightarrow A_f$$

denote the localization map ($i^f = i_A$ in our earlier notation, but now we wish to emphasize the role of f).

Let

$$X_f = \text{Spec } (A_f)$$

and let

$$\phi_f: X_f \longrightarrow X$$

be the map induced by i^* . In other words, $\phi_f = \alpha \circ i^*$.

According to Problem 6 of HW1,

$$(a) D(f) = \phi_f(X_f)$$

(b) The map $X_f \longrightarrow D(f)$ induced by ϕ_f is bijective.

It is easy to verify that for $g \in A$

$$\phi_f(D(g)) = D(f) \cap D(g) = D(fg).$$

Now for any $n \geq 0$, $D(g/f^n) = D(g/1)$, whence

$$\phi_f(D(g/f^n)) = D(fg).$$

We have therefore shown that ϕ_f is an open map. Since it is continuous and injective, and its image is $D(f)$, it follows that

$$X_f \xrightarrow{\phi_f} D(f)$$

is a homeomorphism. The following commutative diagram summarizes the situation

$$\begin{array}{ccc} X_f & \xrightarrow{\phi_f} & X \\ \text{homeomorphism} \searrow & \swarrow & \downarrow \\ & D(f) & \end{array}$$

From now on, we identify $D(f)$ with X_f .

Quasi-compactness of $X = \text{Spec } A$

A topological space (in this course and in courses in algebraic geometry) is called quasi-compact if every open cover of it has a finite subcover. We reserve the term compact for topological spaces which are Hausdorff in addition to being quasi-compact.

2

The Bourbaki
"dangerous bend"
symbol.

Lemma: Let $\{f_r \in A \mid r \in \Gamma\}$ be a collection of elements in A . Then $\langle f_r \mid r \in \Gamma \rangle = A$ if and only if $\bigcup_{r \in \Gamma} D(f_r) = X$.

Proof:

Let $I = \langle f_r \mid r \in \Gamma \rangle$. Then

$$\bigcup_{r \in \Gamma} D(f_r) = \bigcup_{r \in \Gamma} (X - V(\langle f_r \rangle)) = X \cap \bigcup_{r \in \Gamma} V(\langle f_r \rangle) = X - V(I).$$

$$\text{Thus } \bigcup_{r \in \Gamma} D(f_r) = X \iff V(I) = \emptyset \iff I = A. //$$

Proposition: Let $f_r, r \in \Gamma$ be a collection of elements in A , and I the ideal generated by these elements. The following are equivalent:

$$(a) I = A$$

$$(b) \exists \text{ positive integers } n_r, r \in \Gamma \text{ such that } \langle f_r^{n_r} \mid r \in \Gamma \rangle = A$$

$$(c) \text{ For every choice of a family of positive integers } n_r, r \in \Gamma, \langle f_r^{n_r} \mid r \in \Gamma \rangle = A.$$

Proof:

This follows from the simple observation that if $n_r > 0$ then

$$D(f_r^{n_r}) = D(f_r). //$$

Proposition: X is quasi-compact.

Proof:

It is clearly enough to work with standard open sets. So suppose $\mathcal{U} = \{D(f_r) \mid r \in \Gamma\}$ is an open cover of X . Let $I = \langle f_r \mid r \in \Gamma \rangle$.

We know from the above results that $I = A$, whence $1 \in I$.

In particular, there exist $r_1, r_2, \dots, r_n \in \Gamma$ and $a_1, a_2, \dots, a_n \in A$ such that

$$a_1 f_{r_1} + \dots + a_n f_{r_n} = 1.$$

It follows that $\langle f_{r_1}, \dots, f_{r_n} \rangle = A$, whence $X = \bigcup_{i=1}^n D(f_{r_i}). //$

Closed points and maximal ideals

This should have been done right after proving $\bar{z} = V(I(z))$. Let β be a prime ideal of A . Clearly (specializing to $z = \{f\}$) $I(\{f\}) = \beta$.

Thus

$$\bar{\{f\}} = V(I(\{f\})) = V(\beta).$$

It follows that $\{f\}$ is closed if and only if $V(\beta) = \{f\}$, i.e. if and only if β is a maximal ideal.

Thus the closed points of X are precisely the maximal ideals of A .

Out of time. Should have done this earlier.

Kung's book "Introduction to
 Commutative Algebra and
 Geometry" is a good reference for
 this.

Irreducible subsets and irreducible components of a topological space

Most of the concepts here are mainly used in non-Hausdorff situations. The spectrum of a ring is rarely Hausdorff since in a Hausdorff space every point is a closed point, and from what we have seen above, a necessary condition then for $\text{Spec } A$ to be Hausdorff is that every prime ideal should be a maximal ideal. In particular, if A is an integral domain $\text{Spec } A$ is a Hausdorff if and only if A is a field, since $\langle 0 \rangle$ is a prime ideal in an integral domain.

Definition: A topological space X is called irreducible if for any decomposition $X = F_1 \cup F_2$ with F_1, F_2 closed, we have $X = F_1$ or $X = F_2$. A Z is called irreducible if it is irreducible in the induced topology, i.e. in its subspace topology.

Lemma: Let X be a topological space. The following are equivalent.

- (a) X is irreducible
- (b) If U_1, U_2 are two non-empty open subsets of X then $U_1 \cap U_2 \neq \emptyset$.
- (c) Every non-empty open subset of X is dense in X

Proof:

- (a) \Leftrightarrow (b) Follows by taking complements of U_1 and U_2 .
- (b) \Leftrightarrow (c) Follows from the fact that subset of X is dense if and only if it intersects every non-empty open set. //

Corollary: Let Z be a subset of X . TFAE

- (a) Z is irreducible
- (b) If $U_i, i=1,2$ are open in X with $U_i \cap Z \neq \emptyset$, $i=1,2$, then $Z \cap U_1 \cap U_2 \neq \emptyset$.
- (c) The closure \bar{Z} of Z is irreducible.

Proof:

For (c) the only thing to note is that for U open in X , $U \cap Z \neq \emptyset$ if and only if $U \cap \bar{Z} \neq \emptyset$. //

Definition: An irreducible component of a topological space X is a maximal irreducible subset of X .

Proposition: (a) Irreducible components are closed.

(b) Every irreducible subset of a topological space is contained in an irreducible component.

(c) Every topological space is the union of its irreducible components.

Proof:

(a) This follows from (c) of the previous Corollary.

(b) Let Z be an irreducible subset of X , and Σ the collection of irreducible subsets of X containing Z . Let $\{Z_\lambda | \lambda \in \Lambda\} \subset \Sigma$ be a totally ordered subset of Σ and set

$$Z_{\max} := \bigcup_{\lambda \in \Lambda} Z_\lambda.$$

Suppose U_1, U_2 are open in X with $U_i \cap Z_{\max} \neq \emptyset$, $i=1,2$. Then for some $\lambda \in \Lambda$, $Z_\lambda \cap U_i \neq \emptyset$ for $i=1,2$. Since Z_λ is irreducible, $Z_\lambda \cap U_1 \cap U_2 \neq \emptyset$, whence $Z_{\max} \cap U_1 \cap U_2 \neq \emptyset$. Thus Z_{\max} is irreducible. By Zorn's Lemma, Σ has a maximal element. This has to be an irreducible component.

(c) Follows from (b) since every point is irreducible. //