

A ring A is a (non-empty) set with two operations (addition, and multiplication).

Notation:

$$\left. \begin{array}{l} \text{Addition} \longleftrightarrow + \\ \text{Multiplication} \longleftrightarrow \text{proximity} \approx \cdot \end{array} \right\} A \times A \rightarrow A$$

Moreover:

- A is an abelian group with addition
- Multiplication is associative $((xy)z = x(yz))$
- Multiplication is distributive over addition:

$$\left. \begin{array}{l} x(y+z) = xy + xz \\ (x+y)z = xz + yz \end{array} \right\} \text{Distributivity}$$

In this course we will only consider rings s.t.

- (a) Multiplication is commutative
- (b) A multiplication identity exists (denoted 1 or 1_A)

Notation: The additive identity denoted 0 ← zero element
The multiplication identity is denoted 1 .

We ALLOW $1=0$.

Check that if A is as above ($1=0$), then $A=0$.

Such a ring is denoted 0 .

The additive inverse of x is denoted $-x$.

Ring homomorphisms Let A and B be rings.

A ring homomorphism from A to B is a map

$$f: A \longrightarrow B$$

such that

$$\left. \begin{array}{l} \text{(i)} \quad f(x+y) = f(x) + f(y) \\ \text{(ii)} \quad f(xy) = f(x)f(y) \\ \text{(iii)} \quad f(1) = 1 \end{array} \right\} x, y \in A$$

An ideal I in a ring A is an additive subgroup

of A such that if $x \in A$, $y \in I$, then $xy \in I$.

Examples:

(1) Let $A = \mathbb{Z}$, the ring of integers.

$$\text{Let } I = (3) := \{3n \mid n \in \mathbb{Z}\}.$$

Then I is an ideal (check)

(2) In fact, if A is any ring and $x \in A$ is an element then

$$(x) := \{xa \mid a \in A\}$$

is an ideal.

Such ideals are called principal ideals.

(3) Let $A = \mathbb{Z}[X]$, the ring of polynomials in a variable X with coefficients in \mathbb{Z} .

$$\mathbb{Z}[X] = \{a_n X^n + a_{n-1} X^{n-1} + \dots + a_1 X + a_0 \mid a_i \in \mathbb{Z}\}$$

$$I = \langle 3, X \rangle = \{3p(X) + Xq(X) \mid p(X), q(X) \in \mathbb{Z}[X]\}$$

Claim: I is an ideal of A .

- Let $3p_1 + xq_1, 3p_2 + xq_2$ be elements in I .

Then

$$\begin{aligned}(3p_1 + xq_1) - (3p_2 + xq_2) \\= 3(p_1 - p_2) + x(q_1 - q_2) \in I.\end{aligned}$$

So I is an additive subgroup of A .

- Let $y = I$ and $a \in A$.

Since $y \in I$, it must be of the form

$$y = 3p + xq$$

Then $ya = 3(pa) + x(qa) \in I$.

Check that I is not a principal ideal.

(4) Let $f: A \rightarrow \mathbb{R}$ be a ring homomorphism.

Let $I = \{a \in A \mid f(a) = 0\} =: \ker(f)$.

Then I is an ideal. Indeed, being the kernel of an additive group homomorphism, I is an additive subgroup of A . Moreover, if $x \in I$ and $a \in A$, then

$$f(xa) = f(x)f(a) = 0 \cdot f(a) = 0.$$

Hence $xa \in \ker(f) = I$. //

Example 4 is typical. Every ideal arises as the kernel of a ring homomorphism. The broad steps are as follows:

Let $I \subseteq A$ be an ideal.

- Since I is a subgroup of an abelian group (viz. A) therefore I is normal, and the ^{quotient} group A/I makes sense.

- Easy to see A/I is abelian.

- A/I is a ring: Let $x+I$ and $y+I$ be two elements of A/I . Define

$$(x+I)(y+I) := xy+I.$$

This is well-defined. Suppose $x+I = x'+I$.

Recall this happens if and only if $x-x' \in I$.

Hence $(x-x') \cdot y \in I$. Complete this!

Check that $xy+I = x'y+I$, i.e.

check that $\underset{||}{xy} - x'y \in I$.

$$(x-x')y$$

so $xy+I = x'y+I$.

By symmetry, if $y+I = y'+I$, then $xy+I = xy'+I$.

Finally combine this to give $xy+I = x'y'+I$.

- Check with the above multiplication A/I is a ring.

- Next check that the map

$$\pi: A \longrightarrow A/I$$

$$a \longmapsto a+I$$

is a ring homomorphism.

• Finally check that $I = \ker(\pi)$.

An isomorphism $f: A \rightarrow B$ between rings A & B is a ring homomorphism which is one-to-one and onto.

Dictionary

injective \iff one-to-one

surjective \iff onto

bijection \iff one-to-one and onto.

Recall : A ring homomorphism $f: A \rightarrow B$ is injective if and only if $\ker(f) = 0$.

Prime ideals : Let A be a ring. An ideal $\mathfrak{p} \neq A$ is called prime (or a prime ideal) if

- $\mathfrak{p} \neq A$
- If $x, y \in A$ are such that $xy \in \mathfrak{p}$, then either x or y is in \mathfrak{p} .

Lemma : I is a prime ideal of a ring A if and only if A/I is an integral domain.

Proof : Clear (check).

Definitions : Let A be a ring. An ideal M in A is said to be a maximal ideal of A if

- $M \neq A$
- If I is an ideal containing M then either $I = A$ or $I = M$.

Lemma: An ideal I of a ring A is maximal if and only if A/I is a field.

Proof: Recall that k is a field if $k \neq 0$ and every non-zero element is a unit. Let I be maximal, and $k = A/I$. Then, since $I \neq A$, $A/I \neq 0$, and since 0 is the only proper ideal of A/I (I being maximal), and hence if $x \neq 0$ in A/I , then x must be a unit, (otherwise the ideal generated by x is of the form J/I , $J \supseteq I$, violating maximality).

Conversely if A/I is a field, then the only proper ideal of A/I is 0 , which means the only proper ideal of A/I is I/I . Thus if $J \supsetneq I$ is an ideal in A , then $J = A$ or $J \subseteq I$. /

Corollary: Maximal ideals are prime.